
Dynamics Based Control: An Introduction

Zinovi Rabinovich Jeffrey S. Rosenschein

School of Engineering and Computer Science
The Hebrew University of Jerusalem

Jerusalem, Israel

Abstract

In this paper we introduce a novel approach to continual planning and control, calledDynamics
Based Control(DBC). The approach is similar in spirit to the Actor-Critic [6] approach to learning and
estimation-based differential regulators of classical control theory [12]. However, DBC is not a learning
algorithm, nor can it be subsumed within models of standard control theory. We provide a general frame-
work for applying DBC to discrete Markovian environments, and discussthe key differences between it
and a popular alternative for this type of environment — Partially Observable Markov Decision Processes
(POMDPs). We then show how a recently developed control scheme based on Extended Markov Tracking
(EMT) [9, 10] can be seen as a suboptimal algorithm within the DBC framework, and discuss EMT’s
limitations relative to the general DBC approach.

1 Introduction

Consider NASA engineers who encounter a serious problem: two spacecraft, while attempting to dock
in orbit, keep crashing or whirring out of control. At first, control schemes and sensors are blamed for
being inexact, and great efforts are invested in perfectingthe precision of spacecraft positioning. Bizarrely,
as precision improves, the problem perseveres and becomes even more violent. A surprising solution is
proposed that finally solves the problem — reduce positioning precision. As long as orbits do not change
too much, docking can be done using a simple funnel-like mechanism. This kind of problem, control of
change over time, or in other wordscontrol of system dynamics, is what we describe in this paper.

The central idea behind Dynamics Based Control (DBC) is thatif laws governing changes in a system,
the system dynamics, are beneficial in some sense, then neither state estimation precision nor the state itself
matter as much. These system dynamics, like the funnel of a vortex, will channel the system into the desired
configuration. The target of a DBC algorithm would be to select actions in such a way as to create or
simulate the beneficial dynamics.

Recalling our spacecraft docking scenario, applying Dynamics Based Control (DBC) would mean that
instead of attempting to set the orbit position directly, one should ensure that it has the tendency to recover
from deviations from an ideal orbit. This tendency would be the beneficial system dynamics, and it requires
much less effort than precise positioning of a spacecraft. Asimilar effect is observed while driving a car (the
“small corrections principle”); there is no attempt to precisely position the car in the middle of a car lane,
but rather it is directed to return there.

The “small corrections principle” has another interpretation, that of classical control theory [12]. Control
theory holds a concept ofneighboring control. Should the system manifest itself in an ideal, noiseless way,
the control signal (actions selected) would be clear. But ifa (small) deviation insystem stateoccurs, the
control signal can be augmented by a small difference as well, usually proportional to the real or estimated
state-difference, as observed in literature on linear systems [3, 12]. Though DBC uses terminology such as
system deviation, the focus is on the rules that govern the system, rather thanon the system state itself.

The main principle of action selection in DBC can be split into two phases:dynamics estimationand
dynamics correction. Estimation can be done in numerous ways, starting from truesystem identification
by a complete learning algorithm, and ending with lighter tracking algorithms, such as Extended Markov
Tracking (EMT) [9, 10]. Given the way estimation is done, onecan devise actions so that future system
behavior will produce estimates similar to the ideal or beneficial system dynamics.

DBC-type action selection is actually quite widespread. Consider, for example, color creation on a
computer screen. Color perception by humans (that is, lightfrequency estimation) is based on three distinct
receptors, each detecting a very specific frequency or hue. This is used in color monitors, where most of
colors are not actually emitted by the screen. Instead, three sources of constant hue are tapped into, and a
mixture is created that simulates for the human eye the required color. This scheme parallels the phases of
estimationandcorrectionas performed by DBC.

Similar dual structure can be found in learning algorithms such as Actor-Critic algorithms [6]. A Critic
estimates the value function, a system performance evaluator, while an Actor uses the estimation to refine
its strategy. However, Actor-Critic algorithms are learning algorithms, and produce at the end a good value
function estimate and the corresponding, usually static, strategy. The DBC framework by itself is not a
learning algorithm, though it can be utilized in creating one (see below).

The rest of the paper is organized as follows. In Section 2 we provide a formal introduction to Dynamics
Based Control, focusing especially on Markovian stochastic environments. This is followed in Section 3
by comparison to a classical control alternative for these environments — Partially Observable Markov
Decision Processes (POMDPs). Section 4 demonstrates how recently introduced EMT-based control fits
the DBC architecture under the Markovian assumption, and also exposes the limitations of the naive EMT-
based control, as opposed to the general DBC framework. Section 5 provides some concluding remarks and
directions for future developments of DBC.

2 Dynamics Based Control

Dynamics Based Control (DBC) specification can be broken into three interacting levels: Environment
Design Level, User Level, and Agent Level.

• Environment Design Levelconcerns itself with the formal specification and modeling of the envi-
ronment. For example, this level would specify the laws of physics within the system, and set its
parameters, such as the gravitation constant.

• User Level in turn relies on the environment model produced by Environment Design to specify the
ideal or beneficial system dynamics it wishes to observe. TheUser Level also specifies the estimation
or learning procedure for system dynamics and the measure ofdeviation. In our spacecraft docking
scenario these would correspond to specifications of self stabilization at an optimal orbit, and angular
speed and radii difference evaluations.

• Agent Level in turn combines the environment model from the EnvironmentDesign level, and the
dynamics estimation and ideal dynamics specification from User Level, to produce a sequence of
actions that create system dynamics as close as possible to the ideal one with respect to the deviation
measure specified by the User Level.

As we are interested in the continual development of a stochastic system, such as happens in classical
control theory [12] and continual planning [5], the question becomes how the Agent Level is to treat the
deviation measurements over time. A classical approach would be to use expectation, to average over all
possible system developments. However, we prefer to use a probability threshold alternative — that is, we
would like the Agent Level to maximize the probability that the deviation measure will remain below a
threshold.

Specific action selection would depend on system formalization. One possibility would be to create a
mixture of available system trends, much like what happens in Behavior-Based Robotic architectures [1].
The other alternative would be to rely on the estimation procedure provided by the User Level, and utilizing
the Environment Design Level model of the environment to choose actions so as to manipulate the dynamics
estimator to believe that a certain dynamics has been achieved. Notice that this manipulation is not direct, but
via the environment. Thus, for strong enough estimator algorithms, successful manipulation would mean
a successful (i.e., beyond discerning via the available sensory input) simulation of the ideal or beneficial
system dynamics.

DBC levels can also have a back-flow of information (see Figure 1). For instance, the Agent Level could
provide data about ideal dynamics feasibility, allowing the User Level to modify the requirement, perhaps
focusing on attainable features of system behavior. Data would also be available about the system response
to different actions performed; combined with a dynamics estimator defined by the User Level, this can
provide an important tool for the environment model calibration at the Environment Design Level.

UserEnv. Design Agent

Model
Ideal Dynamics

Estimator

Estimator

Dynamics Feasibility

System Response Data

Figure 1: Data flow of the DBC framework

Extending upon the idea of Actor-Critic algorithms [6], DBCdata flow can provide a good basis for
the design of a learning algorithm. For example, the User Level can operate as an exploratory device for a
learning algorithm, inferring an ideal dynamics target from the environment model at hand that would expose
and verify most critical features of system behavior. In this case, feasibility and system response data from
the Agent Level would provide key information for an environment model update. In fact, the combination
of feasibility and response data can provide a basis for the application of strong learning algorithms such as
EM [2, 8].

2.1 DBC for Markovian Environments

For a Partially Observable Markovian Environment, DBC can be specified in a more rigorous manner. In
this case, the phases or levels of DBC can be seen as follows:

• Environment Design level is to specify a tuple< S,A, T,O,Ω, s0 >, where:

– S is the set of all possible environment states;

– s0 is the initial state of the environment (which can also be viewed as a distribution overS);

– A is the set of all possible actions applicable in the environment;

– T is the environment’s probabilistic transition function:T : S × A → Π(S). That is,T (s′|a, s)
is the probability that the environment will move from states to states′ under actiona;

– O is the set of all possible observations. This is what the sensor input would look like for an
outside observer;

– Ω is the observation probability function:Ω : S × A × S → Π(O). That is,Ω(o|s′, a, s) is the
probability that one will observeo given that the environment has moved from states to states′

under actiona.

• User Level, in the case of a Markovian environment, operates on the set of system dynamics described
by a family of conditional probabilitiesF = {τ : S×A → Π(S)}. Thus ideal or beneficial dynamics
can be described byq ∈ F , and the learning or tracking algorithm can be represented as a function
L : O × (A × O)∗ → F , that is, it maps sequences of observations and actions performed so far into
an estimateτ ∈ F of system dynamics.

There are many possible variations available at the User Level to define divergence between system
dynamics; several of them are:

– Trace distanceor L1 distance between two distributionsp andq defined by

D(p(·), q(·)) =
1

2

∑

x

|p(x) − q(x)|

– Fidelity measure of distance

F (p(·), q(·)) =
∑

x

√

p(x)q(x)

– Kullback-Leibler divergence

DKL(p(·)‖q(·)) =
∑

x

p(x) log
p(x)

q(x)

Notice that the latter two are not actually metrics over the space of possible distributions, but nev-
ertheless have meaningful and important interpretations.For instance, Kullback-Leibler divergence
is an important tool of information theory [4] that allows one to measure the “price” of encoding an
information source governed byq, while assuming that it is governed byp.

The User Level also defines the threshold of dynamics deviation probabilityθ.

• Agent Level is then faced with a problem of selecting a control signal function a∗ to satisfy a mini-
mization problem as follows:

a∗ = arg min
a

Pr(d(τa, q) > θ)

whered(τa, q) is a random variable describing deviation of the dynamics estimateτa, created byL
under control signala, from the ideal dynamicsq. Implicit in this minimization problem is thatL
is manipulated via the environment, based on the environment model produced by the Environment
Design Level.

3 DBC vs. POMDPs

The comparison of the DBC approach to classical control can be done via the comparison of DBC to Par-
tially Observable Markov Decision Processes (POMDPs). Since POMDPs are a classical representative of
the control theory of stochastic systems, and DBC has a well-formed formalization over Markovian envi-
ronments, comparison between them will help illuminate thekey features of the DBC approach.

Structurally, POMDPs can also be fitted into the three levelsof the Environment Design Level, User
Level, and Agent Level. Furthermore, one can assume that theMarkovian environment model produced
by the Environment Design Levels of both approaches completely overlap (see Table 1 for a structural
comparison). However, the User and Agent Levels differ significantly. At User Level, instead of idealized
system dynamics, the POMDP approach defines a reward function r : S×A×S → R to express preferences
over different system transitions. POMDP at User Level alsodefines an optimality criterion, determining
how the reward should be treated over time, e.g., discountedaccumulated optimality dictates that reward is
additively collected with every next step being less profitable by a discount factor. Agent Level then faces
the problem of finding an action selection policy so as to maximize the expected optimum reward. For
instance, in the case of discounted accumulated optimalitythis would beπ∗ = arg max

π
E

[
∑

γiri

]

, where

ri denotes the reward obtained at time slicei under the policyπ, and0 < γ ≤ 1 is a discount factor.
In some cases the POMDP approach also defines a reward function remodeling procedureF (π∗) → r,

that transforms the reward function according to some features of the resulting action selection behavior.
This way the POMDP approach achieves reward function composition that results in a system behavior with
specific features. Contrast this with DBC, which specifies the idealized system behavior directly.

Environment Design User Agent
< S,A, T,O,Ω > M r : S × A × S → R
S - set of states D F (π∗) → r π∗ = arg max

π
E[

∑

γtrt]

A - set of actions P r - reward function
T : S × A → Π(S) - transition F - reward remodeling
O - observation set q : S × A → Π(S)
Ω : S × A × S → Π(O) D L(o1, ..., ot) → τ π∗ = arg min

π
Prob(d(τ‖q) > θ)

B q - ideal dynamics
C L - dynamics estimator

θ - threshold

Table 1: Structure of POMDP vs. Dynamics-Based Control

Available complexity results for POMDPs, such as [7], render many optimality criteria infeasible, and
limit the choice to discounted accumulated optimality, which we assume for the rest of our discussion.
The following two subsections discuss properties of POMDP and DBC induced policies in the light of
features such as user preference interpretation and similarity to controller mechanisms. The summary of
this discussion is available in Table 2, with numbers in parentheses denoting the subsection in which specific
issues are discussed.

3.1 Properties of POMDP-Induced Policy

Even within its framework, POMDP-induced policy has one important technical limitation — its optimiza-
tion is expectationoriented, and is applied as is for all possible system developments. Computed off-line,
POMDP-induced policy is, in a sense, an open-loop control mechanism.

3.1.1 Optimality Concept

POMDP policy selection dictates that a policy with a maximumexpectedutility be taken as optimal. Let
us concentrate on this notion ofexpectation. Consider two policiesπ1 andπ2 applied to the same POMDP,
and distributions of the (accumulated) value under these two policiesD1 andD2 respectively, as shown
in Figure 2. POMDP optimization dictates that the policyπ1 should be selected and applied at all times.
However, the variance of the value underπ1 is high, which means that if a critical value exists below which
the gain is forbidden to drop (as denoted byα in Figure 2) —π1 may not be suitable.

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Value

P
ro

ba
bi

lit
y

π
2

π
1

α

Figure 2: Value distribution under POMDP policies

The expectation problem can be discussed from another pointof view, that of system development.
POMDP policies can be seen as a solution set for a Sequential Decision Making (SDM) problem. Each pol-
icy creates a distribution over system developments (state-action sequences), and one has to choose among
different policies based on a comparison of distributions.An SDM problem defines a preference order over
system development, in a sense, determining an ideal systemdevelopment and a measure of divergence be-
tween development sequences. The POMDP concept of solutioncombines policy-induced distribution and
SDM-induced preference over the state-action sequences byassigning real values to sequences and optimiz-
ing over the value expectation. Returning to our previous argument, we see that POMDP-optimal policy
can have a very high probability of large deviations from an ideal system development sequence, a property
unintended by, and not desired by, the SDM formulation.

3.1.2 Controller Similarity

Although POMDP policies can be history dependent, description length feasibility argues that a policy will
have only finite (and rather small) variability in response to different system developments that actually take
place. This, together with off-line computation and optimality based on average performance, underscores

Issue POMDPs (see 3.1) DBC (see 3.2)

Action Selector Off-line computed policy On-line action selection
Controller Similarity Open-loop (3.1.2) Closed-loop (3.2.1)

User preference interpretation State value oriented (3.1.3) Transition frequency oriented (3.2.2)
Optimality concept Expectation oriented (3.1.1) Context dependent, situated (3.2.3)

Complexity PSpace Unknown for DBC

Table 2: Features of POMDP and DBC induced policies

POMDP policies’ inability to adapt and change for a specific system development that actually occurs, and
which deviates from theexpecteddevelopment under application of the policy.

3.1.3 User Preference Interpretation

POMDP solutions also exhibit a form of user-preference distortion. By formal definition, reward/cost is
obtained based on specific transitions exhibited by the system. However, a POMDP’s induced policy is
computed with respect to a Value Function, which is a state-oriented, rather than transition-oriented, concept.
This may potentially cause distortion of User preferences when expressed by the reward structure.

3.2 Properties of DBC-Induced Policy

Dynamics Based Control (DBC) is a closed-loop control scheme, and action selection is bound to a system
development that actually occurs at run-time. DBC is also directly tied to system-transition preference,
expressed as the ideal system dynamics.

3.2.1 Controller Similarity

DBC is a situated, context-dependent scheme because it usesan estimation algorithmL that is used to
identify the system development that actually takes place at run-time. In fact, DBC (and EMT-based control
as a representative of a DBC scheme) takes this to an extreme,in that it viewsL as the “actual” system, and
selects actions in a way that leadsL to a required estimate.

It is important to note thatL is not influenced directly; otherwise, its estimate and DBC action-selection
make no sense. Rather,L is influenced only through the environment that it estimates. This mode of
operation is most similar to a closed-loop differential controller, and is explicitly on-line.

Note, also, that DBC formally is not a learning, tracking, orestimation algorithm by itself, although it
has a tracking (estimator) component utilized with its structure.

3.2.2 User Preference Interpretation

The DBC discussion and POMDP discussion above can be unified by taking the point of view of distribu-
tions over different system development sequences. UnlikePOMDP, the DBC framework attempts a direct
comparison between distributions over system developmentsequences. This is done by considering “induc-
tor” stochastic functions, that represent different stochastic behaviors and thus different distributions over
system development sequences. DBC assumes that the ideal system development sequence and the measure
of deviation from it can be combined into such an “inductor” function,q — the ideal system dynamics. The
learning/tracking algorithmL is then used to seek the same form of representation for the actual system
development,τ .

3.2.3 Optimality Concept

A DBC policy considersτ andq, that is, the “estimated actual” and the “ideal” distributions over system
development sequences, and selects an action based on theirdirect comparison. The DBC concept of op-
timality is based on a threshold probability, and an optimalpolicy is the one that is capable of keeping
deviation from the ideal system dynamics below the threshold with highest probability.

4 EMT-based Control as a DBC

Recently, a control algorithm was introduced calledEMT-based Control[9, 10], whose scheme fits perfectly
into the DBC framework. Although it presents an approximategreedy solution in the DBC sense, initial
experiments using EMT-based control have been encouraging[11]. EMT-based control is based on the
Markovian environment definition, as in the case with POMDPs, but its User and Agent Levels are of the
DBC type.

• User Levelof EMT-based control defines a limited-case, idealized system dynamics independent of
action: qEMT : S → Π(S). It then utilizes the Kullback-Leibler divergence measureto compose a

momentary system dynamics estimator — the Extended Markov Tracking (EMT) algorithm. The al-
gorithm keeps a system dynamics estimateτ t

EMT that is capable of explaining recent change in an aux-
iliary Bayesian system state estimator frompt−1 to pt, and updates it conservatively using Kullback-
Leibler divergence. Sinceτ t

EMT andpt−1,t are respectively the conditional and marginal probabilities
over the system’s state space, “explanation” simply means thatpt(s

′) =
∑

s

τ t
EMT (s′|s)pt−1(s), and

the dynamics estimate update is performed by solving a minimization problem:

τ t
EMT = H[pt, pt−1, τ

t−1

EMT] = arg min
τ

DKL(τ × pt−1‖τ
t−1

EMT × pt−1)

s.t.

pt(s
′) =

∑

s

(τ × pt−1)(s
′, s)

pt−1(s) =
∑

s′

(τ × pt−1)(s
′, s)

• Agent Level in EMT-based control is sub-optimal with respect to DBC (though remains within the
DBC framework),performing a greedy action selection basedon prediction of EMT’s reaction. The
prediction is based on the environment model provided by theEnvironment Design level, so that if we
denote byTa the environment’s transition function limited to actiona, andpt−1 the auxiliary Bayesian
system state estimator, then the EMT-based control choice is described by

a∗ = arg min
a∈A

DKL(H[Ta × pt, pt, τ
t
EMT]‖qEMT × pt−1)

Note that this follows the DBC framework precisely; a dynamics estimator (EMT in this case) is manip-
ulated via action effects on the environment to produce an estimate close to the idealized system dynamics.
Yet naive EMT-based control is suboptimal in the DBC sense, and has several additional limitations that do
not exist in the general DBC framework.

4.1 EMT-based Control Limitations

EMT-based control is a sub-optimal (in the DBC sense) representative of the DBC structure. It limits the
User by forcing EMT to be its dynamic tracking algorithm, andreplaces Agent optimization by greedy
action selection. This kind of combination, however, is common for on-line algorithms. Although further
development of EMT-based controllers is planned, evidenceso far suggests that even the simplest form of
the algorithm possesses a great deal of power, and trends that are optimal (in the DBC sense of the word).

There are two further, EMT specific, limitations to EMT-based control that are evident at this point. Both
already have partial solutions and are subjects for future research.

The first limitation is the problem of negative preference. In the POMDP framework for example, this is
captured simply, through the appearance of values with different signs within the reward structure. For EMT-
based control, however, negative preference means that onewould like toavoid a certain distribution over
system development sequences; EMT-based control, however, concentrates on getting ascloseas possible
to a distribution. Avoidance is thus unnatural in native EMT-based control.

The second limitation comes from the fact that standard environment modeling can createpure sensory
actions— actions that do not change the state of the world, and differonly in the way observations are
received and the quality of observations received. Since the world state does not change, EMT-based control
would not be able to differentiate between different sensory actions.

Notice that both of these limitations of EMT-based control are absent from the general DBC framework,
since it may have a tracking algorithm capable of considering pure sensory actions and, unlike Kullback-
Leibler divergence, a distribution deviation measure thatis capable of dealing with negative preference.
Furthermore, as was mentioned, EMT-based control itself has a number of possible extensions that promise
to be less prone, or not at all prone, to the aforementioned limitations.

5 Conclusions and Future Work

In this paper we have formally introduced a novel control framework —Dynamics Based Control(DBC).
Unlike existing approaches to control and planning, DBC is directly involved with the rules that govern
change within the controlled system — system dynamics. Instead of limiting its attention to the quantitative

changes of system state and its estimation, DBC attempts to estimate and vary the qualitative features of
system modulations. A Dynamics Based Controller can operate either as a direct mixer of available sources
of system dynamics, or as a simulator with respect to a given dynamics estimator.

The DBC framework, even limited to well-studied Markovian environments, significantly differs in its
approach and the resulting control signal (action policy) from the classical control approach, as represented
(for example) by Partially Observable Markov Decision Processes.

Although at this point a complete and exact solution of the DBC framework is not available, a promising
beginning in this direction exists — control based on Extended Markov Tracking (EMT) [9, 10]. EMT-based
control is computationally efficient, and in fact is polynomial in environment description parameters. Initial
experiments using EMT-based control have been encouraging[11].

EMT-based control does have limitations, the main two beingnegative dynamics preference and pure
sensory actions. It seems, however, that extended state representations may resolve these problems, and this
direction is currently under investigation.

DBC also requires extensive feasibility and complexity studies, paralleling those done for POMDPs, as
well as utilizing its potential for composition of learningalgorithms. The latter would be significant for the
field of robotics, providing flexible automated techniques for environment model calibration simultaneous
with task performance. In this direction it would be interesting to take a closer look at the application of
EMT combined with EM, as the latter can use Kullback-Leiblerdivergence for its operation, thus directly
making use of information from an EMT-based controller.

6 Acknowledgment

This work was partially supported by grant #039-7582 from the Israel Science Foundation.

References

[1] Ronald C. Arkin.Behavior-Based Robotics. MIT Press, 1998.

[2] Jeff A. Bilmes. A gentle tutorial of the EM algorithm and its application to parameter estimation for
Gaussian mixture and Hidden Markov Models. Technical Report TR-97-021, Department of Electrical
Engineering and Computer Science, University of California at Berkeley, 1998.

[3] Chi-Tsong Chen.Linear System Theory and Design. Oxford University Press, 1999.

[4] T. M. Cover and J. A. Thomas.Elements of information theory. Wiley, 1991.

[5] Marie E. desJardins, Edmund H. Durfee, Charles L. Ortiz,and Michael J. Wolverton. A survey of
research in distributed, continual planning.AI Magazine, 4:13–22, 1999.

[6] Vijay R. Konda and John N. Tsitsiklis. Actor-Critic algorithms. SIAM Journal on Control and Opti-
mization, 42(4):1143–1166, 2003.

[7] Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of probabilistic planning and
related stochastic optimization problems.Artificial Intelligence Journal, 147(1–2):5–34, July 2003.

[8] Radford M. Neal and Geoffrey E. Hinton. A view of the EM algorithm that justifies incremental,
sparse, and other variants. In M. I. Jordan, editor,Learning in Graphical Models, pages 355–368.
Kluwer Academic Publishers, 1998.

[9] Zinovi Rabinovich and Jeffrey S. Rosenschein. ExtendedMarkov Tracking with an application to
control. InThe Workshop on Agent Tracking: Modeling Other Agents from Observations, at the Third
International Joint Conference on Autonomous Agents and Multiagent Systems, pages 95–100, New-
York, July 2004.

[10] Zinovi Rabinovich and Jeffrey S. Rosenschein. Multiagent coordination by Extended Markov Track-
ing. In The Fourth International Joint Conference on Autonomous Agents and Multiagent Systems,
pages 431–438, Utrecht, The Netherlands, July 2005.

[11] Zinovi Rabinovich and Jeffrey S. Rosenschein. Robot-control based on Extended Markov Tracking:
Initial experiments. InThe Eighth Biennial Israeli Symposium on the Foundations ofArtificial Intelli-
gence, Haifa, Israel, June 2005.

[12] Robert F. Stengel.Optimal Control and Estimation. Dover Publications, 1994.

