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Abstract

Two prevalent approaches to automated negotiation are the application of game-theoretic
notions and the argumentation-based angle; these two schemes are frequently at odds. An ele-
gant view of argumentation is Dung’s abstract argumentation theory [2], which cold-shoulders
the internal structure of arguments in favor of the entire debate’s global structure. Dung’s
theory is elaborated by work in dialectical argumentation theory, which focuses on dialogues
between two players.

In this paper, we enhance the abovementioned frameworks by considering two-agent settings
where each of the agents is identified with a set of arguments. A binary attack relation between
arguments is given, as well as (most importantly) a payoff function that assigns real values to ev-
ery possible valid dialogue. Such game-based argumentation frameworks can be lucidly realized
as games in extensive form (marrying, in a sense, the game-theoretic and argumentation-based
approaches). We investigate specialized notions of “maximally-defendable” sets of arguments,
and the correlation between the properties of the agents’ argument sets and the size of the
associated game tree. Furthermore, algorithmic issues are considered: we present simplifica-
tions and efficient solutions for our argumentation games, and discuss a special case where the
representation of the framework is logarithmic in the size of the associated game tree.

1 Introduction

Negotiation between agents has emerged in recent years as a method of resolving scenarios where
agents have conflicting interests but may benefit by cooperating. The work on automated nego-
tiation can be classified into three general approaches [13]: game-theoretic [10, 14, 15], heuristic-
based [4, 5, 9], and argumentation-based [11, 12, 16]. A major advantage of argumentation-based
negotiation over other styles of negotiation is that positions can be justified, as well as changed
during the negotiation [19].

Argumentation-based negotiation itself is a field that encompasses many techniques and a large
amount of research [13]. One well-known argumentation framework is the abstract argumentation
framework, originally introduced by Dung [2]. This approach shifts the focus from the internal
structure of individual arguments to the structure of the entire argument.1 Informally, an abstract
argumentation framework consists of a set of arguments, and an attack relation between arguments.
The question asked with regard to specific arguments is whether they are “acceptable”, and with
regard to sets of arguments — whether they are “defendable”.

Dung’s abstract approach is static and monological in nature. Therefore, a natural step forward
is the study of dialectical argumentation, which revolves around dialogues between two players.
This approach was formalized in [8], but early related work can also be found in [18]; more recent
noteworthy papers include [3, 1]. These papers present dialogues as sequences of arguments, which
satisfy restrictions imposed by a legal-move function. A dialogue is won by one of the players if he
was the last to make a move, and there is no legal response to this argument.

‘Logic games’ is another related approach that has received much attention [7]. Although work
in that area is perhaps more game-theoretic than the abovementioned papers, it views arguments
as logical entities — an approach that diverges from the abstract path we wish to take here.

1We use the term ‘argument’ ambiguously: it might mean a specific assertion or an entire debate.



In this paper, we consider argumentation frameworks that consist of two different sets of argu-
ments (instead of the traditional single set), each being the set of arguments available to one of two
agents. As in dialectical argumentation, at each stage in the dialogue one of the agents advances
an argument that counters the last argument produced by its rival.

We abandon the setting where agents either win or lose arguments. In our view, a player’s
reward for a specific dialogue can be any real number. An argument resulting in a payoff of
(0.7, 0.3), for example, could mean that agent 1 is 70% “right”, while agent 2 is only 30% “right”
(or 70% “wrong”). Such flexible payoffs may be especially useful when the agents are negotiating
over a divisible good.

The argumentation game, as we see it, can be described in a clear-cut manner as a game in
extensive form, where the actions available at a node owned by one of the agents are a subset of
that agent’s argument set. These ideas are the basis of our extensive-form argumentation games
approach, which in a sense combines the game-theoretic and argumentation-based styles of nego-
tiation. The major advantage in representing the argument as a game in extensive form is that
it enables the utilization of existing methods from algorithmic game theory in order to solve the
associated game. For instance, in the perfect information setting, which is the focus of this paper,
we can derive, using backward induction, a Nash equilibrium in pure strategies.

In practical settings it is only reasonable to desire that the argument be finite. We approach
the question of whether the argumentation game is infinite from two directions: the properties of
the agents’ argument sets, and the relations between these two sets. By defining ‘local’ versions of
Dung’s semantics, we find that when the agents’ argument sets satisfy some notions of defendability,
the resulting argument is infinite. We characterize the relations between the two argument sets by
introducing the “interaction graph”, and show that the game is infinite if and only if the graph is
cyclic.

We also explore the algorithmic aspects that arise from our setup. Several methods to simplify
infinite argumentation games are suggested. Another issue that is tackled is the resolution of
game-based arguments in time proportional to the size of the representation of the argumentation
framework, instead of the size of the associated game tree. We discuss a problematic case where
the payoff function can be represented compactly, but provide a dynamic programming algorithm
that resolves it efficiently.

The paper proceeds as follows. In Section 2, we give an overview of Dung’s abstract argumen-
tation theory. In Section 3, we introduce our game-based argumentation frameworks and present
our results. In Section 4, we suggest two major directions for future research.

2 Preliminaries

In this section we review some of the concepts of Dung’s theory2 of abstract argumentation [2].
The theory is concerned with argumentation frameworks governed by an attack relation between
arguments; it is not concerned with the internal structure of arguments. This theory is the starting
point of our construction.

Definition 1. An argumentation framework A is a pair 〈AR,→〉 where AR is a set of arguments,
and → is a binary relation on AR. The expression a → b is pronounced “a attacks b” or “b is
attacked by a”.

Informally, a set of arguments is acceptable if it can be defended against attacks. Abstract
argumentation theory is concerned with maximally-defendable sets of arguments, but there are
several possible semantics, each inducing different such sets.

Definition 2.

1. An argument a ∈ AR is attacked by a set of arguments S (denoted S → a) iff S contains an
attacker of a.

2. An argument a ∈ AR is acceptable with respect to a set S of arguments iff for all b ∈ AR: if
b → a then S → b.

2We try to adhere to Dung’s original formulation, although some of the definitions have slightly evolved in recent
papers.



3. A set S of arguments is said to be conflict-free iff there are no arguments a and b in S such
that a → b.

4. A conflict-free set of arguments S is admissible iff each argument in S is acceptable with
respect to S.

5. A preferred extension of an argumentation framework A is a ⊆-maximal admissible set of A.

6. A conflict free set of arguments S is called a stable extension iff S attacks each argument
which does not belong to S.

7. An admissible set of arguments S is called a complete extension iff for every argument a ∈ AR:
if a is acceptable with respect to S then a ∈ S.

The following result, which appeared in [2], will be relevant to this study.

Proposition 3. Every preferred extension is a complete extension, but not vice-versa.

3 Results

3.1 Game-Based Argumentation Frameworks

The basis of our contribution is the augmentation of the abstract argumentation framework with
additional constructs, which take into consideration some of the intricacies of interaction between
two agents. The definitions can easily be extended to deal with more than two agents, but that is
beyond the scope of this paper.

The two agents in our set of agents N = {1, 2} are each endowed with an argument set; the sets
associated with agents 1 and 2 are denoted by AR1 and AR2, respectively. The interaction between
the agents is represented as a sequence of arguments: agent 1 begins by presenting an argument
a1 ∈ AR1, agent 2 counters with an argument a2 ∈ AR2 which attacks a1, agent 1 retaliates with
an argument a3 ∈ AR1 such that a3 → a2, and so forth. The formalization of this concept is
inspired by the existing definition of dialogue history [19], and relies on the existence of the sets
AR1 and AR2, in addition to an attack relation between arguments.

Definition 4. A sequence of arguments (a1, a2, . . . , al) is a dialogue iff ai ∈ AR1 when i is odd,
ai ∈ AR2 when i is even, and for all i = 2, 3, . . . , l: ai → ai−1.

Remark 5. We say a dialogue D = (a1, a2, . . . , al) begins with a1 and ends with al, and that
|D| = l.

In our argumentation setting, either agent can terminate the dialogue at any stage. This
assumption can be incorporated by assuming the existence of two distinguished arguments t1 ∈ AR1

and t2 ∈ AR2, such that for all a ∈ ARi, t3−i → a.
In many argument settings, the outcome of the dialogue depends on the entire history of the

arguments employed by the participants. We model this by associating an argumentation setting
with a utility function U , which assigns payoffs to both agents for each possible terminated dialogue
— any dialogue that ends either with t1 or t2. These payoffs are not necessarily “win” and “lose”,
but may express different degrees of success in the argument.

The following definition unifies the ideas that were presented above.

Definition 6. A game-based argumentation (GBA) framework A is a tuple

〈AR,→, AR1, AR2, U〉,

where:

1. 〈AR,→〉 is an argumentation framework.

2. For i = 1, 2: ARi ⊂ AR, and ARi is finite. Furthermore, there exist t1 ∈ AR1 and t2 ∈ AR2

such that t1 attacks all arguments in AR2 but is attacked by none, and t2 attacks all arguments
in AR1 but is attacked by none.
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Figure 1: An illustration of the mapping from GBA frameworks to games in extensive form. The
parameters of the framework A are: AR = {a, b, c}, AR1 = {a, b}, AR2 = {c}, →= {(c, b)}; the
values of U are as follows: (t1) 7→ (−0.4, 0.4), (a, t2) 7→ (0.3,−0.3), (b, t2) 7→ (0.2,−0.2), (b, c, t1) 7→
(0.1,−0.1). The figure shows the associated game tree TA.

3. U is a mapping from the set of all valid dialogues ending with t1 or t2 to

{(x1, x2) ∈ R2 : x1 ∈ [−0.5, 0.5] ∧ x1 + x2 = 0}.

Remark 7. The introduction of the distinguished arguments t1 and t2 into the discussion is
a mathematical formality. Below, their existence will be ignored when discussing specific GBA
frameworks. These arguments merely symbolize an option to terminate the argument — an option
that is always available to both agents.

Remark 8. We require that AR1 and AR2 both be finite. Essentially, we want each agent to have
a finite number of possible actions at each turn. It is not sufficient to simply demand that each
argument be attacked by a finite number of arguments, since agent 1 could, in that situation, still
have an infinite number of moves on the first turn.

Remark 9. Conceptually, the payoffs of the agents are both nonnegative and sum to one. If an
agent is totally convincing, its payoff would be 1 and its counterpart’s 0. Different degrees of success
would be represented by different payoffs; for example, a payoff of 0.7 to agent 1 and 0.3 to agent 2 is
possible. We chose to represent the setting as a zero-sum game; this has computational implications
that will be made apparent later. A payoff of (x1, x2) is logically equivalent to (0.5 + x1, 0.5 + x2).
Thus, a payoff of (0.2,−0.2) is equivalent to (0.7, 0.3).

The function U will sometimes be interpreted as a pair of functions U1 and U2, whose values
are the payoffs of agents 1 and 2, respectively.

A very natural way to analyze the interaction between the two agents in a GBA framework is
by a game in extensive form. Let A = 〈AR,→, AR1, AR2, U〉 be an argumentation framework; we
describe how to construct the associated game tree, TA. Every decision node of even depth in the
tree is owned by agent 1, and every decision node of odd depth is owned by agent 2. In particular,
the root is owned by agent 1. The possible actions available to agent 1 at the root are all the
arguments in AR1; these arguments are associated with the outgoing edges incident on the root.
For every other decision node owned by agent i ∈ N , the possible moves are all arguments in ARi

which attack the very last argument in the dialogue — the one associated with the incoming edge
incident on the current decision node. Not surprisingly, the sequence of edges on a path from the
root to a terminal node is associated with a dialogue. The parent of a terminal node is either t1 or
t2, and the payoff for a terminal node is the value of U on the dialogue induced by the path from
the root to the terminal node. See Figure 1 for an illustration.

Remark 10. The mapping between GBA frameworks and game trees is clearly not surjective, but
it is not injective either. To see that it is not injective, consider two different GBA frameworks A1



and A2, both with AR = {a, b, c}, AR1 = {a} and AR2 = {b, c}. A1 has →= {(a, b), (b, a)}, and
A2 has →= {(a, b), (b, a), (a, c)}. It holds that TA1

≡ TA2
.

In this discussion, we sometimes consider the agents’ two argument sets to be disjoint and
nonempty; we find this to be somewhat intuitive in many real-life settings.

Definition 11. A GBA framework is normal if AR1 and AR2 are disjoint and nonempty.

3.2 Local Semantics and the Structure of the Game Tree

In game-based argumentation frameworks, we are often interested only in the feud between the two
opposing argument sets AR1 and AR2, and are somewhat indifferent to their attack and defeat
relations with other arguments in AR\(AR1∪AR2). This motivates us to consider “local” versions
of the semantics reviewed in Section 2.

Definition 12. Let A = 〈AR,→, AR1, AR2, U〉 be a GBA framework.

1. An argument a ∈ AR is locally-acceptable with respect to a set of arguments S iff for each
argument b ∈ AR1 ∪ AR2: if b attacks a then b is attacked by S.

2. A conflict-free set of arguments S is locally-admissible iff each argument in S is locally-
acceptable with respect to S.

3. A locally-preferred extension of A is a ⊆-maximal locally-admissible set of A.

4. A conflict-free set of arguments S is called a stable extension iff S attacks each argument in
AR1 ∪ AR2 which does not belong to S.

5. A locally-admissible set S of arguments is called a locally-complete extension iff each argument,
which is locally-acceptable with respect to S, belongs to S.

Proposition 13.

1. An admissible set is locally-admissible, and a stable set is locally-stable.

2. Let A be a preferred extension. Then there is some locally-preferred extension B such that
A ⊆ B.

3. The notions of complete and locally-complete extensions are incomparable: there are complete
extensions that are not locally-complete, and vice-versa. Moreover, this is true even for normal
GBA frameworks.

Proof.

1. Obvious.

2. A is admissible, therefore it is locally-admissible; but a locally-preferred extension is a maximal
locally-admissible set.

3. In the following normal GBA framework, AR1 is complete3 but not locally-complete: AR =
{a, b, c, d, e}, AR1 = {a}, AR2 = {b}, and

→= {(a, b), (c, d), (d, e), (e, c)}.

On the other hand, AR1 in the following GBA framework is locally-complete, but it is not
complete: AR = {a, b, c, d}, AR1 = {a}, AR2 = {b, c}, and

→= {(b, c), (c, b), (b, d), (d, a)}.

See Figure 2 for an illustration.

3In fact, AR1 in this example is a preferred extension, which by Theorem 3 is a stronger notion than completeness.
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Figure 2: (i) AR1 = {a}, AR2 = {b}; AR1 is complete but not locally complete. (ii) AR1 = {a},
AR2 = {b, c}; AR1 is locally-complete but not complete.

Although in theory our agents could bicker and debate for all eternity, in practice it is desirable
that negotiations terminate in finite time. Therefore, we would like our dialogues — and our game
trees — to be finite.

Definition 14. A GBA framework A is finite iff TA is finite. A framework is infinite if it is not
finite.

As we shall shortly prove, an argumentation framework is often infinite. Moreover, the game
tree sometimes satisfies an even stronger notion of infinity:

Definition 15. A GBA framework is subgame-infinite if for any decision node v in TA, the subtree
of TA rooted in v is infinite.

Proposition 16. Let A be a normal GBA framework such that AR1 and AR2 are both locally-stable
extensions. Then A is subgame-infinite.

Proof. Let v be a decision node, and suppose first that v is not the root. To prove that there is an
infinite path that begins with v, it is sufficient to prove that any decision node v′ which is not the
root has at least one child which is a decision node. Indeed, assume w.l.o.g. that v′ is owned by
agent 2. The incoming edge incident on v′ is labeled by a ∈ AR1. Since AR1 ∩AR2 = ∅, a /∈ AR2;
it follows by the fact that AR2 is a locally-stable extension that there is b ∈ AR2 such that b → a.
Therefore, v′ has a child v′′ owned by agent 1 such that the edge (v′, v′′) in TA is labeled by b.

We complete the proof by noting that if v is the root, it has at least one child which is a decision
node by the fact that AR1 6= ∅.

We next explore the structure of TA when A has AR1 and AR2 which satisfy some weaker flavor
of defendability.

Proposition 17. Let i ∈ {1, 2}, and A be a normal GBA framework such that ARi is a locally-
preferred extension and AR3−i is locally-admissible. Then A is infinite.

Before we tackle the proof, several lemmas are in order.

Lemma 18. Let A be a normal GBA framework such that AR1 ∪ AR2 is conflict-free. Then
AR1 ∪ AR2 is locally-admissible.

Proof. The assumption that AR1 ∪AR2 is conflict-free directly implies that there is no a ∈ AR1 ∪
AR2 and b ∈ AR1 ∪ AR2 such that a → b, and thus each a ∈ AR1 ∪ AR2 is locally-acceptable. It
follows that AR1 ∪ AR2 is locally-admissible.

Lemma 19. Let A be a normal GBA framework such that AR1 and AR2 are both locally-admissible.
In addition, assume that for all a ∈ AR1 there is no b ∈ AR2 such that b → a. Then AR1 ∪ AR2

is locally-admissible.
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Figure 3: (i) AR1 = {a, b} and AR2 = {c} are nonempty, disjoint, and are both preferred exten-
sions. (ii) TA is not subgame-infinite.

Proof. We first show AR1 ∪AR2 is conflict free. Indeed, AR1 and AR2 are each conflict-free since
they are locally-admissible. By the assumption, for all a ∈ AR1 there is no b ∈ AR2 such that b → a.
Furthermore, if there was b ∈ AR2 and a ∈ AR1 such that a → b, we would get a contradiction to
the local-admissibility of AR2.

We complete the proof by applying Lemma 18.

Lemma 20. Let A be a normal GBA framework such that AR1 and AR2 are both locally-admissible.
Then any tree rooted in a decision node of depth at least 2 of TA must be infinite.

Proof. Omitted due to lack of space.

Proof of Proposition 17. Similarly to previous proofs, it is sufficient to show that at every level in
the tree there is a decision node that has at least one child which is a decision node. For level 0
(the root), this follows from the non-emptiness of AR1.

A setting where at level 1 every node has no children that are decision nodes directly implies
that for all a ∈ AR1 there is no b ∈ AR2 such that b → a. By Lemma 19, AR1 ∪ AR2 is locally-
admissible. Additionally, ARi ( AR1∪AR2, since AR3−i is nonempty and the two sets are disjoint.
This is a contradiction to the assumption that ARi is a locally-preferred extension.

The final case, where a decision node has depth of at least 2, is handled by Lemma 20.

Remark 21. Requiring that A is normal and AR1 and AR2 be both admissible (and in particular,
locally-admissible) does not entail that A is infinite. For example, if AR = {a, b}, AR1 = {a},
AR2 = {b}, and →= ∅, then the conditions hold, but the height of TA is 2.

Likewise, requiring that A is normal and that AR1 and AR2 be both preferred extensions does
not entail that A is subgame-infinite (although this is less straightforward). A counterexample is
given in Figure 3.

3.3 The Interaction Graph and the Structure of the Game Tree

The attack-defeat relations between the two rival agents in a GBA framework can be easily modelled
as a two-sided graph.

Definition 22. Let A = 〈AR,→, AR1, AR2, U〉 be a GBA framework. The interaction graph of A
is the directed bipartite graph GA = 〈V,E〉 where V = AR1 ] AR2, and

E ={(v1, v2) : (v1 ∈ AR1 ∧ v2 ∈ AR2 ∧ v2 → v1)

∨ (v1 ∈ AR2 ∧ v2 ∈ AR1 ∧ v2 → v1)}.

The definition of an interaction graph immediately entails a simple algorithm that decides
whether a given argumentation framework is infinite.

Proposition 23. A GBA framework A is infinite iff GA is cyclic.



Proof. Assume first that A is infinite. Since AR1 is finite, there exists some path in TA such that
two edges e1 and e2 are labeled by an argument a1 ∈ AR1. Let a1, a2, . . . , ak, a1 be the labels of
the edges on the path. It holds that ai ∈ AR1 if i is odd, and ai ∈ AR2 if i is even. Moreover,
a1 → ak → . . . → a2 → a1, and therefore a1, a2, . . . , ak, a1 is a cycle in GA.

In the other direction, suppose GA is cyclic, and let a1, a2, . . . , ak, a1 be a cycle in GA, where
ai ∈ AR1 if i is odd, and is in AR2 otherwise. Clearly, a1, a2, . . . , ak, a1, a2, . . . , ak, a1, . . . are the
labels of the edges in an infinite path in TA.

Given a GBA framework, we can construct the interaction graph in polynomial time, and run
breadth-first searches in order to determine whether cycles exist.4 Therefore, it can be decided
whether a given argumentation framework is infinite in polynomial time.

Remark 24. Proposition 23 also gives us a useful tool for deciding whether the conditions of
Propositions 16 or 17 do not hold: this is the case if the argumentation framework is identified as
finite.

3.4 Algorithmic Issues

It should now be quite apparent that we would like to model our arguments as finite games in
extensive form. However, we have seen that when the argument sets AR1 and AR2 satisfy some
flavors of defendability, the framework is guaranteed to be infinite.

We suggest two possible restrictions which make certain that TA is always finite. One option is
to require that each argument be usable only once. This is obviously sufficient, together with our
veteran assumption that AR1 and AR2 are finite.

Another, more interesting, possibility is to restrict the length of dialogues. It is agreed before-
hand that, in the event that neither agent terminates the argument until some stage, the debate
automatically ends. This yields the concept of k-bounded GBA frameworks; these are the same as
GBA frameworks, except for the fact that U also assigns a value to any legal dialogue of length k.
Such dialogues terminate the argument even if they do not end in t1 or t2. Observe that the height
of the game tree associated with a k-bounded GBA framework is at most k.

Given a finite GBA framework, the associated game in extensive form is a finite game of perfect
information; such a game can be solved by backward induction [6], in time linear in the size of
the game tree. Moreover, backward induction yields a sub-game perfect Nash equilibrium in pure
strategies.

Definition 25. Let A be a finite GBA framework. The outcome of A is the payoff to the agents
derived when solving TA with backward induction.

Instead of engaging in a tiresome, and computationally costly, debate, the agents may simply
and efficiently solve the corresponding extensive form game using backward induction. Since this
method yields an exceptionally stable solution, both agents may readily agree on this method as
an alternative to actually proceeding with the classic argumentation process.

Another method of simplifying a given (possibly infinite) GBA framework is the elimination of
arguments which rational agents would never play in an argument. This approach might aid in
reducing an infinite framework to a finite one.

Definition 26. Let A be a normal GBA framework. For i ∈ {1, 2}, an argument d ∈ ARi is a self-
destructive argument for agent i iff for every dialogue D = (a1, a2, . . . , al, d, t3−i) (some dialogue
whose postfix is (d, t3−i)), the dialogue D′ = (a1, a2, . . . , al, ti) satisfies: U i(D′) ≥ U i(D).

Proposition 27. Let i ∈ {1, 2} and d be a self-destructive argument for agent i. The outcome of
the argument does not change if d is removed from ARi.

Proof. Omitted due to lack of space.

Although the state of affairs looks promising at this point, being able to solve an argument in
time linear in TA may not imply encouraging results when considering the complexity with respect

4We might need a search for each node in the graph; each search’s complexity is linear in the size of AR1 and
AR2.
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Figure 4: Illustration for the algorithm in the proof of Proposition 30. (i) AR1 = {a, b, c} and
AR2 = {d, e, f}, f is a winning argument for agent 2. (ii) The matrix which is constructed by the
algorithm. If k ≥ 6, agent 1 does not have a winning strategy.

to the size of the representation of A. Granted, if the function U is represented by individually
specifying the payoff for every possible dialog, the size of the representation of A would be on the
order of the size of the tree. However, there are some cases where U is a simple function that can
be represented with constant space. In such a setting, TA might be exponential in the size of the
representation of A. We look at one such example, and discuss its efficient solution.

Definition 28. A normal k-bounded GBA framework A is a pure framework iff for any dialogue D
such that |D| ≤ k and D ends with t1 or t2, U(D) = (−0.5, 0.5) if agent 1 terminates the dialogue,
and U(D) = (0.5,−0.5) if agent 2 terminates the dialogue; and for any other dialogue D with
|D| = k, U(D) = (0.5,−0.5).

Remark 29. The representation of U in a pure GBA framework requires O(1) space.

In the pure argumentation context, we say that an argument in ARi is winning if it has no
attackers in AR3−i. The goal of agent 2 is to present a winning argument w ∈ AR2 within less
than k steps — thus forcing agent 1 to terminate the argument. Naturally, agent 1 can win in less
than k steps by producing a winning argument of its own.

Proposition 30. In a k-bounded pure GBA framework, it can be determined whether agent 1 has
a winning strategy in time polynomial in max(|AR1|, |AR2|) and k.

Proof. We describe a dynamic programming algorithm which decides whether agent 1 has a winning
strategy. Clearly it holds that agent 1 has a winning strategy iff agent 2 can be prevented from
using any of its winning arguments within k steps.

We construct a binary matrix M of size (|AR1|+ |AR2|)× (k− 1). Each row corresponds to an
argument in AR1 ∪ AR2; let arg(i) be the argument associated with the i’th row. The (i, j) entry
in the matrix M is 1 if, assuming a dialogue starts with arg(i), agent 1 has a strategy that prevents
agent 2 from playing a winning argument in j steps. The matrix is filled by columns. M [i, 1] is
initialized to 0 for each i where arg(i) is a winning argument of agent 2; the rest of column 1
is initialized to 1. We assume agent 1 has no winning arguments — otherwise it can easily win
the argument by playing its winning argument first. The other entries are computed as follows:
M [i, j] = 0 if M [i, j − 1] = 0;

M [i, j] = min(M [i1, j − 1], . . . ,M [il, j − 1])

if M [i, j − 1] = 1 and arg(i) ∈ AR1 and arg(i1), . . . , arg(il) are all the attackers of arg(i) in AR2;

M [i, j] = max(M [i1, j − 1], . . . ,M [il, j − 1])

if M [i, j − 1] = 1 and arg(i) ∈ AR2 and arg(i1), . . . , arg(il) are all the attackers of arg(i) in AR1

(see example in Figure 4).
Less formally, if arg(i) ∈ AR2, agent 1 has a strategy that prevents agent 2 from playing a

winning argument in j steps if it can play an argument from AR1, and then hold on for j − 1 steps
against all possible responses from AR2. Agent 2, on the other hand, wants to counter an argument
in AR1 with an argument which it knows will lead it to victory in j − 1 steps or less; it needs at
least one such argument among the attackers of arg(i).



The algorithm answers that agent 1 has a winning strategy iff there is i such that arg(i) ∈ AR1

and M [i, k − 1] = 1. It is straightforward that this is correct, since agent 1 can start the argument
with arg(i). As for the running time, the number of operations needed to compute an entry in the
matrix M is O(max(|AR1|, |AR2|), hence the running time is O((|AR1| + |AR2|)

2 · k).

4 Directions for Future Research

In this section we suggest two major directions for future research.
One possible extension of our work is to consider argumentation games with incomplete infor-

mation. Such a setting is plausible, for example, when a mediator is involved in the argumentation
process. A likely situation is one where agent 1 plays a valid, attacking argument, but does not
want agent 2 to know which argument was played for security reasons; the mediator checks that
the argument is valid, and informs agent 2 that its last argument was defeated. Agent 2 would
then be in an information set which possibly contains several nodes. Such a game would be a
two-player zero-sum (finite) extensive-form game of imperfect information but with perfect recall.5

The equilibria of this game are the solutions of an LP whose size is linear in the size of the game
tree [17]. Therefore, it seems interesting to study the properties of these argumentation systems,
as well as define relevant, specialized semantics.

The second direction is a study of argumentation games where the agents are not familiar with
one another’s available arguments, i.e., agent 1 does not know which arguments are contained in
AR2, and agent 2 is ignorant about the members of AR1. Another related setting is one where
both agents are informed with respect to the argument sets, but have only partial knowledge of the
attack relation. For example, agent 1 might not know which arguments in AR2 attack an argument
in AR1.
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