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Abstract

We explore the creation of cooperative behavioral trends in a group ofagents, within the framework
of an artificial physics simulation. Local interaction rules, that have “selfish” interpretations, were specif-
ically designed to engender cooperative behavior. Although we conclude that it is necessary to further
refine our specific set of interaction rules, our results support the viewthat it is indeed possible to simulate
sophisticated cooperative behavior via a set of selfish local interactions.

1 Introduction

Imagine a blue, open sea, where a pack of orcas (“killer whales”) senses a school of fish at a distance.
The orcas move closer and closer to the school, encircling itwith a pincer movement (a highly cooperative
maneuver), and continue circling until the school compresses into a tight mass of fish. All this maneu-
vering requires a great deal of communication and teamwork among the orcas. In this paper, we explore
whether this kind of highly cooperative behavior can be simulated by local interactions, that have selfish
interpretations.

There have been many previous examinations of similar cooperative behavior in the field of multia-
gent systems (e.g., [3, 4, 8, 6]), including some older predator-prey experiments (using an evolutionary
model [5], designed rules [7], and other approaches [2]), and even including predator-prey experiments
with self-motivated agents (e.g., [9]). The current work differs in the sophistication of the coordination and
difficulty of the hunting task, as well as in the model used to engender ostensibly cooperative behavior.

Local interactions are well-simulated by physical systemsof charged particles [10, 11]; for example, [12]
discusses a simulated world with artificial rules of physicsin which a complex regular structure was formed
by particles, using only particle-centered local rules of interaction. In fact, this appears to be very similar to
what happens within a school of fish, and inspired the use of a similar technique in our simulation.

We extended the physicomimetic simulation of [12], and represented fish and orcas by different types of
artificial particles. Hunting requires coordination amongthe orcas; each individual should act in correlation
with the others, and react to the actions of others. Our simulation of this activity was based only on physical,
local rules of interaction.

There were three rules governing action: greed, envy, and cowardice. These are seemingly in direct
opposition to cooperative teamwork. Our results show, however, that they can successfully simulate sophis-
ticated cooperative behavior, in particular the kind exhibited in the complex hunting pattern of orcas. While
the interaction rules could be interpreted in other, non-selfish ways, it is still interesting that self-interested
behavior — local to individual agents —couldgive rise to the appearance of such complex, meaningful co-
ordination. Although our experiments did not achieve the complete efficiency or elegance of orca hunting,
they successfully demonstrated that externally observed cooperative behavior might have selfish origins.

2 Artificial Physics

In [12] by Spears et al., a simulation tool is described that uses Artificial Physics to create an environment of
agents responding to local interaction rules. Spears’ simulation uses physical forces to drive a set of agents
to a desired configuration or state. The parameters of the simulation (physical forces) are tuned so that the



desired configuration will be achieved when the system gets to a stable state that minimizes the potential
energy of the overall system.

Spears’ system works according to basic Newtonian formulasof motion, and simulates particles subject
to different fields that affect them. This is done on a discrete virtual time scale; after each time lapse of∆t,
the locations of the particles in the system are recalculated. Each particle is modeled with mass, position,
velocity and acceleration. Positional change is calculated as∆x = v∆t, wherev denotes the last recorded
speed of the particle. In turn, the new velocity is formed by the formulav = F

m
∆t, wherem is the mass of

the particle andF is the force that affects it.
The force that affects any particle is computed based on the relative position of the particle within fields

created by other particles. The basic formula used isF = G
r2 , whereG is a parameter of the field, and

r is the distance between the affected particle and the particle that produced the affecting field. However,
the simulation needs the force to be reasonable, and thus limits it to some maximal value,Fmax. It also
considers the field to reverse its effect at some rangeR — from an attractive force, it becomes a repulsive
one.G, R, andFmax form the parameter set of the pseudo-physical fields in Spears’ simulation.

To make the particle motion reasonable, Spears also introduces viscosity type friction, sensor limitation
(the maximal distance at which a force would haveanyeffect), andVmax, a limit on a particle’s speed.

One of Spears’ results was the ability to place any number of agents in random locations on the screen,
and (in reaction to local interactions) have the agents eventually be set in a symmetric network of triangles.

To create this effect, that simulation created a well-tunedfield among the agents, making them react to
one another in the appropriate fashion. As mentioned above,the model of inter-agent force established an
attraction among the agents if they were far from one another, and became repulsive when they get closer.
[13] formally proved that the system stabilized at the statewith least potential energy, and this state is a
regular mesh.

The resulting “net of triangles” was reminiscent of a schoolof fish, and inspired our use of an artificial
physics approach as a theoretical basis for the simulation of fish and orca pack behavior. We have also made
use of theoretical and numerical conclusions made in [13].

3 Model of the World of Orcas and Fish

The National Geographic Society [1] describes the following peculiar behavior of orca whales:“Orcas in
the northern part of the Atlantic have developed a highly organized predation technique that has rarely been
seen by human eyes. A large school of fish are ‘corralled’ intoa ball. Perimeters of the ball are guarded
by the orca pack members. . . Soon the massive ball is clustered so tightly, the fish’s escape response breaks
down. Oxygen levels in the ball drop and the fish become confused. At that point orcas use their powerful
tails to knock out fish at the edges of the ‘fish-ball’, and eat them one by one.”

During this impressive act, orcas exhibit very high cooperation skills. They communicate to improve
their synchronization and positioning, take turns at feeding and guarding the ball, and the “corralling” itself
includes such maneuvers as “pincers”.

These orca behaviors, unlike maintenance of the structure of a fish school, do not seem to stem from local
interactions, but rather from some high-level cooperativestrategy. This is confirmed by the fact that older
members of the pack seem to repeatedly demonstrate to younger orcas what to do, creating the impression
that a complex skill is being taught and learned.

In this research however, we would like to consider orcas’ behavior from a different angle, and investigate
whether their complex hunting strategy can be created or simulated by simple selfish local interactions
among orcas. It may be the case that this was the original reason that the joint behavior appeared, and that it
was only later transformed into a regular (“conscious”) practice.

For example, the very fact that orcas keep at a regular distance from one another during their school
encirclement could appear as a result of mutual dislike among orcas, or even fear andcowardice. But
assuming the dislike, the only reason that they do not split and move away from each other is that they
are hunting a school of fish — in other words, theirgreedkeeps them together near the fish. The constant
circling could also be a result ofenvy; once an orca gets close to a fish, another one begins to envy itand
moves in closer to the fish in question. However, since they fear one another and the fish itself is not keen to
stay close to orcas, a circling motion results.

The question then becomes whether three selfish local interactions such as greed, envy, and cowardice
can result in a behavior similar to the cooperative hunting moves of orcas. Note that in a sense it places
orcas into a model similar to that of fish, which seem to form their schools based on local interaction rules.



As an example, a school of fish could be modeled as being formedby two kinds of fear: fear of separation,
and fear of conflict. Fear of separation stems from the “safety in numbers” survival strategy — a fish would
not want to be too far from other fish around it (a local property). Fear of conflict stems from the fact that
fish fear one another because they compete over basic resources, such as food and oxygen.

Composition of these basic qualities of fish and orcas are extremely similar to interactions among phys-
ical particles within a field. This abetted the creation of a simulation using artificial physics tools, including
such features as the screening of internal members of the fishschool by the outer boundary.

4 Simulation

4.1 Technical description

The basic ideas of the tool we have created are similar to the tool in [12]. We used Newtonian formulas
to calculate velocities and particle position variations;the simulation enabled us to define various kinds of
particles. Each particle has two constant properties: a mass, and a volume. The mass is used to calculate the
acceleration and velocity of particles:v = F

m
∆t (just as in [12]). However, our simulation extends the notion

of friction, and simulates its effects independently for every particle based on its volume:Ffric = −ρµv,
whereρ is the volume of the particle,µ is the constant friction coefficient, andv is the particle’s speed.

We have also generalized the notion of fields — we do not use fields that flip their effect (from repulsion
to attraction) midway. The field has constant effect, eitherattractive or repulsive. However, any particle can
emit or be affected by any customized set of fields. The fields are now parameterized by strengthG, sign
(attraction or repulsion), maximal feasible force createdby the fieldFmax, and the fading-away distance
after which the force is considered to be ineffectiveRmax.

Our simulation also introduced the notion of interference.These forces do not influence particles di-
rectly, instead modifying the effects of other fields withinthe system. Such fields have an additional
coefficientξ (IC in our data tables), that dictates the degree of interference created by the field. The ba-
sic interference diagram can be seen in Figure 1; the interference effect is computed using the formula
Finter = F (1 + ξ cos(α))

ν , whereFinter is the force after the interference application,F is the original
force created by the field between the affecting and affectedparticles,ξ is the interference coefficient,ν is
the sign of the interference, andα is the angle between the lines of sight from the effected particle to the
interfering one and the effecting one.

Figure 1: Field Interference Diagram

As in [12], we also limit the maximal particle speed, thus introducing theVmax parameter; however,
in our simulation particles can have different speed limitations. Other calculations are performed just as
in [12], based on the laws of Newtonian motion.

4.2 Implementing Desired Behavior in the Simulation

As was mentioned in Section 3, the cooperative behaviors in which we are interested are to be engendered
by local interaction rules.



The first task is to translate the fish school formation rules into the language of artificial physics. It is
obvious that fear of separation can be modeled by an attractive field, and fear of conflict can be modeled
by a repulsive field. In fact, this is exactly what happens in [13] and in our simulation, which results in a
school of fish that keeps a regular triangular mesh-like formation. We introduce two fields: FishPullFish and
FishPushFish, with their respective parameters computed as dictated by [13].

However, a school is not an ordinary triangular mesh. We introduce an interference field, FishMaskFish,
that masks the interior of the fish school. The field affected by FishMaskFish is the first field that affects orca
pack behavior: FishPullOrca. This field comes to modelgreedas was discussed in Section 3. We introduced
OrcaPushOrca (to modelcowardice), and the OrcaEnvyOrca interference field (to modelenvy). Finally, the
obvious effect of fish moving away from orcas is modeled by a repulsive field, OrcaPushFish.

While FishMaskFish is a negative interference field that weakens the effects of FishPullOrca, the Or-
caEnvyOrca is a positive interference field that increases the effects of the FishPullOrca field.

Note that all these fields and effects could not have been implemented in the original artificial physics
work [12]. In addition, although the initial values for the FishPullFish and FishPushFish fields (responsible
for fish school creation and maintenance) were calculated based on [13], the rest of the fields were uncharted
territory, and were fitted using multiple experimentation sets.

5 Finding Parameter Values

Our first goal was to build a stable school of fish, similar to Spears’ net of particles described in Section 2,
i.e., finding the right parameter values for FishPushFish and FishPullFish. Initially, we considered the
parameters of Spears, and tried to use them in our simulation. Spears used one force between the particles
with the following values:Fmax = 1, G = 0.12. In our simulation, this had to be replaced by two
counteracting forces, as seen in Table 1.

Force vs. Parameter Fmax Rmax G
Attractive force 1 0.5 0.12
Repulsive force 3 0.3 0.24

Table 1: Values for forces of fish among themselves

With these values, we got results similar to those of Spears:when the particles are far from each other
(more than0.3), they only pull each other closer together, since at that range the repulsive force FishPushFish
is not activated. When they pass the distance ofr = 0.3, both forces are activated, and as the repulsive force
coefficientG is double the pulling force coefficient, we get a repulsion ofthe same value that Spears’ field
version had. However, the division of forces in our simulation allows for greater flexibility; for instance, the
Fmax value in the repulsive force can vary independently, and themore it is increased, the more regular and
uniform the school becomes.

After establishing a stable school of fish, we turned to the main goal of finding the correct values of the
set of fields described in Section 4.2, the fields that involveorcas. This was done based on the following
initial assumptions:

• Orcas should sense the fish pulling force from very far, but its impact should be rather limited.

• When any orca is getting close to a fish, other orcas begin to envy it; that is, the pulling field of that
fish is enhanced.

• For the school to have a group sensory response to orcas, the effective radius of the orca fish-repulsive
field should be larger than the basic distance between fish within the school. However, this radius has
to remain small enough to simulate limited fish sensory range.

With these assumptions, and after performing a large numberof experiments with different field param-
eter settings, we arrived at the basic value set that resulted in a success rate of approximately 80% — in 80%
of the trials, the orcas encircled the fish and compressed theschool.

The basic values we used as field parameters are described in Table 2. Other parameters were set as
follows: the friction coefficient was set to0.5, the mass and volume of the orcas was set to4, and theirVmax

was1.5.



Field name Fmax Rmax G IC
Orca Push Orca 1.5 2.2 0.3
Fish Pull Orca 0.4 6 1
Orca Push Fish 0.8 0.8 0.19
Fish Mask Fish 0.8 2
Orca Envy Orca 0.8 2

Table 2: Basic values used as field parameters

It is important to note the initial geometric configuration of our experiments. Orcas and fish were ran-
domly placed in two non-intersecting rectangular areas, and the group of fish and orcas were initially sepa-
rated by a distance significant with respect to the maximal sensory range of orcas.

There were two main problems we encountered with respect to the desired orca behavior:

• Occasionally, the school of fish was divided into two parts. In these cases, sometimes the orcas
encircled the larger part, but sometimes they did not stick to one goal, and did not succeed in ‘catching’
either of the fish schools.

• Even when the orcas succeeded in encircling the fish, in some of the tests orcas passed through the
school, while the fish stayed in a school configuration.1

To try and solve these problems, we performed further experiments, modifying various field parameter
values. Our general strategy was to start by experimenting on one parameter each time, making a small
change in its value. If the change improved the performance,we tried a few more values for the same pa-
rameter. We then created more complex experiment sets, combining the changes that showed improvement,
taking for each parameter the value that gave the most successful results.

A summary of experiment sets and their respective results can be seen in Table 3. For each experiment
the table shows the number of trials; success (percentage oftrials in which the orcas encircled the fish),
division (percentage of trials in which the orcas divided the school of fish), cut through (percentage of trials
in which the orcas passed through the school of fish and the fishstayed in a school).2 Since our visualization
tool had a limited perception range, in some trials the fish school and orca formation moved out of the
observable area; this is the reason for two numbers in the number of trials column in Table 3, and also
the reason for the range of success rate values. The minimum value of the range was obtained with the
unobserved trials treated as complete failures, while the maximum value of the range was obtained with the
unobserved trials discarded from the experiment set.

5.1 Solving the Division Problem

The first experiment set was created in order to solve the school division problem. In this set, we reduced
the influence of the FishMaskFish interference field. This field masks the interior of the fish school, and
we initially assumed that this made orcas rather insensitive to the school as a whole, which in turn caused
the division problem. Therefore, reducing the impact of themasking interference field might remedy the
problem. However, this experiment set did not yield any improvement: the number of divisions did not
decrease, and furthermore, the number of orcas cutting through the school got very high (see Table 3).

Trying another approach in the next experiment set, we increased the attraction between the fish (Fish-
PullFish field), in order to improve the school integrity properties. This change led to a great improvement:
when the orcas came close to the fish, the fish school stuck together and roughly maintained its form, mov-
ing as an integral unit — much like this happens in nature. Theorcas could not penetrate into the school of
fish, and the school hardly ever divided. Note that this makesthe fish school parameterization and behavior
differ from the original Spears’ value setting and particlenetwork. In fact, since in our simulation we had
the ability to separate between the forces, we could make changes only in the attractive force and leave the
repulsive force as is, gaining further flexibility in forming the school’s behavior. With the change we made,

1Although this type of behavior may be typical for dogs herdingsheep, or wolves hunting, we were simulating orca behavior, and
considered this something of a problem. This issue is also discussed below.

2Experiments of this last kind thatendedwith the desired goal are treated as a success, and will be counted in the ‘success percent-
age’.



Set # Experiment Trials # (visible) Success % Division % Cut through %
Base Basic Values 40(37) 77.5-83.78 16.22 45.96

1 Reduce influence of Fish Mask Fish 40(40) 78 22.5 52.5

2a Increase attraction between fish
(0.12→0.145)

40(37) 90-97.3 2.7 43.24

2b Increase attraction between fish
(0.12→0.135)

20(16) 75-93.75 6.25 12.5

3 Reduce influence of Orca Envy Orca 40(36) 72.5-80.6 19.44 11.11

4a Increase Orca Volume (4→5) 40(30) 65-86.7 13.33 10
4b Increase Orca Volume (4→4.5) 40(29) 55-75.86 24.13 13.79

5 Combination: change fish attraction
(0.12→0.145), increase orcas volume
(4→5)

40(35) 87.5-100 0 5.71

6a Combination: change fish attraction
(0.12→0.145), orcas volume (4→5),
and orcasVmax (1.5→1.2)

40(25) 60-96 4 4

6b Combination: change fish attraction
(0.12→0.145), Orca volume (4→5),
and OrcaVmax (1.5→1.35)

20(17) 85-100 0 5.88

6c Combination: change fish attraction
(0.12→0.145), Orca volume (4→5),
and OrcaVmax (1.5→1.4)

20(17) 85-100 0 11.76

Table 3: Summary of Experiment Variations

the fish school remained stable, but performed better with respect to the outer influences and restrictions of
our simulation targets.

As seen in Table 3, this experiment had a very high percentageof success, but in many of the trials
the orcas succeeded in encircling the fish while still cutting through the school — as seen in the table, the
percentage of ‘cutting through’ is high. So the first problemis solved in most cases by the experiment sets
2a and 2b, where there is hardly any division, but the second problem of ‘cutting through’ persisted, and
became the center of attention in the following experiment sets.

5.2 Solving the Cut-Through Problem

As described in Section 3, during their hunting, orcas encircle the school of fish, but at no stage do orcas cut
through the fish school. One question we considered was whether this phenomena is actually a problem —
as long as the the same final result is reached. After all, thisphenomenon can be observed in other real-world
examples, such as dogs herding sheep, or wolves hunting. In these cases, dogs (or wolves) use the exact
same technique; one pack member passes through the herd to the other side, while the rest of the pack keeps
the herd from disintegrating. Some shepherd dog breeds actually run on the backs of the sheep to complete
the encircling. However, as the original goal was to simulate a specific activity in nature and be faithful to
the processes at work, we considered this a problem for orca hunting patterns, and experimented with ways
to reduce ‘cutting through’ behavior.

Observing the trials, it seemed that cutting through the school of fish resulted from situations in which
orcas accumulated too much acceleration and got to high velocities. We tested two different approaches to
improve performance. In experiment set 3 (see Table 3), we reduced the influence of the OrcaEnvyOrca
interference field, as envy was one of the reasons for the orcas’ high acceleration. This experiment value
setting did indeed reduce the percentage of trials in which orcas cut through the school, but unfortunately
the success ratio also dropped relative to the basic field parameter settings. On the other hand, the following
two experiment sets (4a and 4b), in which we increased the volume of an orca, reduced the percentage of
cutting through even more than in experiment set 3, and also had a higher success ratio compared to the
basic set (see Table 3). Since orca velocities directly depend on their volume, increasing volume had the



desired effect.
Having reduced both of the initial problems, we attempted tomerge the most successful parameter

settings among the observed experiment sets. We designed more experiment sets in which we increased
fish attraction together with increasing orca volume. This experiment set (set 5 in Table 3) had a very high
percentage of success, and quite a low percentage of cuttingthrough.

Encouraged by the success of increasing orca volume, we thendecided to test whether a direct speed
limitation could have similar (or better) effects and reduce the cutting through percentage even further.
To this end we formed a few experiment sets (6a-6c) with parameters taken from the former combined
experiment set 5, and augmented it with different values forVmax. These experiments showed that direct
reduction ofVmax can indeed improve the percentage of cutting through, but there is a trade-off with the
percentage of success. That is, reducingVmax too much also resulted in the reduction of the success ratio.

Another effect that could be seen when both increasing the orca volume and decreasing theirVmax is
that the encirclement task takes the orca pack much more time. The orcas move slower and have more
difficulty in reaching their goal, in comparison to the experiment sets where they could just cut through the
fish school, get to the other side of the school, and complete the encirclement with ease.

All the above experiment sets were done with and without noise added to the system. The results did not
show significant differences with noise added, and are not shown in Table 3.

5.3 School Shrinking as the Effect of Orca Activity

As described in Section 1, after successfully encircling fish, orcas in nature shrink the school to a tighter fish
formation. Viewing the simulation runs in the above experiments, it looked like the schools of fish indeed
got smaller and crowded together after being encircled by orcas. We decided to verify this fact numerically,
and measured the school volume in two ways.

First, we measured the maximum distance between the fish within the school at each time step in a
few of the above experiment sets. We also measured the distance (in the absence of orcas) of a school of
fish, to have a base value for comparison. As seen in Figure 2, in the experiments with orcas around the
fish, the maximum distance between the fish stabilizes at a much lower value than when the school of fish
stabilizes without outside interference (seen in the graphby the line of ‘only fishes’ and the line of ‘only
fishes fitting fish attraction’, which is the school of fish withour change to the attractive force). The graphs
were measured only on successful results, as measuring maximal distance among fish in trials with a divided
school would not yield a meaningful numerical value.

The second way of measuring fish school volume was to measure the average distance between fish
within the school. For this average distance, we saw resultssimilar to those using the maximal distance
measure (see Figure 3).

5.4 Geometry of the Initial Position

In addition to the experiment sets of Table 3, we also experimented with different geometries of the initial
fish and orca positions, leaving the field parameter settingsclipped to the basic values of Table 2. We tried,
in these experiments, to create two separated subgroups of orcas instead of one group. In the first geometric
experiment set, the orca subgroups were placed roughly on the same side of the fish school, one beside the
other, but separated. This initial situation eased the mission for the orcas, as they had the ‘pincer’ maneuver
half completed. Another geometric experiment set began with two groups of orcas on opposite sides of the
school. This had a potential hidden danger that the fish school would break in two, snapped by the two orca
groups. In fact, this did not happen; the job was even easier for the orcas, and almost all trials succeeded.

6 Summary and Conclusions

Our initial goal was to recreate in a simulation a specific cooperative behavior that occurs in nature: the orca
hunting pattern. The simulation was based on local rules of interaction among the participating agents; the
rules have “selfish” interpretations. As seen in the experiments, orca behavior could be reproduced, although
we did not reach 100% success.

Observing the simulation (Figure 4), one does get a sense of complex cooperation among the orcas. For
example, when one orca gets close to the fish and initializes the hunt, other orcas hurry to come and ‘help’
— this despite the fact that within the simulation this behavior is motivated by ‘envy’. While of course the
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Figure 2: The maximum distance between fish in various experiments

same local interaction rule could also be interpreted in, e.g., an altruistic way, it is still interesting that self-
interested behavior — local to individual agents —could give rise to the appearance of such sophisticated
overall coordination among them.

After finding the basic values for our simulation parameters, most of the trials succeeded in various
experiments, i.e., simulated orcas successfully encircling a school of fish. The problems we still had were
seen only in a small fragment of the trials, and in nature, activities like the one we considered also do not
always succeed. Modifications of simulation parameters improved overall performance.

6.1 Future Work

There is still room for improvement. We believe that furtherexperimentation with different parameter values
would lead to even better results, as there are still many more possible experiment variations that have
potential benefit. For example, one might make changes to thefield FishPullOrca (we tried changing both
its interfering forces OrcaEnvyOrca and FishMaskFish, butnot the field itself), combined with a modified
coefficient of friction (we had a fixed coefficient throughoutthe experiments).

It is still not clear whether the failures we saw come only from incorrect parameter values, or whether
they stem from a more basic issue, a problem in the definition of the physical interactions in the simulation,
or even the fact that cooperative behavior of the kind we considered cannot be completely simulated by local
interactions of this type.

There are several other directions in which to expand the work. One promising possibility is to use
automated processes to fine-tune the simulation parameters. Instead of manual experimentation, we could,
for example, use genetic algorithms or other mathematical tools for complex function minimization, which
in turn can be guided by a formal physical analysis of the proposed artificial fields (as in [13]).

In addition, there are ways to improve and change the simulation tool itself. Our tool is designed only
for 2 dimensions, but it could be expanded to work also withR3, R4, Rn. The forces in the simulation are
calculated by a simple polynomial formula — a force is inversely proportional to the distance. But other
formulas may be used, for example, an exponential decay characteristic of diffusion.
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