Stanford Heuristic Programming Project
Report No. HIPP-83-20

The Utility of Meta-level Effort

Jeffrey S. Rosenschein
Vinecet Singh

COMPUTER SCIENCE DEPARTMENT
Stanford University
Stanford, California 94305

Maxch 1983

The Utility of Meta_—level Effort

Jeffrey S. Rosenschein and Vineet Singh

Heuristic Programming Project
Computer Science Departiment
Stanford University
Stanford, CA 94305

Abstract

Meta-level control, in an Artificial Intelligence system, can provide increased capabilities and
improved performance. This improvement, however, is achieved at the cost of the meta-level effort
itself. To ensure an overall increase in system efficiency, the savings brought about at the base level
cannot be exceeded by the effort at the meta-level. This paper outlines a formalization of the costs
involved in choosing between independent problem-solving methods; the cost of meta-ievel control is
explicitly included. It is shown that when meta-level effort is related to its efficacy, there exists an
amount of this effort that should optimally be expended. Too much or too little meta-level effort can

result in a loss of overall system performance.

Introduction

It is often desirable for Artificial Intelligence systems to make use of explicit knowledge about what
they know; this meta-level knowledge allc;ws a program to direct its own activities in an informed and
efficient manner [Davis 76, Barr 82]. The use of meta-level knowledge by a system to control its own

actions is called meta-level control.

While meta-level control can clearly be beneficial to the overall performance of a system (by both
capability and performance criteria), it is not achieved without cost. Every system resource that is
expended at the meta-level adds to the overall cost of a problem's solution. If we are to gain
efficiency through the use of meta-level effort, we must be sure that what is saved at the base level is
not canceled by what is expended at the meta-level.

This paper presents a straightforward model of decision-making, then develops a formalization of
cost that explicitly includes the cost of meta-level effort. A more generalized formalization of meta-
control (that includes the probability of making the correct choice) is then examined; criteria are given
for when, and to what extent, this type of control effort should be expended. Finally, several examples
demonstrate that too much or too little meta-level effort decreases overall efficiency; included among
these examples is an analysis of task allocation strategies in distributed systems.

Ordering Independent Methods

The Simple Model

Assume that a computer system has at its disposal two independent methods for solving a problem;
neither method is guaranteed to succeed, but probabilities of success exist for each one. Let us call
the two methods x and y; let p, be the probability that x will satisfy the goal, and let e, be the expected
cost of performing x (regardless of whether or not it succeeds). Define P, and e, in the same way for
method y. Note that cost can be a function of any parameters associated with a method, such as time
and storage. Barnett [Barnett 82] and Simon [Simon 75] have shown that the expected cost of
executing x before y (i.e., executing x, and then, if necessary, y) is

E(xy) = e, + (1- px)ey.
An analogous result holds for E{(yx). The independence of the two methods ensures that e < € Px

and Py remain unchanged regardless of the order in which x and y are performed.

The decision to try x before y should be made when this ordering has a lower expected cost than
the alternative, that is, when E(xy) < E(yx); of course, either method can be tried first if E(xy) = E(yx).
If p, is defined as p, /e, (forz = x and z = y), we find (again following Barnett) that x should be tried
before y precisely when P, > Py since

E(xy) <E(yx)

e +(1- px)ey< e, + (1- py)ex
py/ey < px/ex

?, <o,

The result generalizes to n independent methods: compute ¢, for 1<{i<{n, and try methods ordered
by their ¢'s, largest ¢ first. All of the above results are developed in [Simon 75] and explicated in
[Barnett 82]; Barnett also computes the savings of performing the methods in their optimal ordering
versus performing them in their alternative ordering, namely:

S = |[E(yx) - E(xy)l = Ip,e, - P&l

He shows that if the optimal ordering is used instead of a totally random choice between x and y, the
expected savings is S/2. This, then, is the "value"” in this simple model of control knowledge used to
pick the ordering.

Including Control Cost Explicitly in the Simple Model

Let us consider the cost of the decision procedure explicitly in our savings computation. We define
E{(dxy) as the expected cost of performing a decision procedure d, followed by method x and
(possibly) method y (i.e., if x fails). E(dxy) is thus equal to e, + e + (1 - px)ey. where e4 is the

expected cost of the decision procedure. If the system were going to perform method vy first, but
because of the decision procedure discovered that method x was preferable as a first alternative, the
savings would be equal to

S = E(yx) - E(dxy)
[ey + (1- py)ex] ey +e +(1- px)ey]
Py, - P8, - €y

Conversely, if x would have been performed first but the decision procedure tells us y is the correct

choice, our savings S = P&, - P8, - &y Thus, the true expected savings S is lpxey : pyexl - ey (where

|a] is the absolute value of q).

In fact, this is not quite a realistic case; it can be assumed that, with no control knowledge
expended, there is an equal chance of either method being tried first. Therefore, our savings is equal
to E(yx)/2 + E(xy)/2 - E(dxy) (or, conversely, the last term might be E(dyx)), and we have

S = (Ipxey . pyex|/2) - €y (&)

Extending the Model with Decision Probabilities

In general, we cannot assume that the decision procedure d finds the correct course of action (i.e.,
finds the true values of ¢ and (py). Assume that the decision procedure claims that ¢ > Py but the
likelihood that this is actually true is some probability p o In this case, our expected savings is

Dd(pxey - Dyex) +(1- pd)(Dyex - Dxey) €y
i.e., 1) the expected gain (p <& P yex) when the decision was correct, times the probability that it was
correct, plus 2) the expected gain (pyex - pxey, a negative quantity) when the decision was incorrect,

times the probability that it was incorrect, minus 3) e, the decision cost. For the sake of

a
convenience, let us define W to be Ipxey - pyexl. Now, taking into account the fact that x and y may
actually be reversed in the above equation (depending on the true sizes of ¢ < and (py), and
rearranging, we get the expected savings to be

S = (2pd-1)W-ed,
and the savings over what we would get with a random choice is

S = [(2p, - NW/2] - &,

Note that when p g =1 this result generalizes to Equation (1) above.

Probability of Correct Choice as a Function of Meta-level Effort

In realistic situations, the probability of having made the correct choice between methods, Py is
some function of the amount of effort expended at the meta-level, i.e., p g = f(ed). Placing this new
function in our equation above, we find that our savings when using a variable amount of decision
effortis

S = [(2fle,) - NW/2] - ¢, : (2)

Since we want to maximize S as a function of e, (i.e., get the maximum savings for our meta-level
effort), we take the derivative of S with respect to e 4 set the result equal to zero, and find that, at the
point where savings are maximized,

fley) = 1/W. (3)
Figure 1 provides a graphical representation of the potential relationship between decision effort and

savings.

Point of maximized savings
S 4 as a function of decision effort

Savings

>
Meta-level \ €,
Effort
Figure 1: Savings as a function of meta-level effort

Note that there may be no value of e d that satisfies Equation (3). This is because the equation is
derived under the assumption that the derivative of S with respect to e q €an be set equal to zero; in

fact, this is not always the case, as will be seen in the second example below.

Practical Implications

To precisely determine optimal meta-level effort using the above analysis, one has to know the
value of W and the relationship between p | and e " This is not necessarily a realistic assumption. In
particular, the most likely way of knowing W is to know the values of p x* € Py and e, in that case, a

trivial decision procedure can be used to choose between the methods.

In practice, one would use estimates of W and the relationship between p d and &4 to compute an
approximate value of e q at which optimal savings result. Heuristics may be employed to make these
estimates. In addition, it may be possible for a system to refine estimates and develop an approximate
model of pyasa function of e d through the collection of statistics.

In most realistic cases, there will not actually be a known relationship between p d and e ” Even
then, the analysis outlined above is useful. If one has two or more points at which the savings brought
about by meta-level effort can be computed, the analysis can be used to make the proper choice.

This case will be highlighted in our task allocation example below.

An Example

Let us now use Equation (3) to analyze an example of meta-level control. It is often the case in
reality that a small amount of meta-level effort results in substantially improved performance, while
there are diminishing returns for subsequent effort. A reasonable form for f(ed) that captures this
relationship is shown in Figure 2. In this case, the probability pf making the correct decision is 0.5
when no decision effort is expended (this will be true if the choice is made randomly, and if x and y
have equal probabilities of being the correct choice). Moreover, as more effort is expended at the
meta-level, the probability of making the correct decision asymptotically approaches 1. A function
that displays these characteristics is f(ed) =1- [e(‘ed)/Z], for e4 on the interval [0,00). The derivative

of the function is e'"%4)/2; plugging this value into Equation (3) and solving for e, we find that ey =

dl
In(W/2). This is the amount of control effort that produces maximum savings, given that Py is the
aforementioned function. The savings achieved using this amount of control effort is [(W-2)/2]

- In(W/2).

>

€

Figure 2: An example of the relationship between probability
of correct decision and meta-level effort

Note that it is possible, for some W's, to use the above method and find that e d should be negative
to achieve maximum savings. Since, however, this falls outside the interval on which the function
f(ed) is defined, we examine the interval end-point(s) to discover a maximum achievable savings. With

the above function, for example, if e, came out negative then maximum achievable savings would be

[\ §

"\

with gy = 0. In this case no meta-level effort would be expended, and there would be no savings at

all.

A Second Example

In many realistic situations, a certain amount of meta-level effort will guarantee that the base level
method with lower expected cost is chosen. Figure 3 illustrates a form for f(e d) that captures this; the

linear relationship between p and e in the interval [0,v] is arbitrary, but certainly reasonable.

Formally, f(e,) = (0.5/v)e, + 0.5 for e, on the interval [0,v], and fleg) = 1 on the interval (v,00); v in
this instance is the predetermined constant at which the meta-level effort guarantees the correctness
of the base level choice. Since f(e d) is constant in the interval (v,00), savings (S) as given by Equation
(2) decrease as e J increases. Therefore (and because there is no discontinuity for savings at e, = v),
the maximum savings (for any value of e,) is obtained at the relative maximum in the interval [o,v].
Also, in the interval [0,v], S equals (ed/v)W/2 - €y OF equivalently ed([W/(2v)] - 1), using Equation

(2) and f(ed) as defined here. S', the derivative of S, is therefore [W/(2v)] - 1.

A
A
05 - I
|
| -
\ €4

Figure 3: A second example of the relationship between probability
of correct decision and meta-level effort

If v > W/2, then S’ is negative; therefore, the relative maximum in the interval [0,v] lies at ey = 0.
Similarly, when v< W/2, S’ is positive and the relative maximum lies at e 4 = V- There is a particularly
interesting situation when v = W/2. In this case, S’ is zero in the entire interval and so is S. This
means that any extra effort spent at the meta-level is exactly negated by an equivalent decrease in
effort at the base level, and any cut in the effort at the meta-level is also exactly negated by an

equivalent increase in effort at the base level.

Note that in this example it is not possible to simply set S’ to 0 and solve for e ,, since ey does not

dl

appear in S'. The relative maximum of e, must be found at the edges of the intervals on which it is
defined.

A More Realistic Example

Task Allocation in a Distributed System

One of the primary motivations of distributed systems is increased performance. Performance, in
turn, is crucially dependent on the task allocation strategy used. Quite appropriately, much effort has
been expended in the recent past to synthesize new task allocation strategies and to analyze them in
terms of computational complexity theory [Lageweg 81, Mayr 81, Dolev 80]. We will focus on the

following special case of the task allocation problem:

e There exists an arbitrary but finite number of identical processors.

o A finite set T of tasks need to be allocated to the processors. Associated with each task is
the processing time required for the task. (The number of tasks is usually considered to
be an order of magnitude greater than the number of processors.)

e There exists a precedence constraint over T defined by a partial order <. [f t and t’.
belong to T and t < ti’ then the execution of ti cannot start until the execution of t is
finished. (The precedence constraints mentioned here arise from data or control flow
conslraints.)

e Once a processor begins to execute a task, it works to completion unless the task
execution is aborted for some reason. If a task is aborted, partial results cannot be used
and the task must be processed from the beginning elsewhere.

o The optimality criterion is to minimize the time at which all tasks have been completed.

Consider at first that task descriptions are not available simultaneously, but rather that they flow
into various processors from outside the system at possibly different times. One task allocation

strategy is the following:

When a processor receives new task descriptions from outside the system, the descriptions are
broadcast to the community of processors. Each processor maintains a list of task descriptions that it
hears about along with any associated precedence constraints. A task is said to be available if it has
no uncompleted predecessor tasks (defined by the precedence constraints), and if it is not already
being worked on by some other processor. Whenever a processor is free, it looks at the set of

available tasks and picks the one that heads the longest chain (in terms of the sum of processing

times) of unexecuted tasks, broadcasts its intention of grabbing the task, and starts executing it. Any
conflicts between processors are resolved by a preset ordering among them. Therefore, it is possible
that a task executing at a processor may have to be aborted on receipt of a broadcast from another
processor; let us assume that such multiple, partial executions of tasks do not create any problems.

After completion of a task, the processor that completed the task broadcasts that it has done so.

The algorithm described above is more decentralized than an allocation strategy based, for
example, on a contract net approach [Davis 81] and so potentially offers advantages of efficiency and
reliablility over the latter. A detailed discussion of the comparative merits and demerits of the two

approaches is, however, outside the scope of this paper.

The task distribution strategy mentioned here has been analyzed by Graham [Graham 69] for the
case where all task descriptions are available simultaneously. Call this new algorithm A,. if n is the
number of processors, w, the completion time for the tasks using this algorithm A1, and W, the
minimum possible completion time provided by any algorithm, then Graham proves the following
upper bound:

w1/w0 <2-(2/(n+1));
i.e., the worst case for the completion time using A1 is at most twice (asymptotically as the number of

processors approaches infinity) the completion time using an optimal algorithm.

It is known that the problem of finding an optimal schedule for the case mentioned above is
NP-complete [Lageweg 81, Garey 79]. The simplest exponential algorithm that finds an optimal
schedule is perhaps the algorithm that enumerates all possible allocations and then picks the one that
leads to the earliest completion time; call this algorithm AEX o The next subsection will compare this
exponential algorithm with A, using criteria developed earlier in this paper for evaluating meta-level
effort.

Choosing Among Distributed Task Allocation Algorithms

The total cost of any task distribution strategy may be thought of as consisting of two parts: base
level cost, the "run-time" cost of actually performing the tasks, and meta-level cost, the "set-up" cost
of deciding which task should be performed next (and by which processor). For example, the upper
bound on the total cost of algorithm A is given by

CA‘ <2w, + Ofs), (4)
where s is the number of tasks in the system. By comparison, the upper bound on the total cost of the

exponential algorithm AExp is

Cp, <wy+ O(k®), where k> 1.

Exp

We would like to judge how much meta-level effort is warranted in the above case, that is, how
much effort should be spent scheduling to maximize overall savings. Our particular formalization of
costs is not directly applicable in this case, since increased meta-level effort affects base level costs
(i.e., the execution of the tasks takes less time). In addition, our characterizations above are upper
bound costs, not expected costs. Nevertheless, the overall theme of computing preferable meta-level

effort, on the basis of total cost, remains.

Thus, although the second algorithm gives provably optimal performance at run-time, the meta-
level cost may be prohibitively high. In particular, if the savings introduced by reducing run-time by
(at most) w,, are exceeded by the difference between exponential and linear costs of scheduling the

tasks, the "non-optimal" strategy is preferable. C, will be less than C, under a suitable

A1 Exp

combination of the following circumstances:

1. s, the number of tasks to be scheduled, is sufficiently large;

2. w,, the optimal length of the run-time schedule, is sufficiently small.

We will choose to use algorithm A, when C, islessthan C, . thatis, when
1 Exp
S
Wy + C;S + c2<csk + C,,
where ¢, C,, C,, and c, are the algorithms’ relevant constants. For example, assume that w, = 4

hours, c, through c,arel (second) each, k = 2, and s = 10. In this case, the value of Wy+CSs+¢C

1 2
greatly exceeds caks + Cy and the exponential algorithm will be chosen. Conversely, if w, were 1

minute and s = 1000, Al would be chosen.

There is another way of looking at the problem of deciding between task allocation strategies. The
decision regarding how much meta-level effort to expend (which is actually a meta-meta-level
decision) can be seen as an instance of our earlier analysis: call algorithm A, our method x, and the
algorithm A, p our method y. In addition, consider both elements of task distribution cost to be at
"base level” (e.g., CA1 = e, and consists of the two terms in Equation (4)). Then the meta-level
decision effort, e, is expended in trying to determine the relative costs of the two methods (since
both methods are guaranteed to succeed, P, and p, are 1). The following are five ways to augment
the decision-making process as it chooses between the two algorithms, each involving increased
effort and returning an increased probability of making the correct choice: .

1. Examine the number of tasks, s;

2. Compute the summation of these task times, which gives an upper bound on Wy

3. Examine the nature of the precedence constraints over the tasks, since it may be a
special case (e.g., no constraints, or a total ordering on all tasks);

4. Determine the exact constants on the costs of the algorithms (e.g., replace O(s) by 57s +
7);

5. Execute an entire algorithm, and get an exact value for the method's cost (this, of course,
obviates the need for performing some of the base-level computation).

Each method involves an increased meta-level effort, and after completion increases the probability
of making the correct decision. The exact amount of meta-level effort to expend will depend on the
relationship between this effort, €y and the probability of success, Py as discussed above, this

relationship could be approximated through empirical observation.

Conclusions

Meta-level control can be a valuable source of increased system efficiency, but only if exploited in
the proper way. Too much or too little meta-level effort can result in a loss of overall system
performance. To expend the optimal amount, we must analyze the relationship between total costs
on the one hand, and improvement brought about by meta-level control on the other. In certain
cases, it is possible to quantify this relationship and precisely determine the best amount of meta-level

effort for the problem.

Acknowledgment

The original idea of examining the above issues arose in discussion with Mike Genesereth; in

addition, the resuiting conclusions have benefited greatly from his comments.

[Barnett 82)

[Barr 82]

[Davis 76]

[Davis 81]

[Dolev 80]

[Garey 79]

[Graham 69]

[Lageweg 81]

[Mayr 81]

10

References

Barnett, Jeffrey A.
How Much is Control Knowledge Worth?: A Primitive Example.
ISI Working Paper, USC/Information Sciences Institute, June, 1982,

Barr, Avron and Edward A. Feigenbaum (Eds.).
The Handbook of Artificial Intelligence.
William Kaufmann, Inc., 1982, chapter VII.

Davis, Randall.

Applications of Meta-level Knowledge to the Construction, Maintenance, and Use
of Large Knowledge Bases.

PhD thesis, Stanford University, 1976.

Memo AIM-283, Al Laboratory, and Rep. No. STAN-CS-76-552, Computer Science
Dept., Stanford University; Reprinted in R. Davis and D. Lenat (Eds.),
Knowledge-based Systems in Artificial Intelligence, McGraw-Hill, 1982, pp.
229-490.

Davis, Randall and Reid G. Smith.
Negotiation as a Metaphor for Distributed Problem Solving.
MIT A.l. Memo 624, Massachusetts Institute of Technology, May, 1981.

Dolev, Danny.

Scheduling Wide Graphs.

Report No. STAN-CS-80-832, Department of Computer Science, Stanford
University, December, 1980.

Garey, Michael R. and David S. Johnson.
Computers and Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman and Company, San Francisco, 1979.

Graham, R. L.
Bounds on Multiprocessing Timing Anomalies.
SIAM Journal of Applied Mathematics 17(2):416-429, March, 1969.

Lageweg, B. J., E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan.
Computer Aided Complexity Classification of Deterministic Scheduling Problems.
Technical Report BW 137/81, Mathematisch Centrum, 1981.

Mayr, E. W.
Well Structured Parallel Programs Are Not Easier to Schedule.
Report No. STAN-CS-81-880, Stanford University, September, 1981.

LN

[Simon 75] Simon, Herbert A., and Joseph B. Kadane.
Optimal Problem-Solving Search: All-ar-None Solutions.
Artificial Intelligence 6:235-247, 1975.

