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Abstract

Encouraging voters to truthfully reveal their preferences in an election has long been an

important issue. Previous studies have shown that some voting protocols are hard to manipu-

late, but predictably used NP-hardness as the complexity measure. Such a worst-case analysis

may be an insufficient guarantee of resistance to manipulation.

Indeed, we demonstrate that NP-hard manipulations may be tractable in the average-case.

For this purpose, we augment the existing theory of average-case complexity with new concepts;

we consider elections distributed with respect to junta distributions, which concentrate on hard

instances, and introduce a notion of heuristic polynomial time. We use our techniques to prove

that a family of important voting protocols is susceptible to manipulation by coalitions, when

the number of candidates is constant.

1 Introduction

In multiagent environments, it may be the case that different agents have diverse preferences.
Therefore, it is important to find a way to aggregate the agents’ preferences. A general scheme for
preference aggregation is voting : the agents reveal their preferences by ranking a set of candidates;
a winner is determined according to a voting protocol. The candidates can be various entities such
as beliefs or plans, and indeed may be potential real-life parliament members.

Things are made complicated by the fact that in many settings (as in reality) the agents are
self-interested. Such an agent may reveal its preferences untruthfully, if it believes this would make
the final outcome of the elections more favorable for it. Consequently, the outcome may be one
that does not maximize social welfare. This problem is provably acute: it is known [8, 10] that, for
elections with three or more candidates, in any voting protocol that is non-dictatorial,1 there are
elections where an agent is better off by voting untruthfully.

Fortunately, it is reasonable to make the assumption that the agents are computationally
bounded. Therefore, although in principle an agent may be able to manipulate an election, the
computation required may be infeasible. This has motivated researchers to study the computa-
tional complexity of manipulating voting protocols. It has long been known [3] that there are
voting protocols that are NP-hard to manipulate by a single voter. Recent results by Conitzer
and Sandholm [5, 4] show that some manipulations of common voting protocols are NP-hard, even
for a small number of candidates. Moreover, in [6] it is shown that adding a preround to some
voting protocols can make manipulations hard (even PSPACE-hard in some cases). Elkind and
Lipmaa [7] show that the notion of preround, together with one-way functions, can be used to
construct protocols that are hard to manipulate even by a large minority fraction of the voters.

In Computer Science, the notion of hardness is usually considered in the sense of worst-case
complexity. Not surprisingly, most results on the complexity of manipulation use NP-hardness as
the complexity measure. However, it may still be the case that most instances of the problem are
easy to manipulate.

1In a dictatorial protocol, there is an agent that dictates the outcome regardless of the others’ choices.



A relatively little-known theory of average case complexity exists [11]; this theory introduces the
concept of distributional problems, and defines what a reduction between distributional problems
is. It is also known that average-case complete problems exist (albeit artificial ones, such as a
distributional version of the halting problem). Sadly, it is very difficult to show that a certain
problem is average-case complete, and such results are known only for a handful of problems.
Additionally, the goal of the existing theory is to define when a problem is hard in the average-case;
it does not provide criteria for deciding when a problem is easy. A step towards showing that a
manipulation is easy on average was made in [7]. It involves an analysis of the plurality protocol
with a preround, but focuses on a very specific distribution, which does not satisfy some basic
desiderata as to what properties an “interesting” distribution should have.

In this paper, we engage in a novel average-case analysis, based on criteria we propose. Coming
up with an “interesting” distribution of problem instances with respect to which the average-case
complexity is computed is a difficult task, and the solution may be controversial. We analyze
problems whose instances are distributed with respect to a junta distribution. Such a distribution
must satisfy several conditions, which (arguably) guarantee that it focuses on instances that are
harder to manipulate. We consider a protocol to be susceptible to manipulation when there is a
polynomial time algorithm that can usually manipulate it: the probability of failure (when the
instances are distributed according to a junta distribution) must be inverse-polynomial. Such an
algorithm is known as a heuristic polynomial time algorithm.

We use these new methods to prove our main result: an important family of protocols, called
scoring protocols, is susceptible to coalitional manipulation when the number of candidates is
constant. Specifically, we contemplate sensitive scoring protocols, which include such well-known
protocols as Borda and Veto. To accomplish this task, we define a natural distribution µ∗ over
the instances of a well-defined coalitional manipulation problem, and show that this is a junta
distribution. Furthermore, we present the manipulation algorithm Greedy, and show that it
usually succeeds with respect to µ∗.

In Section 2, we outline some important voting protocols, and properly define the manipulation
problems we shall discuss. In Section 3, we formally introduce the tools for our average case analysis:
junta distributions, heuristic polynomial time, and susceptibility to manipulations. In Section 4 we
prove our main result: sensitive scoring protocols are susceptible to coalitional manipulation with
few candidates. Finally, in Section 5, we present conclusions and future directions for research.

2 Preliminaries

We first describe some common voting protocols and formally define the manipulation problems
with which we shall deal. Next, we introduce a useful lemma from probability theory.

2.1 Elections and Manipulations

An election consists of a set C of m candidates, and a set V of n voters, who provide a total
order on the candidates. An election also includes a winner determination function from the set
of all possible combinations of votes to C. We note that throughout this paper, m = O(1), so the
complexity results are in terms of n.

Different voting protocols are distinguished by their winner determination functions. Scoring

protocols are defined by vector ~α = 〈α1, α2, . . . , αm〉, such that α1 ≥ α2 ≥ . . . ≥ αm and αi ∈
N ∪ {0}. A candidate receives αi points for each voter that ranks it in the i’th place. Examples of
scoring protocols are:

• Plurality: ~α = 〈1, 0, . . . , 0, 0〉.

• Veto: ~α = 〈1, 1, . . . , 1, 0〉.

• Borda: ~α = 〈m − 1,m − 2, . . . , 1, 0〉.

We assume that tie-breaking is always adversarial to the manipulator. Additionally, in the case
of weighted votes, a voter with weight k is naturally regarded as k voters who vote unanimously.
In this paper, we consider weights in [0, 1]. This is equivalent, since any set of integer weights in



the range 1, . . . ,polyn can be scaled down to weights in the segment [0, 1] with O(logn) bits of
precision.

The main results of the paper focus on scoring protocols. We shall require the following defini-
tion:

Definition 1. Let P be a scoring protocol with parameters ~α = 〈α1, α2, . . . , αm〉. We say that P
is sensitive iff α1 ≥ α2 ≥ . . . ≥ αm−1 > αm = 0 (notice the strict inequality on the right).

Remark 2. Borda and Veto are sensitive scoring protocols.

Remark 3. Generally, from any scoring protocol with αm−1 > αm, an equivalent sensitive scoring
protocol can be obtained by subtracting αm on a coordinate-by-coordinate basis from the vector
~α. Moreover, observe that if a protocol is a scoring protocol but is not sensitive, and αm = 0, then
αm−1 = 0. In this case, for three candidates it is equivalent to the plurality protocol, for which
most manipulations are tractable even in the worst-case. Therefore, it is sufficient to restrict our
results to sensitive scoring protocols.

We next discuss different types of manipulations.

Definition 4. In the Coalitional-Weighted-Manipulation (CWM) problem, we are given a
set of weighted votes S, the weights of a set of votes T which have not been cast, and a preferred
candidate p. We are asked whether there is a way to cast the votes in T so that p wins the election.

We know [5, 4] that CWM is NP-complete in Borda and Veto even with 3 candidates.
The CWM version that we shall analyze, which is specifically tailored for scoring protocols, is

a slightly modified version whose analysis is more straightforward:

Definition 5. In the Scoring-Coalitional-Weighted-Manipulation (SCWM) problem, we
are given an initial score S[c] for each candidate c, the weights of a set of votes T which are still
open, and a preferred candidate p. We are asked whether there is a way to cast the votes in T so
that p wins the election.

S[c] can be interpreted as c’s total score from the votes in S. However, we do not require that
there exist a combination of votes that actually induces S[c] for all c.

2.2 Chernoff’s Bounds

The following lemma will be of much use later on. Informally, it states that the average of inde-
pendent identically distributed (i.i.d.) random variables is almost always close to the expectation.

Lemma 6 (Chernoff’s Bounds). Let X1, . . . ,Xt be i.i.d. random variables such that a ≤ Xi ≤ b
and E[Xi] = µ. Then for any ε > 0, it holds that:

• Pr[1
t

∑t
i=1 Xi ≥ µ + ε] ≤ e

−2t ε
2

(b−a)2

• Pr[1
t

∑t

i=1 Xi ≤ µ − ε] ≤ e
−2t ε

2

(b−a)2

3 Junta Distributions and Susceptible Mechanisms

In this section we lay the mathematical foundations required for an average-case analysis of the
complexity of manipulations. All of the definitions are as general as possible; they can be applied
to the manipulation of any mechanism, not merely to the manipulation of voting protocols.

We describe a distribution over the instances of a problem as a collection of distributions
µ1, . . . , µn, . . ., where µn is a distribution over the instances x such that |x| = n. We wish to
analyze problems whose instances are distributed with respect to a distribution which focuses on
hard-to-manipulate instances. Ideally, we would like this distinguished distribution to be such that
if one manages to produce an algorithm which can usually manipulate instances according to this
“difficult” distribution, the algorithm would also usually succeed when the instances are distributed
with respect to most other reasonable distributions.



Definition 7. Let µ = {µn}n∈N be a distribution over the possible instances of an NP-hard
manipulation problem M . µ is a junta distribution if and only if µ has the following properties:

1. Hardness: The restriction of M to µ is the manipulation problem whose possible instances
are only:

⋃
n∈N

{x : |x| = n ∧ µn(x) > 0}. Deciding this restricted problem is still NP-hard.

2. Balance: There exist a constant c > 0 and N ∈ N such that for all n ≥ N :

1

c
≤ Prx∼µn

[M(x) = 1] ≤ 1 −
1

c
.

3. Dichotomy: for all n and instances x such that |x| = n:

µn(x) ≥ 2−polyn ∨ µn(x) = 0.

If M is a voting manipulation problem, we also require the following property:

4. Symmetry: Let v be a voter whose vote is given, let c1, c2 6= p be two candidates, and let
i ∈ [m]. The probability that v ranks c1 in the i’th place is the same as the probability that
v ranks c2 in the i’th place.

If M is a coalitional manipulation problem, we also require the following property:

5. Refinement: Let x be an instance such that |x| = n and µn(x) > 0; if all colluders voted
identically, then p would not be elected.

The name “junta distribution” comes from the idea that in such a distribution, relatively few
“powerful” and difficult instances represent all the other problem instances. Alternatively, our
intent is to have a few problematic distributions (the family of junta distributions) convincingly
represent all other distributions with respect to the average-case analysis.

The first three properties are basic, and are relevant to problems of manipulating any mechanism.
The definition is modular, and relevant additional properties may be added on top of the basic three,
in case one wishes to analyze a mechanism which is not a voting protocol.

The exact choice of properties is of extreme importance (and, as we mentioned above, may
be arguable). We shall briefly explain our choices. Hardness is meant to insure that the junta
distribution contains hard instances. Balance guarantees that a trivial algorithm which always
accepts (or always rejects) has a significant chance of failure. The dichotomy property helps in
preventing situations where the distribution gives a (positive but) negligible probability to all the
hard instances, and a high probability to several easy instances.

We now examine the properties that are specific to manipulation problems. The necessity of
symmetry is best explained by an example. In the Single Transferable Vote (STV) protocol, the
election proceeds in rounds. In each round, the candidate’s score is the number of voters that
rank it highest among the remaining candidates; the candidate with the lowest score is eliminated.
Consider CWM in STV with m ≥ 3. One could design a distribution where p wins if and only if
a distinguished candidate loses the first round. Such a distribution could be tailored to satisfy the
other conditions, but misses many of the hard instances. In the context of SCWM, we interpret
symmetry in the following way: for every two candidates c1, c2 6= p and y ∈ R,

Pr
x∼µn

[S[c1] = y] = Pr
x∼µn

[S[c2] = y].

Refinement is less important than the other four properties, but seems to help in concentrating
the probability on hard instances. Observe that refinement is only relevant to coalitional manip-
ulation; we believe that in the analysis of individual voting manipulation problems, the first four
properties are sufficient.

Definition 8. [11] A distributional problem is a pair 〈L, µ〉 where L is a decision problem and µ is
a distribution over the set {0, 1}∗ of possible inputs.

Informally, an algorithm is a heuristic polynomial time algorithm for a distributional problem
if it runs in polynomial time, and fails only on a small fraction of the inputs. We now give a formal
definition; this definition is inspired by [11] (there the same name is used for a somewhat different
definition).



Definition 9. Let 〈M,µ〉 be a distributional problem, where M is a manipulation problem.

1. An algorithm A is a deterministic heuristic polynomial time algorithm for the distributional
manipulation problem 〈M,µ〉 if A always runs in polynomial time, and there exists a polyno-
mial p and N ∈ N such that for all n ≥ N :

Pr
x∼µn

[A(x) 6= M(x)] <
1

p(n)
. (1)

2. Let A be a probabilistic algorithm, which uses a random string s. A is a probabilistic heuristic

polynomial time algorithm for the distributional manipulation problem 〈M,µ〉 if A always runs
in polynomial time, and there exists a polynomial p and N ∈ N such that for all n ≥ N :

Pr
x∼µn,s

[A(x) 6= M(x)] <
1

p(n)
. (2)

Probabilistic algorithms have two potential sources of failure: an unfortunate choice of input,
or an unfortunate choice of random string s. The success or failure of deterministic algorithms
depends only on the choice of input.

We now combine all the definitions introduced in this section in an attempt to establish when
a mechanism is susceptible to manipulation in the average case. The following definition abuses
notation a bit: M is used both to refer to the manipulation itself, and to the corresponding decision
problem.

Definition 10. We say that a mechanism is susceptible to a manipulation M if there exists a
junta distribution µ, such that there exists a deterministic/probabilistic heuristic polynomial time
algorithm for 〈M,µ〉.

4 Susceptibility to SCWM

Recall [5, 4] that in Borda and Veto, CWM is NP-hard, even with 3 candidates. Since Borda and
Veto are examples of sensitive scoring protocols, we would like to know how resistant this family
of protocols really is with respect to coalitional manipulation. In this section we use the methods
from the previous section to prove our main result:

Theorem 11. Let P be a sensitive scoring protocol. Then P , with candidates C = {p, c1, . . . , cm},
m = O(1), is susceptible to SCWM.

Intuitively, the instances of CWM (or SCWM) which are hard are those that require a very
specific partitioning of the voters in T to subsets, where each subset votes unanimously. These
instances are rare in any reasonable distribution; this insight will ultimately yield the theorem.

The following proposition generalizes Theorem 1 of [5] and Theorem 2 of [4], and justifies our
focus on the family of sensitive scoring protocols. A stronger version of Proposition 12 has been
independently proven in [9]. Nevertheless, we include the beginning of our proof, since it will be
required in proving the hardness property of a junta distribution we shall design.

Proposition 12. Let P be a sensitive scoring protocol. Then CWM in P is NP-hard, even with

3 candidates.

Definition 13. In the Partition problem, we are given a set of integers {ki}i∈[t], summing to
2K, and are asked whether a subset of these integers sum to K.

It is well-known that Partition is NP-complete.

Beginning of Proof of Proposition 12. We reduce an arbitrary Partition instance to the following
CWM instance. There are 3 candidates, a, b, and p. In S, there are K(4α1−2α2)−1 voters voting
a � b � p, and K(4α1 − 2α2) − 1 voters voting b � a � p. In T , for every ki there is a vote of
weight 2(α1 + α2)ki. Observe that from S, both a and b get (K(4α1 − 2α2) − 1)(α1 + α2) points.

The rest of the proof is omitted.



Since an instance of CWM can be translated to an instance of SCWM in the obvious way, we
have:

Corollary 14. Let P be a sensitive scoring protocol. Then SCWM in P is NP-hard, even with 3
candidates.

4.1 A Junta Distribution

Let w(v) denote the weight of voter v, and let W denote the total weight of the votes in T ; P is a
sensitive scoring protocol. We denote |T | = n: the size of T is the size of the instance.

Consider a distribution µ∗ = {µ∗
n}n∈N over the instances of CWM in P , with m + 1 candidates

p, c1, . . . , cm, where each µ∗
n is induced by the following sampling algorithm:

1. ∀v ∈ T : Randomly and independently choose w(v) ∈ [0, 1] (up to O(logn) bits of precision).

2. ∀i ∈ [m]: Randomly and independently choose S[ci] ∈ [(α1−α2)W,α1W ] (up to O(logn) bits
of precision).

Remark 15. We assume that S[p] = 0, i.e., all voters in S rank p last. This assumption is not a
restriction. If it holds for a candidate c that S[c] ≤ S[p], then candidate c will surely lose, since the
colluders all rank p first. Therefore, if S[p] > 0, we may simply normalize the scores by subtracting
S[p] from the scores of all candidates. This is equivalent to our assumption.

Remark 16. We believe that µ∗ is the most natural distribution with respect to which coalitional
manipulation in scoring protocols should be studied. Even if one disagrees with the exact definition
of a junta distribution, µ∗ should satisfy many reasonable conditions one could produce.

We shall, of course, (presently) prove that the distribution possesses the properties of a junta
distribution.

Proposition 17. Let P be a sensitive scoring protocol. Then µ∗ is a junta distribution for SCWM

in P with C = {p, c1, . . . , cm}, and m = O(1).

Proof. We first observe that the dichotomy and symmetry conditions are obviously satisfied.
The proof of the hardness property relies on the reduction from Partition in Proposition 12.

The reduction generates instances x of CWM in P with 3 candidates, where W = 4(α1 + α2)K,
and

S[a] = S[b] = (K(4α1 − 2α2) − 1)(α1 + α2) = (α1 − α2/2)W − (α1 + α2),

for some K that originates in the Partition instance. These instances satisfy (α1 − α2)W ≤
S[a], S[b] ≤ α1W . It follows that µ∗(x) > 0 (after scaling down the weights).2

We now prove µ∗ has the balance property. If for all i, S[ci] > (α1 − α2/m)W , then clearly
there is no manipulation, since at least α2W points are given by the voters in T to the undesirable
candidates c1, . . . , cm. This happens with probability at least 1

mm .
On the other hand, consider the situation where for all i,

S[ci] < (α1 −
m2 − 1

m2
α2)W ; (3)

this occurs with probability at least 1
(m2)m . Intuitively, if the colluders could distribute the votes

in T in such a way that each undesirable candidate is ranked last in exactly 1/m-fraction of the
votes, this would be a successful manipulation: each undesirable candidate would gain at most an
additional m−1

m
α2W points. Unfortunately, this is usually not the case, but the following condition

is sufficient for a successful manipulation (assuming condition (3) holds). Partition the voters in T
to m disjoint subsets p1, . . . , pi (w.l.o.g. of size n/m), and denote by Wpi

the total weight of the
votes in pi. The condition is that for all i ∈ [m]:

(1 − 1/m) · 1/2 · n/m ≤ Wpi
≤ (1 + 1/m) · 1/2 · n/m. (4)

2It seems the reduction can be generalized for a larger number of candidates. The hard instances are the ones where
all undesirable candidates but two have approximately (α1 − α2)W initial points, and two problematic candidates
have approximately (α1 − αm/2)W points. These instances have a positive probability under µ∗.



This condition is sufficient, because if the voters in pi all rank ci last, the fraction of the votes in
T which gives ci points is at most:

(m − 1)(1 + 1/m)

(m − 1)(1 + 1/m) + 1 − 1/m
=

m2 − 1

m2 + m − 2
.

Hence the number of points ci gains from the colluders is at most:

m2 − 1

m2 + m − 2
α2 ≤

m2 − 1

m2
α2 < α1W − S[ci].

Furthermore, by Lemma 6 and the fact that the expected total weight of n/m votes is 1/2 · n/m,

the probability that condition (4) holds is at least 1−2e−
2n

m3 . Since m is a constant, this probability
is larger than 1/2 for a large enough n.

Finally, it can easily be seen that µ∗ has the refinement property: if all colluders rank p first and
candidate c second, then p gets α1W points, and c gets α2W +S[c] points. But S[c] ≥ (α1−α2)W ,
and thus p surely loses.

4.2 A Heuristic Polynomial Time Algorithm

We now present our algorithm for SCWM. ~w denotes the vector of the weights of voters in T .

Greedy(C = {p, c1, . . . , cm},S[p], S[c1], . . . , S[cm],T = {t1, . . . , tn},~w)

1: for all c do

2: S0[c] = S[c]
3: end for

4: for i = 1 to n do

5: Let j1, j2, . . . , jm such that Si−1[cj1 ] ≤ Si−1[cj2 ] ≤ . . . ≤ Si−1[cjm
]

6: Voter ti votes p � cj1 � cj2 � . . . � cjm

7: for l = 1 to m : do

8: Si[cjl
] = Si−1[cjl

] + w(ti)αl+1

9: end for

10: Si[p] = Si−1[p] + w(ti)α1

11: end for

12: if argmaxc∈C{Sn[c]} = {p} then

13: return 1
14: else

15: return 0
16: end if

The voters in T , according to some order, each rank p first, and the rest of the candidates by
their current score: the candidate with the lowest current score is ranked highest. Greedy accepts
if and only if p wins this election.

This algorithm, designed specifically for scoring protocols, is a realization of an abstract greedy
algorithm: at each stage, voter ti ranks the undesirable candidates in an order that minimizes the
highest score that any undesirable candidate obtains after the current vote. If there is a tie between
several permutations, the voter chooses the option such that the second highest score is as low as
possible, etc. In any case, every colluder always ranks p first.

Remark 18. In the following lemmas, a stage in the execution of the algorithm is an iteration of
the for loop.

Lemma 19. If there exists a stage i0 during the execution of Greedy, and two candidates a, b 6= p,
such that

|Si0 [a] − Si0 [b]| ≤ α2, (5)

then for all i ≥ i0 it holds that |Si[a] − Si[b]| ≤ α2.



Proof. The proof is by induction on i. The base of the induction is given by equation (5). Assume
that |Si[a]− Si[b]| ≤ α2, and without loss of generality: Si[a] ≥ Si[b]. By the algorithm, voter ti+1

ranks b higher than a, and therefore:

Si+1[b] − Si+1[a] ≥ −α2. (6)

Since p is always ranked first, and the weight of each vote is at most 1, b gains at most α2 points.
Therefore:

Si+1[b] − Si+1[a] ≤ α2. (7)

Combining equations (6) and (7) completes the proof.

Lemma 20. Let p 6= a, b ∈ C, and suppose that there exists a stage i0 such that Si0 [a] ≥ Si0 [b],
and a stage i1 ≥ i0 such that Si1 [b] ≥ Si1 [a]. Then for all i ≥ i1 it holds that |Si[a] − Si[b]| ≤ α2.

Proof. Assume the that there exists a stage i0 such that Si0 [a] ≥ Si0 [b], and a stage i1 ≥ i0 such
that Si1 [b] ≥ Si1 [a]; w.l.o.g. i1 > i0 (otherwise at stage i0 it holds that Si0 [b] = Si0 [a], and then
we finish by Lemma 19). Then there must be a stage i2 such that i0 ≤ i2 < i1 and Si2 [a] ≥ Si2 [b]
but Si2+1[b] ≥ Si2+1[a]. Since the weight of each vote is at most 1, b gains at most α2 points by
voter ti2+1. Hence the conditions of Lemma 19 hold for stage i2, which implies that for all i ≥ i2:
|Si[a] − Si[b]| ≤ α2. In particular, i1 ≥ i2.

Lemma 21. Let P be a sensitive scoring protocol, and assume Greedy errs on an instance of

SCWM in P which has a successful manipulation. Then there is d ∈ {2, 3, . . . ,m}, and a subset of

candidates D = {cj1 , . . . , cjd
}, such that:

d∑

i=1

(α1W − S[cji
]) −

d−1∑

i=1

(i · α2) ≤ W

d∑

i=1

αm+2−i ≤
d∑

i=1

(α1W − S[cji
]). (8)

Proof. For the right inequality, observe that for any d candidates, even if all voters in T rank them
last in every vote, the total points distributed among them is W

∑d
i=1 αm+2−i. If this inequality

does not hold, there must be some candidate ci that gains at least α1W − S[ci] points from the
colluders, implying that this candidate has at least α1W points. However, p also has at most α1W
points, and we assumed that there is a successful manipulation — a contradiction.

For the left inequality, assume the algorithm erred. Then at some stage i0, there is a candidate
cj0 who has a total of at least α1W points (w.l.o.g. only one candidate passes this threshold
simultaneously). Denote T0 = {t1, t2, . . . , ti0}, and let WT0

be the total weight of the voters in T0.
Voter ti0 did not rank cj0 last, since αm+1 = 0, and thus ranking a candidate last gives it no points.
We have that there is another candidate cj1 , such that: Si0−1[cj1 ] ≥ Si0−1[cj0 ]. By Lemma 20,
Si0 [cj0 ] − Si0 [cj1 ] ≤ α2, and thus Si0 [cj1 ] ≥ α1W − α2. If these candidates were not always ranked
last by the voters of T0, there must be another candidate cj2 who was ranked strictly higher by some
voter in T0, w.l.o.g. higher than cj1 . Therefore, we have from Lemma 20 that: Si0 [cj1 ]−Si0 [cj2 ] ≤ α2,
and so cj2 has a total of at least α1W − 2α2 points. By inductively continuing this reasoning, we
obtain a subset D of d candidates (possibly d = m), who were always ranked in the d last places
by the voters in T0, and for the l’th candidate it holds that: Si0 [cjl

] ≥ α1W − (l − 1)α2. The total
points gained by this l’th candidate until stage i0 must be at least α1W − (l − 1)α2 − S[cjl

]. Since

the total points distributed by the voters in T0 to the d last candidates is WT0

∑d

i=1 αm+2−i, we
have:

d∑

i=1

(α1W − S[cji
]) −

d−1∑

i=1

(i · α2) ≤ WT0

d∑

i=1

αm+2−i ≤ W

d∑

i=1

αm+2−i.

Lemma 22. Let M be SCWM in a sensitive scoring protocol P with C = {p, c1, . . . , cm}, m = O(1).
Then Greedy is a deterministic heuristic polynomial time algorithm for 〈M,µ∗〉.

Proof. It is obvious that if the given instance has no successful manipulation, then the greedy
algorithm would indeed answer that there is no manipulation, since the algorithm is constructive
(it actually selects specific votes for the colluders).



We wish to bound the probability that there is a manipulation and the algorithm erred. By
Lemma 21, a necessary condition for this to occur is as specified in equation (8), or equivalently:

W

d∑

i=1

α1 − W

d∑

i=1

αm+2−i −
d(d − 1)

2
α2 ≤

d∑

i=1

S[cji
] ≤ W

d∑

i=1

α1 − W

d∑

i=1

αm+2−i. (9)

In this case the algorithm may err; but what is the probability of equation (9) holding? Fix a subset

D of size d ∈ {2, . . . ,m}.
∑d

i=1 S[cji
] is a random variable that takes values in [d(α1−α2)W,dα1W ].

By fixing values for S[cj1 ], . . . , S[cjd−1
], we have that the probability of

∑d
i=1 S[cji

] taking values
in some interval [a, b] is at most the chance of S[cjd

] taking a value in an interval of size b − a,
which is at most b−a

α1W−(α1−α2)W
, since S[cjd

] is uniformly distributed. By Lemma 6, W < n/4

with probability at most ε(n) = e−
n

8 . On the other hand, if W ≥ n/4, then (9) holds for D with
probability at most

d(d−1)
2 α2

α1W − (α1 − α2)W
=

d(d − 1)

2W
≤

2d(d − 1)

n
=

1

pD(n)
,

for some polynomial pD. We complete the proof by showing that equation (1) holds:

Pr
x∼µ∗

n

[Greedy(x) 6= M(x)] ≤ Pr[W ≥ n/4 ∧ (∃D ⊂ C s.t. |D| ≥ 2 ∧ (9) holds)] + Pr[W < n/4]

≤
∑

D⊂C:|D|≥2

1

pD(n)
+ ε(n)

≤
1

poly n

The last inequality holds by the assumption that m = O(1).

Clearly, Theorem 11 directly follows.

5 Conclusions and Future Research

The issue of resistance of mechanisms to manipulation is important, particularly in the context
of voting protocols. Most results on this issue use NP-hardness as the complexity measure. One
of this paper’s main contributions has been in introducing tools that can be utilized in showing
that manipulating mechanisms is easy in the average case. We were concerned with the likely case
of coalitional manipulation, and showed that sensitive scoring protocols are susceptible to such
manipulation when the number of candidates is constant.

These results suggest that scoring protocols cannot be safely employed. More importantly, this
paper should be seen as a starting point for studying the average case complexity of other types of
manipulations, in other protocols. In addition, the definitions in Section 3 are deliberately general,
and can be applied to manipulations of mechanisms which are not voting mechanisms. One such
mechanism of which we are aware, whose manipulation is NP-hard, is presented in [1, 2].

There is still room for debate as to the exact definition of a junta distribution. It may also be
the case that there are “unconvincing” distributions that satisfy all of the (current) conditions of
a junta distribution.

An issue of great importance is coming up with natural criteria to decide when a manipulation
problem is hard in the average-case. The traditional definition of average-case completeness is very
difficult to work with in general; is there a satisfying definition that applies specifically to the case
of manipulations? Once the subject is fully understood, this understanding can be used to design
mechanisms that are hard to manipulate in the average-case.
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