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Abstract. In this paper we present the Behaviosite paradigm, a new approach
to affecting the behavior of distributed agents in a multiagent system, which
is inspired by biological parasites with behavior manipulation properties. Be
haviosites are special kinds of agents that “infect” a system compdsegknts
operating in that environment. The behaviosites facilitate behaviorabelsan
agents to achieve altered, potentially improved, performance of thalbsgs-

tem. Behaviosites need to be designed so that they are intimately familiar with the
internal workings of the environment and of the agents operating withimdk, a
behaviosites apply this knowledge for their manipulation, using varioustinfe

and manipulation strategies.

To demonstrate and test this paradigm, we implemented a version of tledt| F
problem, where agents want to go to a bar of limited capacity, and caseot u
communication to coordinate their activity. Several solutions to this problem e
ist, but most yield near-zero utility for the agents. We added behaviositbg to

El Farol problem, which manipulate the decision making process of sditme
agents by making them believe that bar capacity is lower than it really is. tVe sh
that behaviosites overcome the learning ability of the agents, and incecis¢
utility and social fairness significantly, with little actual damage to the overall
system, and none to the agents.

1 Introduction

Biology-based technology (biomimetics) often providesight into ways of improv-
ing technology based on biological metaphors [20]; natakevolution have worked
hard at finding solutions to many problems that are also pteseartificial environ-
ments. Parasites have been examined in the biomimeticxdpmeparticular for their
special abilities (such as safe navigation inside the hubwaly, needed for microen-
doscopy [12]).

However, one of the most interesting abilities of biologjiparasites has received
little attention in technological contexts — their ability manipulate and alter their
host’'s behavior. Usually, parasites alter host behaviceissto transmit themselves to
the next host, as in the case of rabies (by generating aggrdssst behavior). In rare
cases, biological parasites can actually benefit the haseodnost’s society. The word



“parasite” [13] derives from the Greek wopdrasitos which means “beside the grain”,
and originally had a positive connotation; a parasite wasdlaw guest who ate beside
you at the dinner table. Only later did it receive the meamifigomeone eating at the
expense of another.

In the computer science literature, the term “parasite’siscuin three different con-
texts, none dealing with behavior manipulation: parasitesmulations of evolution,
parasites as a driving force in genetic algorithms, andgitesaas a common name for
malware (computer viruses, trojan horses, etc.).

1.1 The Behaviosite Paradigm

In this paper, we present a novel paradigm that employs aapa@ed of agent (called
a behaviositg that manipulates the behavior of other agents so as toechieered,
possibly improved, performance of the entire system. Tinabiesite (by definition) is
not itself necessary for the normal conduct of the systemns,th is termed a kind of
“parasite”.

Within the field of MultiAgent Systems (MAS), the behaviasis closely related to
the idea of adjustable autonomy (AA) [16], although it afgmires issues of autonomy
in a novel way. AA is about agents varying the level of theinautonomy based upon
the situation (thus leveraging three alternative modespefation, fully autonomous,
semi-autonomous, and teleoperated). AA often deals wighigransferring control to
human users [19] in cooperative settings. In the contexhefBehaviosite paradigm,
an agent transfers some of its autonomy to the behaviositelly unwittingly, and in
any case the agent is better describe@¢exing autonomly The behaviosite manipu-
lates the agent’s behavior to achieve altered performafite aystem. In this way, the
behaviosite may create improved performance of the oveyatem (as we will demon-
strate in the parasitized El Farol problem [1]), or it mayilftate new behaviors of the
system.

Introducing behaviosites into a system may be either plduaisepart of the overall
system design, or added (after the fact) to an already wgrsystem. When planned
as part of the overall system, it is possible to choose betvegplyinginternal be-
haviositegdesign hooks inside agents, so that behaviosites carmatiabe agent and
manipulate them) oexternal behaviosite@vhich manipulate only the input/output of
the agent, vis-vis the environment). When applied to an already workirgjesy, ex-
ternal behaviosites are usually the only option. Both maéand external behaviosites
are discussed in Section 3.

Internal behaviosites require cooperation at the levelgeia designer(s), so that
the appropriate hooks are in place for them to run (and afentsbehavior). Centrally-
designed MAS systems, of course, may include behaviosikdioecause overall sys-
tem performance can be improved. However, even in systersslbinterested, het-
erogeneous agents, inclusion of a behaviosite hook may bdated as a requirement
for operation within a given environment — thus giving theiemnment designer an
additional tool for improving overall system behavior.



1.2 A Distributed Approach to Altered Behavior

One of the major strengths of the Behaviosite paradigm tsttlssa distributed solution
to issues raised in a distributed environment. Considegxample, the El Farol prob-
lem [1] as an example of such a distributed environment. gdirds want to go to a bar
called El Farol, but it has limited (comfortable) capacifythere are more attendees at
the bar than that capacity, all attendees suffer from theadedness. With no option for
communication or collusion, an agent must learn the beha¥iother agenten massge
in order to reach a decision: go to the bar, or stay at home.

With very simple agent behavior, the system reaches anilequih around the
given capacity. Unfortunately, personal and social igsitare extremely low, since
about half the time the bar is overcrowded. To this settingjmroduce behaviosites,
and the problem becomes the “parasitized El Farol” probl&mshow that with simple
infection and manipulation strategies of these speciahi@gé is possible to dramati-
cally increase personal and social utilities, and even avgsocial fairness.

Although the El Farol problem is artificial, it has implicatis for many fields, in-
cluding game theory, congestion problems in networkingicloand economics [8]. In
most, if not all, of these areas, the Behaviosite paradigapfdicable. There are, in
addition, other possible applications for behaviositesyil be discussed in Section 5.

The rest of the paper is organized as follows. In Section 2neegmt a formalization
of the Behaviosite paradigm. In Section 3, we discuss theaEdlfpproblem, and how
behaviosites could be employed in its solution. In Sectiomedbriefly overview the
concept of “parasite” in biology and computer science. Wectude in Section 5 with
an overall discussion of our approach and of future work.

2 Behaviosite Formalization

2.1 Overall Structure

The Behaviosite paradigm is composed of three parts: theosment, agents (also
referred to as hosts), and behaviosites. Environment tegand behaviosites will be
referred to collectively as “the system” (as in ecosyste3eg Figure 1 for an illustration
of the environment/agent relationship.

Agent

Environment Behavio
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Fig. 1. The environment/agent relationship
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Environmentencapsulates all of the external factors, conditions,ftences that
affect a community of agents and behaviosites. For exandpleng the course of a



program run, it stores the runtime state of the system, aisldtscarded when the
program ends. In some cases, the environment can be a dageimstance, as in the
case where agents only influence one another. In other ¢ases) have an important
role in the conduct of the system, as in the parasitized ElFgaoblem.

Agent societyA society of agents is a system composed of multiple, ictérg,
possibly cooperating agents (see [21]). As there are mafigititens of agency, we
use the one suggested by Franklin and GraesseAf6autonomous agent is a system
situated within and as part of an environment that sensesaimaronment and acts on
it, over time, in pursuit of its own agenda and so as to effsicf] jwhat it senses in the
future

Behaviosite Most basically, a specialized type of agent. A behaviasiten addi-
tional property/information added to a system with a sgoidtagents, and is not (and
should not be) a property of the agent or the environment. befaviosite is not re-
quired for the system, but should be beneficial in some s¢osanany behaviosites
can degrade some aspects of the system. Below, we preseificspefinitions regard-
ing behaviosite elements. These definitions are furthetfield in Section 3, which
presents (in the context of the El Farol problem) what bedsigs are, and their advan-
tages within a system.

2.2 Behaviosite Specifics

Required Traits Benefiting the systerBehaviosites come with costs to the system, as
will be discussed below. The design and use of behaviositesriecessary, unless they
are beneficial to the system in some respect. Behaviositgsnfiaence a system in
two desired ways: they may increase social utility, or theyroreate new features in a
working system. Both are accomplished by altering the bieha¥ some of the agents.
Note that in the behaviosite paradigm, unlike with parasitenature, the utility of the
behaviosite itself is not important when declaring thencsssful.

System knowledgé behaviosite must be designed with deep understandingwef h
the system works: agent-agent interactions, agent-envieot interactions, and also in-
ternal workings of the agents in some cases. Such knowlsdzgséential for the success
of the behaviosites in improving the system. One type ofesysh which behaviosites
can be beneficial is a system that works in a suboptimal éguitn. When building a
system, usually suboptimality is caused by the need to ntalabiist against failure.
However, there are examples in which sub-optimality resiuim the inherent struc-
ture of the system. The internet is one example of a systemkiapgimal equilibrium,
with regard to the congestion problem caused by packetnguifihe El Farol problem
presents another, similar example.

Not a property of the agent nor of the environmeBghaviosites exist in the middle
ground between agents and the environment, and should reoptmperty of either of
them.

Optional Traits Hidden or apparent infectianWe usually will not want agents to
know who is infected by the behaviosite. Such knowledge medy imdividual agents
exploit the situation, harnessing its own behaviosite onesother parasitized agent to



its own needs and thereby damaging the designed mechanisnviocbnment-agents-
behaviosites. However, there are some settings in whidhlgumwledge can benefit the
system (as also occurs in nature), for example, the elimoimaf ill-functioning agents
(a process known as “apoptosis” in cells).

Finding the hostin many cases in nature, finding the host is essential foptina-
site. In the Behaviosite paradigm, it may also be an issuestfabiosite designer may
endow the environment with the responsibility of infectengents in the system using
some strategy (like in the parasitized El Farol problem)t oray leave the task of in-
fection to the behaviosites themselves, thus making thawes$ites more autonomous.
In certain contexts, hosts may also be equipped with defmeshanisms against infec-
tion.

Behaviosite communicatioBehaviosites may communicate with one another within
a host (the host may be infected with more than one behag)osit across hosts. The
latter enables formation of a network of parasitized haskéch may act in some kind
of parasite-induced coalition. This may enable the belsiés to be a catalyst for the
creation of norms or social laws.

2.3 Placing the Behaviosite

To alter host behavior, the behaviosite designer must dewitere to place the be-
haviosite in the flow of the system, as can be seen in Figure 2.

Environment

A

Fig. 2. (a) marks where an external behaviosite can alter the host’'s behayiahering its in-
put/output. (b) marks where an internal behaviosite can alter the hos$tavibe, by altering
internal data or by partial or full replacement of behavior modules.

In general, behaviosites can be divided into two main grpexternal behaviosites,
and internal behaviosites. External behaviosites cantakgnput or output of the agent
vis-a-vis the environment (Figure 2a). In this way, the hostgtesi(s) need not know of
the possible existence of a behaviosite now or in the futdareover, the behaviosite
designer may introduce them into an existing system.

1 Of course, these external behaviosites affect inter-agent comatiom@nly if it, too, travels
via the environment.



On the other hand, internal behaviosites usually requiesttstem to be designed
“plug and play” for the behaviosite (Figure 2b). The hostiglesr(s) will leave a (suf-
ficiently protected) hook, into which behaviosites can heygkd, possibly created by
another designer. Allowing the behaviosite internal aseeay seem dangerous, but it
holds many advantages.

Internal behaviosites can have two main manipulation nasthchanging the host’s
internal data (Figure 2b, interaction between see-behadbmodules) or replacing
some or all of its behavioral modules (Figure 2b, behaviodute). In the first form of
manipulation, only relevant data will be changed, and inessoenarios, it can actually
solve the problem of dealing with noise resulting from trensduction of input from
the environment.

The hook for the second manipulation method is very easydagram, by using
the behavioral design patterns suggested by the “gang ©f féJ Introducing a new
behaviosite to a well-designed system may at times be mkelpliogramming a new,
special behavior for an agent (though it should not be a eequioperty of the host).
In specific systems, if needed, security measures will havgettaken to protect the
host from malicious parasites, which could exploit the &xise of the hook. Such
security measures are abundant; one easy-to-implememipéxas public/private key
encryption (further consideration of these security issisebeyond the scope of this

paper).

2.4 Cost of Manipulation

In different scenarios, behaviosites have different typesosts. The first cost that
should be considered is the cost to the system designerhéoe is the immediate
issue of designing behaviosites and testing them. Analygiystem behavior can be
very complex, and analysis of a system in which behaviositesintegrated is even
more complex. This is because their impact on the systemuallyshard to predict
without extensive testing. Other costs of behaviositesgséem specific, such as bal-
ancing behaviosite complexity and number with the benedy thive to the system,
cost of possibly increased variation in the society, ostidhs, run-time costs, and so
forth. Despite all of the above, there are many scenarioshictwbehaviosites prove
themselves very useful.

3 Parasitized El Farol Problem

3.1 The El Farol Problem and Related Work

The El Farol problem (or the Santa Fe bar problem) was intted by Brian Arthur [1]
as a toy problem in economics for using inductive reasonimjt@ounded rationality.
In this problem,NV (e.g., 100) agents decide independently each week whetlgertb
the El Farol bar or not. Comfortable capacity is limited, dhel evening is enjoyable

2 This is somewhat reminiscent of Brooks’ subsumption architecturén@hich various levels
can be designed to suppress input/output on other levels.



only if the bar is not overcrowded (specifically, fewer th&na@ents out of the possible
100 attend).

In the original problem, no communication or collusion issgible, and the only
information available to the agents is the number of atteade the past. An agent
will go if it predicts less than 60 agents will go, and will gtaome otherwise. Arthur
suggested that bounded rationality, together with legrntan yield solutions to prob-
lems of resource allocation in decentralized environmersgig the El Farol problem
as an example [9]. At this point, the problem in the resedterature diverged into two
branches, differentiated by their utility functions. Thesfibranch was as in Arthur’s
paper:

x attended and undercrowded

Util(agli]) = <0  did not attend

—y attended and overcrowded
The second branch used another kind of utility function:

Util(ag[i]) = {

In this paper, we use the first utility function, where= y = 0.5.3 Arthur showed [1]
that if each agent uses a set of personal basic determisistiegies (such as going if
more than 55 agents went last time), combined with a simpleieg algorithm, then
the system converges to the capacity after some initiahiegrtime. Moreover, mem-
bership kept changing, and some degree of fairness wasaimdt Arthur described
the emergent ecology as almost organic in nature. In his wedknonds [5] took this
analogy a step further by using genetic algorithms for liegyrand allowing commu-
nication. Edmonds showed that these were sufficient for dveldpment of different,
interesting social roles.

However, both solutions produced systems that fluctuatedtitally around the ca-
pacity, resulting in low personal and social utility. Higariation in the system was one
reason for suboptimality. The second was that at many tilreebar was overcrowded
(above capacity), thus giving negative utility to attergdagents.

Bell [2] tried to deal with the overcrowdedness problem bynapde adaptive strat-
egy used by all agents, which led to an outcome close to thallomptimal attendance.
Bell's solution holds two pitfalls. The first is that the sasteategy must be used by all
agents, perhaps too strong a requirement in a distributgeérsywith different design-
ers. The second is that in his simulations most of the atendere “regulars” who
came all of the rounds, thus making for social injustice \lid “casuals”.

Greenwald [8] also tackled this suboptimality problem, Uming a different method.
Agents that attended El Farol were required to “pay” somehefrtutility, and this
payoff was distributed among all agents that did not attBlod surprisingly, the optimal
payoff for optimal social utility converged to a 40% attenda fee, for the scenario of
100 agents and bar capacity of 60. Again, this solution mag ak problematic in
many distributed systems, since it requires a centralitytlistributer” that can reach
all agents.

x  part of minority group
—y not part of minority group

3 For a review of the minority problem, see [14].



The learning algorithm used in the parasitized El Farol &thon was the addi-
tive updating learning algorithm, introduced in [9]. Baalg, each agent has a pool of
simple, personal deterministic strategies. Each suchvimttzas a weight, initially dis-
tributed uniformly. The weights of all these basic stratsgare updated in an additive
manner once a round, according to the number of attendekatindund, above or be-
low capacity (0.5 or —0.5 utility to attendees, respectively, or zero if it choosestno
attend).

3.2 Using Behaviosites in the Parasitized EIl Farol Problem

The El Farol bar problem presents a distributed system, suthoptimal social and
personal utility. The main idea of the parasitized El Farolgbem is to increase social
utility with as few side effects as possible, using behatéss The main problem was
that agents learn and adapt themselves to new situatiotise lbehaviosites are not
carefully crafted, then either their effect will soon vanisand the system will return
to the equilibrium around the capacity with suboptimal abaiility, or in each round
behaviosites will need to make a stronger impact to achiswsame effect.

1 make decisiom 2 private info
» L
Environment Agent Behaviosite
4 go/sta _3 altered private
<« J Y Q <"

Fig. 3. An illustration of the environment/agent/behaviosite relationship

The system is composed of environment, agents (hosts) dadiosites (Figure 3).
Each agent has an internal behaviosite field that is alwagspeed, usually with the
null behaviosite (see [7]) which has no effect over its lbkghavior. Each round, the
environment infects some of the agents according to antinfestrategy (as will be
discussed below), and infection lasts only one round. Agjant asked to provide a
decision (whether they will go to the bar or not). Then, therdgjives its behaviosite
private information before making the decision. If the bebsite is not the null be-
haviosite, it alters the relevant host’s data (the beh#eids placed between “see” and
“behavior” of Figure 2). In this way, the agent comes to a sieci not using the data
received from the environment, but rather by using manipdldata.

Environment infection strategigl® this simulation, the environment had three strate-
gies of infection, which were not mixed. In the first strateglyagents were candidates
for infection (nfect all). In the second, only attending agents in the given rounewer
candidates for infectionirffect attending. In the third, candidates for infection were
all attending agents at the given round, but only when thenaarovercrowdedirffect
overcrowdedl In each strategy, only a percentage of the candidatesfiection actu-



ally got infected (responsibility of the behaviosite degiglepending on the infection
rate (0%-100%}.

Behaviosite manipulation strategiefhe chosen manipulation strategy was quite
simple. The behaviosite replaced the parasitized ageelisfliegarding the current ca-
pacity with a lower one, common to all behaviosites. Singeacéy information was
kept as the private history of the agent, this decrease v&asaainsidered in future
rounds by the agent. If a parasitized agent decided to attendar and the number of
attending agents was higher than the capacity the agemntlyrbelieved, it suffered
a utility decrease, even if the bar was actually undercrawdis was intended to en-
force a stricter approach; agents were affected by the vemddrding to their personal
beliefs, and not according to some global truth.

3.3 Parasitized El Farol Simulation Results

The parasitized El Farol problem was simulated for 2000 dsuassuming 100 agents
in the system. Three different capacities were tested: 60a6d 80, where the be-
haviosite manipulation strategy was to decrease capamifydrasitized agents (50 de-
creased to 40, 60 also decreased to 40, and 80 decreasedfo6E&ach such capacity,
three different environment infection strategies weréetssas mentioned aboviefect
all, infect attendingandinfect overcrowdedgiving a total of 9 different simulations.
For each of the 9 simulations, a different percentage of geats who were candidates
for infection were actually infected, with infection ratesging from 0% to 100% with
jumps of 10% (total of 11 different simulations for each)ckaf these 99 different
simulations was repeated 50 times.

Mean Attendance As was mentioned above, agents’ mean attendance in the &l Far
problem converges to the capacity of the bar. In the pazasitEl Farol problem, we
would like to increase the social utility, without lowerithg too much the mean atten-
dance. From the bar owner’s point of view, this is one of thetnmportant parameters.
From a social utility point of view, decreased mean attendaakes us further away
from an optimal solution.

Figure 4 shows how different infection strategies affedieel mean attendance.
For all three different capacities, tiect all strategy decreased the mean attendance
severely, as a function of the behaviosites’ infection.r&tm 100% infection rate of
potential agents (in this case, all agents), the systemerged to the capacity induced
by the behaviosites. For example, for capacity of 60, indectate of 100% of course
resulted in convergence to 40, since the behaviosites’ poéation strategy is to make
the host believe that the capacity is 40.

Theinfect overcrowdedtrategy resulted in a relatively low effect on the mean at-
tendance, since behaviosites infect agents only in a mastyar situation — only
attendees, and only when the bar is overcrowded. The outobthe infect attending
strategy depended on the bar’s capacity. For capacity ah@iyfect all andinfect at-
tendingstrategies yielded very similar results, since most of tjenés are candidates

4 Another possible design is that the entire infection strategy is a propertg betmaviosite, but
this was not implemented.
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for infection. For the capacities of 50 and 66fect attendingstrategy’s effect resem-
bles theinfect overcrowdedtrategy, since it affects only a relatively small portidn o
the agent society.

Mean Utility The main objective in the parasitized El Farol problem satiagh was
to show that it is possible to increase social utility usiegéviosites. This can be seen
clearly in Figure 5, which compares the effect of differempacities for each strategy.
Another goal, with roughly the same importance, was not tesedoo much harm to
the system, namely social injustice, which will be discadsger.

infect all: Infecting all agents resulted in a similar graph shape licheee capaci-
ties, differing in the position of the peak, with impressirgrovement of mean utility.
For capacities of 60 and 80 the improvement was 7-9 times thienal received in a
system without behaviosites, and relatively close to thavad (0.12 utility out of pos-
sible 0.3 for capacity of 60, and 0.23 utility out of possibld for capacity of 80). For
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capacity of 50, improvement was 27 times the minimal, thostijhnear zero (0.065

out of possible 0.25).

infect overcrowdedFor all three different capacities, the mean utility irage was
moderate, with respect to other strategies. For capadifi&® and 80, the maximal
mean utility was about 2.5-3.5 times the minimal mean wtitiéceived by a system
with no behaviosites. For the capacity of 50, the maximal madity was 22 times
better than the minimal mean utility received for a systenwd behaviosites, but still
near zero (0.034). For capacity of 80, the maximal meanty{i0.112) was not sig-
nificantly lower than the optimal possible (0.4), espegialhen compared to a system

without behaviosites (utility of 0.032).

infect attending The outcome of this strategy depended heavily on the lefel o
the used capacity. For high capacities (specifically 8@) strategy’s behavior was very
much likeinfect all, because infecting all attending agents is very much lifectmg all
agents. For low capacities (specifically 50), the strategutcome was very much like
infect overcrowdetbecause it affected only a relatively small portion of theisty, and
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the actual effect of the behaviosite was mild. In betweerc#jzally 60), the behavior
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Forced Justice As was described earlier, two previous attempts to increasil util-
ity resulted in two proposed solutions, both with undededbatures in certain settings.
One feature was the need to charge utility from attendingag@], which basically
kept the social utility within the system. Another led to ttreation of bullies [2] —
regulars and casuals. In the original El Farol problem, tleenivership of the agents
kept changing, thus keeping some level of social fairnessiaGfairness is an impor-
tant parameter when characterizing the effect of behae®sin the system, since we
do not wish to create regulars and casuals. This is espetia# if agents are self-
interested, and have no prior incentive to allow behawgssit infect and affect them.
Social fairness was calculated by the following formula:

1 1 Personal Attendance SDIt]

- #trials | oo Mean Attendencelt]




utility

-0.05

Social fairness is captured by the mean of standard demjatmrmalized according
to the mean of a specific iteration. In Figure 6, we can seeftratapacities of 50
and 60,nfect attendingandinfect overcrowdedtrategies constantly increase the social
fairness as a function of infection rate. For capacity oftB8y improved social fairness
only a small amount, since already the vast majority of agygotto the bar. However,
the infect all strategy increased social fairness as a function of irdeatate until a
certain maximum was reached, and then decreased agaimapamity of 80, it reached

exactly the level of social fairness of capacity 60, as wdidexpected.
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Fig. 7. Mean utility with and without harming behaviosites for capacities of 50, 60r&Xpec-
tively. Legend: - - - :Infect All, —:Infect Attending, .... :Infect Ov@owded. + is for behaviosites

that do not cause harm.

Cost of Manipulation In the specific design of this parasitized El Farol probless, b
haviosites caused actual damage to the received utilitgenis. If an agent came to
an undercrowded bar, but believed it was overcrowded, ildveuffer utility loss that

unparasitized agents would not — thus imposing a cost upentagF-rom the Designer
Perspective, behaviosites in the parasitized El Farollprolhave several types of costs



— run time, integration time of behaviosites, and testinggtiof various infection and
manipulation strategies.

Reflections about Design The behaviosite in the parasitized El Farol problem pre-
sented above is an example of an internal behaviosite, istarsydesigned to accom-
modate behaviosites. However, it is also possible to craratxternal behaviosite, one
that the agents need know nothing about. The behaviositeesade in the interface be-
tween the environment and the agent (Figure 2a). Parasiigents can receive manip-
ulated information from the environment regarding the entricapacity, or manipulated
information of number of attendees in a specific round. Tlfecebf such altered data
should be the same as presented above, and social utilityostagain, increase.

4 Related Work

4.1 Related Work in Biology

In nature, most common recorded behavior manipulationd@mne by parasites with a
complex life cycle, as it ensures host-to-host transmisdtor example, in the case of
Dicrocoelium[17], parasitized ants’ behavior (the upstream hosts) idifieal so that
they crawl up grass stalks, thus improving chances of be&iggsted by a passing cow
(the downstream host). Although most parasite manipulatare harmful to the host,
there are examples in which parasites are beneficial, ditlthe host or to the society.

Increasing the fithess of the hosts’ society can usually ba Bethe case of close
kin, such as ants or bees. Bumblebees have successfullgreishe use of parasite-
induced altered behavior to their own advantage [15]. Agitizad worker bee prolongs
its life span by changing its behavior and staying in the @fldight at the field (the
cold retarded parasitoid development). This way, the emtiiony benefits from this
infection, due to increased foraging.

4.2 Related Work in Computer Science

The term “parasite” is used in various contexts in the compsitience literature. How-
ever, in each context its meaning is substantially diffefienm its use in the Behaviosite
paradigm. Host-parasite paradigm in computer sciencequsly existed in three main
roles: for simulations of evolution such as Ray’s Tierra poer program [18], as a
driving force in genetic algorithms (usually in the conteftpredator-prey and co-
evolution [10]), and as malware in the electronic world. Bdalked about using para-
sites to change the behavior of individual agents, to shétequilibrium of the entire
society.

In their work, Mamei, Roli and Zambonelli [11] presented ded similar to that
of the Behaviosite Paradigm, within the context of cell@atomata. They showed that
via an external perturbation that dynamically influenceel dtate transition of several
cellular automata, they can achieve a global effect withim gystem (i.e., control of
macro-spatial structures, as they termed it). Large-sgaéal structures emerged as a
result of those perturbations. The Behaviosite Paradiggegmted in this paper posits



a more highly developed description of the perturbationhmatsm — special agents
that infect and manipulate other agents. Mamei et al. miairaa do we, that in the near
future there will exist more systems characterized by ithistion and autonomy, oper-
ating within highly dynamic environments. These systemthwyitheir nature require

decentralized control mechanisms, such as those presarjtield and in this paper.

Computer Agents’ Behavior Behaviosites affect behavior, but what constitutes “be-
havior”, both the agent’s and the system’s, is quite diffitmbefine; there are numerous
ways of approaching the issue. Two of the most common are-logged behavior and
Brooks' [3,4] emergent behavior and subsumption architectBehavior is considered
as an aspect of the individual agent, of an agent in a soaety,of the whole soci-
ety. Much research explores the creation of agents with efiehavior, or analyzes
an existing system’s behavior. For our purposes, we do nemat to define exactly
what behavior is, but rather use Brooks’ view, that behaxésults from the agent’s
interaction with the environment.

5 Discussion and Future Work

In this paper, we presented the Behaviosite paradigm ingh# ef biomimetics —
parasites manipulating their hosts’ behavior. Althoughtdrm “parasite” is not new in
computer science, it has been used in different contextsttifeBehaviosite paradigm
describes. We specified the behaviosite concept, whichsenes is a special type of
agent, which infects and manipulates other agents to aeldkered performance of
the system. We described the parasitized El Farol problachshowed that social and
personal utilities and social fairness can be increasedjushaviosites; in some cases,
mean attendance deviates from the capacity by only a smalliam

The behaviosites used were internal behaviosites with d,fixechanging influence
over the agents (though it is equally possible to use exteeteviosites, or those with
dynamic influence). The parasitized El Farol problem sitaadaelf-interested agents.
However, behaviosites could also be integrated into a aatige society to form new
norms or social laws, or to eliminate ill-functioning agent

In our view, the major contribution of the Behaviosite pagad is conceptual —
thinking of a system composed of environment and agents akewsomething that can
be manipulated using external forces (behaviosites) tatay local changes (affect-
ing agents’ individual behaviors) to bring about alteretidogor of the entire system.
However, as users of this paradigm, we do not consider aigsemnipotent — we just
use existing capabilities of the (possibly self-interdstgents and environment. Hence
this is not simply mechanism design, but rather augmentiagystem, or parasitizing
it. It also differs from existing research in adjustablesuatmy, because of this holistic
view, which AA is lacking.

After understanding what the Behaviosite paradigm is, oigiatnvonder if the term
“parasite” is appropriate. There are, indeed, significafier@nces. The behaviosite
is not an autonomous agent in and of itself. Moreover, in neatbe utility gain of
behavior manipulation is of the parasite, and not the hest;riot an important part of
being a parasite? However, we intend parasitic activityed@lmetaphor, and need not



require an exact match between nature and behaviositeskéjhanalogy is the fact
that behaviosite actions constitute behavior manipulaticthe host.

Behaviosites are not just a way of propagating false inféionawithin a system.
The intimacy of agent-behaviosite induces far more poweffacts. Lies can be disre-
garded or overcome by agents. However, when a host is paeakithe behaviosite is
considered an almost integral part of the agent. Agents cahtdxternal information,
but rely on their internal beliefs — as was shown in the pé#izasl El Farol problem,
not acting on the basis of personal belief did not help “shéke influence of the be-
haviosite.

As with the agent metaphor itself, the Behaviosite paradigmbe very appealing,
but could also conceivably be overused. It is certainly tigechat it is possible to use
solutions other than behaviosites — behavioral change eamtirely inside the agent
(e.g., random coin flips inside agents in the El Farol probheith strategies similar to
the ones applied by the behaviosites), or it can be totallppayty of the environment.
The analogy with agents is clear, for although sometimesgaemtaike approach is
inappropriate (and solutions can theoretically alwaysrmggreeered in other ways), the
key question is “what is the best solution?”. In some cas®esBehaviosite paradigm
presents conceptual advantages.

In the future, we would like to further strengthen the Bebaite paradigm by show-
ing it is applicable and desirable in other scenarios. Orengte is using external be-
haviosites in an already-built real-time environment, anthe internet, for dealing
with the packet congestion problem. The solution shouldiibdar to that of the para-
sitized El Farol problem with some modifications. Anotheplagation is the automatic
generation of stories; it is a rapidly growing field, with higotential in the gamer com-
munity. Behaviosites are an excellent solution for ali@sitories by changing some of
the characters’ behavior and adding new, unpredictabtemsyisehavior in a distributed
manner.
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