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Abstract

Agents situated in a real-world setting may frequently lack complete knowledge of their en-
vironment and of the capabilities of other agents. Researchers have addressed this problem by
exploiting tools from learning theory. In particular, advances in reinforcement learning have
yielded learning algorithms that converge to various solution concepts for stochastic games.
However, scarcely any studies have attempted to tackle learning in coalition formation. Even
fewer have applied the widely known Probably Approximately Correct (PAC) theory to multi-
agent systems.

In this paper, we endeavor to remedy these shortcomings by considering PAC learning of
simple cooperative games, in which the coalitions are partitioned into “winning” and “losing”
coalitions. We analyze the sample complexity of a suitable concept class by calculating its
Vapnik-Chervonenkis (VC) dimension, and provide an algorithm that learns this class. Fur-
thermore, we study constrained simple games; we demonstrate that the VC dimension can be
dramatically reduced when there exists only a single minimum winning coalition (even more so
when this coalition has cardinality 1), while other interesting constraints do not significantly
lower the dimension.

1 Introduction

A significant portion of recent research in multiagent systems has focused on learning. In particular,
researchers have constructed and analyzed algorithms that converge to equilibrium concepts (such
as Nash equilibrium) for stochastic games [10, 7]. The latest studies have attempted to introduce
algorithms that achieve an optimal payoff in the presence of other agents, but have not considered
the convergence to equilibrium as obligatory [4, 15].

On the other hand, very few investigations have been devoted to learning in coalition formation,
an area of game theory that is exceedingly relevant to multiagent systems. Classical models of
coalition formation assume the values of all coalitions are known a priori, but this assumption is
unreasonable in many (indeed, almost all) multiagent settings. In [3], a new model for coalition
formation was proposed, where agents must learn the values of possible coalitions. Moreover, the
(strongest) classical solution concept, called the core, is replaced by a modified version called the
Bayesian core.

All of the aforementioned papers adopt reinforcement learning, or some slightly doctored version,
as the learning technique; each agent maintains an estimated model of the environment, based on
past experiences. The model is updated as the agent repeatedly interacts with other agents and the
environment, but at each stage an agent must base its decisions on the current model it possesses.

Surprisingly, only a handful of researchers have attempted to apply PAC1 (Probably Approxi-
mately Correct) learning theory to multiagent settings, although this model has been extensively
studied by researchers in computational learning theory. One example of PAC research in a mul-
tiagent model can be found in [5], where PAC learning is used to identify agents that can provide
specific services. Another investigation [13] introduces a framework used to predict the behavior of

1The PAC model is also known as the formal model.



a multiagent system with learning agents, and uses PAC learning theory to obtain bounds on the
values of the learning parameters.

In this paper, we focus on simple cooperative games, in which each coalition is either “winning”
or “losing”, the assumption being that if a coalition is winning, any coalition that contains it is also
winning. Simple games are a suitable model for numerous n-person conflict situations. An example
of such a game is voting on a bill in a parliament (with, say, 120 members), where a majority of
votes has to be obtained in order to pass the bill; a winning coalition is any coalition with at least 61
members. Given the set N = {1, 2, . . . , n} of players (agents2), we can concisely describe a simple
cooperative game by maintaining a list of minimum winning coalitions; a coalition is winning if
and only if it is a superset (in the weak sense) of some minimum winning coalition, and is losing
otherwise. In this way, sets of minimum winning coalitions can be considered as functions from 2N

to {0, 1}. Let C∗ be the class of such concepts.
In our setting, an agent is learning, in the PAC model, some target concept ct ∈ C

∗, by training
on a set of “sample” coalitions. The samples are labeled either 1 (for winning) or 0 (for losing),
and are drawn from some fixed distribution on the instance space 2N . Observing the conventions
of PAC learning theory, the hypothesis that is produced by the learning process is expected to be
ε-close to the target concept, with confidence 1− δ.

It is important to note that this setting can be embedded into real-world environments. Consider
a group of advisers to the president of some political or financial organization. Different advisers
would like to pursue different courses of action. Some of the advisers are closer to the ear of the
president; coalitions that include such powerful advisers are more likely to convince the president.
Since the group of advisers influences the president’s decisions on a daily basis, the “winning”
coalitions of advisers can be identified by examining the decisions the president has made over a
period of weeks or months. The assumption of a fixed distribution on the coalitions is justified by
noting that coalitions are likely to form among advisers with some common agenda; hence the set
of plausible coalition structures is not likely to change over a short period of time.

The Vapnik-Chervonenkis (VC) dimension, which is formally defined in Section 2, is a combina-
torial measure of the “richness” of a concept class, and is proportional to the difficulty of learning
the class. We prove that

VC-dim(C∗) =

(

n

bn/2c

)

.

We use our bounds on the VC dimension to estimate the training set size a consistent3 algorithm
needs in order to be “probably approximately correct”, and present a specific algorithm that learns
C∗.

We attempt to lower the VC dimension by studying constrained classes of simple games. We
demonstrate that some constraints greatly reduce the VC-dimension: requiring that there be a
dictator player reduces the dimension to blognc, while a generalization of this constraint to a single
winning coalition has a VC-dimension of n. We consider other interesting constraints, and show
that they do not substantially reduce the VC dimension.

We wish to stress that although similar upper bounds on the sample complexity can be derived
from the size of our (finite) concept classes, we still benefit from computing the VC dimension of
such classes, since this also yields lower bounds on the sample complexity.

Interestingly, C∗ is equivalent to the concept class of monotone DNF formulas, which is formally
defined below. The latter concept class has not been sufficiently studied in the context of PAC
learning and VC dimension. In particular, the constraints we study on simple games stem from
game theoretic intuitions that are scarcely relevant when discussing boolean formulas.

The rest of the paper is organized as follows. In Section 2 we discuss known definitions and
results. In Section 3 we present our results. In Section 4 we give our conclusions.

2 Preliminaries

We first provide a mathematical model of simple games. We then formally define the PAC model
and the VC dimension, and present some relevant theorems. The monotone DNF learning problem

2Throughout the paper, we use the terms “agent” and “player” interchangeably.
3The algorithm is consistent in the sense that it produces a hypothesis that labels the examples in the training

set correctly.



is also discussed. We conclude this section by stating Sperner’s Theorem [1].

2.1 Simple Cooperative n-Person Games

In this subsection we follow Section 2.5 of [8].
A cooperative n-person game in characteristic form with side payments is a pair (N ; v), where

N = {1, 2, . . . , n} is a set of players, and v is the characteristic function, which assigns a real
number v(C) to each coalition C ⊂ N . v(C) is the value of C.

Simple games are games where each coalition has a value of either 1 or 0. A coalition C is
said to be winning if v(C) = 1, and losing if v(C) = 0. 2N , the powerset of N , is partitioned into
W , the set of winning coalitions, and L , the set of losing coalitions. This partition is assumed to
satisfy three properties:

1. ∅ ∈ L .

2. N ∈ W .

3. C1 ∈ W ∧ C1 ⊂ C2 → C2 ∈ W .

2.2 The PAC model and VC-dimension

In this subsection we give a very short introduction to the PAC model and the VC dimension.
A comprehensive overview of the model, and results concerning the VC dimension, can be found
in [14], and a more concise summary is available in [12] (the latter is the text we follow in the next
few paragraphs).

In the PAC model, the learner is given a set of m instances x1, x2, . . . , xm which are sampled
i.i.d. (independent identically distributed) according to a distribution D over the sample space X. D
is unknown, but is fixed throughout the learning process. In this paper, we assume the “realizable”
case, where a target concept ct(x) exists, and the given training examples are Z = {xi, ct(xi)}

m
i=1.

Let C : X → {0, 1} be the concept class; the error of a concept h ∈ C is defined as

err(h) = Pr
x∼D

[ct(x) 6= h(x)].

ε > 0 is a parameter given to the learner that defines the “accuracy” of the learning process: we
would like to achieve err(h) ≤ ε. Notice that err(ct) = 0. The learner is also given a “confidence”
parameter δ > 0, that provides an upper bound on the probability that err(h) > 0:

Pr[err(h) > ε] < δ.

We now formalize the discussion above:

Definition 1.

1. A learning algorithm L is a function from the set of all training examples to C with the
following property: given ε, δ ∈ (0, 1) there exists an integer m0(ε, δ), such that for any
distribution D on X, if Z is a sample of size at least m0 where the samples are drawn
i.i.d. according to D, then with probability at least 1− δ it holds that err(L(Z)) ≤ ε.

2. A concept class C is PAC-learnable if there is a learning algorithm for C.

Remark 2. m0 is known as the sample complexity of C.

Definition 3. Let C : X → {0, 1} be a concept class, S = {x1, x2, . . . , xm} ⊂ X, and let

ΠC(S) = {〈h(x1), h(x2), . . . , h(xm)〉 : h ∈ C}.

If |ΠC(S)| = 2m, then S is considered shattered by C.

In other words, if S is shattered by C, then C realizes all possible dichotomies on S.

Definition 4. The Vapnik-Chervonenkis (VC) dimension of a concept class C, denoted VC-dim(C),
is the size of the largest set S that is shattered by C. If C shatters arbitrarily large sets, then
VC-dim(C) =∞.



Lemma 5. Let C be a finite concept class. Then VC-dim(C) ≤ blog2|C|c.

Proof. If the VC-dimension is d, a set of cardinality d is shattered by C. Therefore, C realizes at
least 2d different dichotomies, and thus:

|C| ≥ 2d ⇒ d ≤ blog2|C|c.

The following theorem gives an upper bound on the sample complexity of learning a given
concept class, i.e., the size of the training set that is required to insure that a consistent hypothesis
is ε-accurate with confidence 1− δ [2].

Theorem 6 (Double Sampling). Let C be any concept class of VC dimension d. Let L be an
algorithm such that, when given a set S of m labeled examples {(xi, c(xi))}i of some c ∈ C, sampled
i.i.d. according to some fixed but unknown distribution over the instance space X, produces as output
a concept h ∈ C that is consistent with S. Then L is an (ε, δ)-learning algorithm for C provided
that the sample size obeys:

m ≥ O

(

1

ε
log

1

δ
+

d

ε
log

1

ε

)

.

Interestingly, the VC dimension also gives a lower bound on the sample complexity that almost
matches the upper bound [6].

Theorem 7. Let C be a concept class of VC dimension d. Then any (ε, δ)-learning algorithm for
C must use sample size

m ≥ Ω

(

1

ε
log

1

δ
+

d

ε

)

.

Remark 8. Since the upper and lower bounds are very close, any algorithm that is consistent with
given training sets is nearly optimal asymptotically, in terms of sample complexity.

2.3 Monotone DNF

A concept class that will be shown to be equivalent to the one with which we concern ourselves
is the class of monotone DNF formulas. A monotone DNF formula over variables x1, . . . , xn is
a disjunction of terms, where each term is a monotone monomial in the variables over which the
formula is defined. In other words, each term is a conjunction of literals in which no literal appears
negated.

The following result appears as Lemma 6 in [9]:

Lemma 9. For 1 ≤ k ≤ n and 1 ≤ l ≤
(

n
k

)

let C be the class of functions expressible as l-term

monotone k-DNF formulas, and let m be any integer, k ≤ m ≤ n such that
(

m
k

)

≥ l. Then
V C − dim(C) ≥ klblog2

n
mc.

Another relevant result is formulated in [11]:

Proposition 10. The VC dimension for k-term monotone DNF is less than nk − k · logk
e .

2.4 Sperner’s Theorem

In this subsection we introduce Sperner’s Theorem [1], which will be employed in the proof of
Proposition 13. Given the numbers {1, 2, . . . , n}, we would like to find a maximal antichain of
subsets, i.e., a family of subsets such that for any two subsets, neither one is contained in the other.
Finding an antichain of size

(

n
bn/2c

)

is easy: we simply choose all the subsets of size bn/2c (see

Table 1). But can one do better? The theorem gives a negative answer.

Theorem 11 (Sperner’s theorem). Let F be a family of subsets of {1, 2, . . . , n}, such that for all
A,B ∈ F : A * B. Then |F| ≤

(

n
bn/2c

)

.



∅

{1} {2} {3} {4}

{1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

Table 1: Subsets of {1,2,3,4}, sorted by size. A maximal antichain is constructed by choosing all
subsets of size 2; Sperner’s Theorem states that one cannot construct a larger antichain.

3 Results

We now present our results, divided into two subsections. The first focuses on the general scenario
of identifying winning coalitions in simple cooperative games, while in the second subsection we
place constraints on the games in order to reduce the VC dimension.

3.1 Unconstrained Simple Games

Recall that in a simple game, if C ⊂ N is winning, any superset of C is also winning. Thus, the
game can be concisely represented by the set of minimum winning coalitions: C is a minimum
winning coalition if and only if

C ∈ W ∧ ∀i ∈ C, (C \ {i}) ∈ L .

In this way, a set of minimum winning coalitions may be considered as a function from the set of
coalitions to {0, 1}: a coalition is winning (labeled by 1) if and only if it is a superset (in the weak
sense) of one of the minimum winning coalitions.4

Remark 12. Surprisingly, learning to identify minimum winning coalitions is equivalent to learning
monotone DNF formulas. Indeed, one can associate players with variables, and coalitions with
terms. A hypothesis consisting of a set of minimum winning coalitions is essentially a disjunction
of terms. When learning minimum winning coalitions, the sample space X is the space of all
coalitions; these can be identified with assignments to variables, where a coalition C induces an
assignment of 1 to the variables associated with the players in C, and 0 to all other players. This
equivalence will aid us later on.

Proposition 13. Let C∗ be a concept class, in which each concept is a set of minimum winning
coalitions. Then:

VC-dim(C∗) =

(

n

bn/2c

)

.

Proof. We first show that the VC-dimension is at least
(

n
bn/2c

)

, by producing a set of size
(

n
bn/2c

)

which is shattered by C∗. Consider the set S of all coalitions of size bn/2c. Clearly, any dichotomy
on S can be realized by the concept that contains as minimum winning coalitions exactly the
coalitions in S that are labeled by 1.

On the other hand, the VC-dimension is at most
(

n
bn/2c

)

. Indeed, consider a set S of more than
(

n
bn/2c

)

coalitions. By Theorem 11, there are two coalitions C1, C2 ∈ S such that C1 ⊂ C2. The

dichotomy in which C1 is labeled by 1 and C2 is labeled by 0 cannot be realized.

Observe Algorithm 1, which receives as input a training set with m coalitions Ci, whose labels
are yi, and returns a set of minimum winning coalitions. We claim that Algorithm 1 is consistent
with any training set (assuming the realizable case, where there exists a target concept).

Proposition 14. Let {(Ci, yi)}
m
i=1 be a training set given as input to Algorithm 1. Assuming there

exists a target concept that is consistent with the training set, then the algorithm returns a set W m

which is also consistent, i.e., for all i = 1, . . . ,m:

yi = 1⇔ ∃R ∈ W
m s.t. R ⊂ Ci.

4There is an exception to this rule: ∅ is always a losing coalition.



Algorithm 1 Given a training set {(Ci, yi)}
m
i=1, learns a hypothesis in C∗.

1: W m ← ∅
2: for i = 1 to m do

3: if yi = 1 ∧ ∀R ∈ W m, R * Ci then

4: W m ← W m \ {R ⊂ N : Ci ⊂ R}
5: W m ← W m ∪ {Ci}
6: end if

7: end for

8: return W m

Proof. Assume first that yi = 1. If in iteration i of the for loop there is no minimum coalition
which is already contained in Ci, then Ci is added to W m. In subsequent iterations, a minimum
coalition that is a subset of Ci may be replaced by a still smaller coalition, but such a coalition
would also be a subset of Ci.

For yi = 0, assume that W m labels Ci incorrectly. Then there exists R ∈ W m such that
R ⊂ Ci. By the algorithm, R must be some Cj with yj = 1. Hence, there exists no hypothesis that
is consistent with the training set — a contradiction.

Remark 15. By Theorem 6 we have that C∗ is learnable, with sample complexity

O

(

1

ε
log

1

δ
+

d

ε
log

1

ε

)

,

for d =
(

n
bn/2c

)

. By Theorem 7, the sample complexity of C∗ for any consistent algorithm is

Ω
(

1
ε log 1

δ + d
ε

)

; hence, in terms of sample complexity, we are guaranteed that Algorithm 1 is almost
asymptotically optimal.

3.2 Constrained Simple Games

Although C∗ is learnable, when the number of agents is large, huge training sets may be needed
in order to produce an accurate hypothesis. We wish to show that for some constrained games,
the VC dimension of the appropriate concept classes is far smaller than that of C∗. Therefore, by
Theorems 6 and 7, identifying the minimum winning coalitions in these games is easier.

Veto games are cooperative games where any coalition with nonzero value contains a distin-
guished player, called the veto player. In some veto games, the inclusion of the veto player in a
coalition is also a sufficient condition for the coalition to be winning, not just a necessary one; in
this case, we say the veto player is a dictator. Some real-world n-person conflict situations are
simple games with a dictator. Returning to our example with the group of advisers to a president
of an organization, if the president is also considered one of the players, then he is a dictator.

That being the case, in order to identify winning coalitions in a simple game with a dictator,
it is enough to pinpoint this distinguished player. The set of minimum coalitions contains exactly
one coalition of cardinality 1: the dictator.

Proposition 16. Let C1 be a concept class, in which each concept is a single winning coalition of
cardinality 1. Then:

VC-dim(C1) = blognc.

Remark 17. C1 is equivalent to the class of monotone 1-DNF formulas with one literal. Substi-
tuting k = 1 and l = 1 in Lemma 9 immediately gives a lower bound. Nevertheless, we include our
proof since it is far simpler than the one in [9].

Proof of Proposition 16. We begin by proving a lower bound on VC-dim(C1). We will construct a
set S of size blognc which is shattered by C1. We describe an algorithm that builds the coalitions
in S. Initially, all the blognc coalitions in S are empty. For each subset of coalitions T ⊂ S, we
add to every coalition in T a new player (an element of N that has not been added to any other
subset of coalitions). In other words, we iteratively add players to the coalitions in S; each player
is associated with a different subset of coalitions (see Table 2 for an example). In particular, we



C1 C2 C3 |T |

1

2 1

3

4 4

5 5 2

6 6

7 7 7 3

Table 2: Constructing a set of size blognc = 3 which is shattered by C1, for n = 8. The three
coalitions in S are C1, C2, and C3, which are initialized as empty. We first add a new player to
each subset T ⊂ S of size 1: player 1 is added to C1, i.e., to all coalitions in the subset {C1} ⊂ S;
2 is added to C2, and 3 is added to C3. Next, the algorithm adds a new player to each subset of
coalitions of size 2: 4 is added to C1 and C2, i.e., to all coalitions in the subset {C1, C2}; 5 is added
to C1 and C3, and 6 is added to C2 and C3. Finally, 7 is added to C1, C2 and C3. The algorithm
yields the coalitions: C1 = {1, 4, 5, 7}, C2 = {2, 4, 6, 7}, and C3 = {3, 5, 6, 7}. Notice that 8 is not
in C1 ∪ C2 ∪ C3 — it was intuitively added to all coalitions in the empty subset of coalitions.

Algorithm 2 Given a training set {(Ci, yi)}
m
i=1, returns a hypothesis in C1.

1: W ← N
2: for i = 1 to m do

3: if yi = 1 then

4: W ←W ∩ Ci

5: else

6: W ←W \ Ci

7: end if

8: end for

9: return some player in W

“add” to the empty subset of coalitions a new player, thus guaranteeing that there is a player that
is not a member of any of the coalitions in S. We first notice that S is shattered by C1. Consider
a dichotomy where some subset of coalitions T ⊂ S is labeled by 1; by the construction of S, all
coalitions in T have a common player, which is not a member of any other coalition in S \ T .
Choosing this player as the dictator realizes the dichotomy. Moreover, we used a total of

2|S| = 2blognc ≤ n

“new” players in the process of constructing S.
For a lower bound, we have from Lemma 5 that:

|C1| = |N | = n⇒ VC-dim(C1) ≤ blognc.

Consider Algorithm 2. It is clearly a learning algorithm for C1. However, it is not at all certain
that it is optimal, in terms of computational complexity.

It is worthwhile to generalize our requirement of a single dictator player; we now wish to analyze
simple games where there is a junta coalition, i.e., a coalition W such that for all coalitions C, C
is winning if and only if W ⊂ C. Since W is the only minimum winning coalition, the goal of the
learning process in such games is to recognize the junta coalition.

Proposition 18. Let C∗1 be a concept class, in which each concept is a single minimum coalition.
Then:

VC-dim(C∗1 ) = n.

Proof. We first bound the VC-dimension of C∗1 from below, by producing a set of size n which is
shattered by C∗1 . Observe the set S of coalitions of size n− 1; there are n such coalitions. Consider



a dichotomy on S that labels exactly k ≤ n of these coalitions by 1, and denote these k coalitions
by S+ = {Ci1 , . . . , Cik

}, Cik
= N \ {ik}. Let C0 =

⋂k
l=1 Cil

= N \ {i1, i2, . . . , ik}. Notice that
any subset C ⊂ N such that |C| = n − 1 and C /∈ S+ satisfies C0 * C, since C = N \ {j},
and j /∈ {i1, i2, . . . , ik}, so j ∈ C0. Hence, the dichotomy is realized by choosing C0 as the junta
coalition.

In order to bound the VC-dimension from above, we invoke Lemma 5:

|C∗1 | = |{S : S ⊂ N}| = 2n ⇒ VC-dim(C∗1 ) ≤ n.

A hypothesis that is consistent with a given training set (assuming there is a junta coalition)
can be obtained by simply taking the intersection of all coalitions Ci with yi = 1; this is essentially
the well known Elimination algorithm [12].

Another possible generalization is having at most k minimum winning coalitions. An upper
bound for this case is given by Proposition 10. In particular, if k = O(1), then VC-dim(C∗k) = O(n).

We proceed by examining a different type of constraint:

∀S ⊂ N, S ∈ W → N \ S ∈ L (1)

Simple games that satisfy equation (1) are known as proper simple games. However, this constraint
does little to reduce the VC dimension, compared with unconstrained simple games.

Proposition 19. Let C∗p be a concept class, in which each concept is a set of minimum winning
coalitions in a proper simple game. Then:

VC-dim(C∗p) ≥

(

n− 1
⌊

n−1
2

⌋

)

.

Proof. We must exhibit a set S of size
( n−1

bn−1

2 c
)

which is shattered by C∗p . Let

S =

{

C ⊂ N : 1 ∈ C ∧ |C| =

⌊

n− 1

2

⌋

+ 1

}

.

It holds that the cardinality of S is as desired. Moreover, for any dichotomy on S, one may choose
exactly the subsets labeled by 1 as the minimum winning coalitions: since the intersection of all
subsets in S is not empty, the constraint (1) is not violated.

A popular constraint is the elimination of dummy players:

∀i ∈ N∃C ⊂ N s.t. i ∈ C ∧ C ∈ W ∧ (C \ {i} ∈ L ). (2)

The elimination of dummy players also does not substantially reduce the VC dimension.

Proposition 20. Let C∗d be a concept class, in which each concept is a set of minimum winning
coalitions in a simple game with no dummy players. Then:

VC-dim(C∗d) ≥

(

n− 1
⌊

n−1
2

⌋

)

.

Proof. We must exhibit a set S of size
( n−1

bn−1

2 c
)

which is shattered by C∗d . Let

S =

{

C ⊂ N : 1 /∈ C ∧ |C| =

⌊

n− 1

2

⌋}

.

It holds that the cardinality of S is as desired. Given a dichotomy on S, let S+ be the set of
coalitions in S that are labeled by 1, and let B be the set of players that are not members of any of
the coalitions in S+. The set of minimum winning coalitions is S+ ∪ {B}; the purpose of including
B is to ensure that constraint (2) is not violated. It remains to show that this is a legitimate set
of minimum coalitions in a proper simple game, which realizes the dichotomy. Since 1 ∈ B, B is



not a subset of any of the coalitions in S, and in particular is not a subset of any of the coalitions
in S \ S+ — so it is not the case that the addition of B to the set of minimum winning coalitions
mistakenly labels a coalition in S \S+ by 1. Clearly, neither is B a superset of any of the coalitions
in S+; thus it is not the case that there are two winning coalitions such that one is a superset of
the other. Since the coalitions in S+ are included in the set of minimum winning coalitions, the
dichotomy is realized. Moreover, constraint (2) is satisfied: every i ∈ N is contained in one of the
coalitions in S+, or in B, and these are all minimum winning coalitions.

4 Conclusions

Simple games have natural interpretations in multiagent systems. Such games can be concisely
represented by the set of minimum winning coalitions; this set can be regarded as a function from
the set of coalitions to {0, 1}. We have shown that the VC-dimension of this concept class is

(

n
bn/2c

)

,

and presented an algorithm that learns the class. We have also discussed constrained simple games,
and proved that restricting the set of minimum coalitions to a single coalition, or a dictator player,
greatly reduces the VC-dimension. Nevertheless, other popular constrained games are almost as
hard to learn as unconstrained games.

We believe there exist many opportunities to apply the PAC learning model in multiagent
systems, and intend to investigate such applications in future work.
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