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Abstract. In this paper we present the Behaviosite paradigm, a new approach
to affecting the behavior of distributed agents in a multiagent system, which
is inspired by biological parasites with behavior manipulation properties. Be-
haviosites are special kinds of agents that “infect” a system composed of agents
operating in that environment. The behaviosites facilitate behavioral changes in
agents to achieve altered, potentially improved, performance of the overall sys-
tem. Behaviosites need to be designed so that they are intimately familiar with the
internal workings of the environment and of the agents operating within it, and
behaviosites apply this knowledge for their manipulation, using various infection
and manipulation strategies.
To demonstrate and test this paradigm, we implemented a version of the El Farol
problem, where agents want to go to a bar of limited capacity, and cannot use
communication to coordinate their activity. Several solutions to this problem ex-
ist, but most yield near-zero utility for the agents. We added behaviosites tothe
El Farol problem, which manipulate the decision making process of someof the
agents by making them believe that bar capacity is lower than it really is. We show
that behaviosites overcome the learning ability of the agents, and increasesocial
utility and social fairness significantly, with little actual damage to the overall
system, and none to the agents.

1 Introduction

Biology-based technology (biomimetics) often provides insight into ways of improv-
ing technology based on biological metaphors [20]; nature and evolution have worked
hard at finding solutions to many problems that are also present in artificial environ-
ments. Parasites have been examined in the biomimetic context, in particular for their
special abilities (such as safe navigation inside the humanbody, needed for microen-
doscopy [12]).

However, one of the most interesting abilities of biological parasites has received
little attention in technological contexts — their abilityto manipulate and alter their
host’s behavior. Usually, parasites alter host behavior soas to transmit themselves to
the next host, as in the case of rabies (by generating aggressive host behavior). In rare
cases, biological parasites can actually benefit the host orthe host’s society. The word



“parasite” [13] derives from the Greek wordparasitos, which means “beside the grain”,
and originally had a positive connotation; a parasite was a fellow guest who ate beside
you at the dinner table. Only later did it receive the meaningof someone eating at the
expense of another.

In the computer science literature, the term “parasite” is used in three different con-
texts, none dealing with behavior manipulation: parasitesin simulations of evolution,
parasites as a driving force in genetic algorithms, and parasites as a common name for
malware (computer viruses, trojan horses, etc.).

1.1 The Behaviosite Paradigm

In this paper, we present a novel paradigm that employs a special kind of agent (called
a behaviosite) that manipulates the behavior of other agents so as to achieve altered,
possibly improved, performance of the entire system. The behaviosite (by definition) is
not itself necessary for the normal conduct of the system; thus, it is termed a kind of
“parasite”.

Within the field of MultiAgent Systems (MAS), the behaviosite is closely related to
the idea of adjustable autonomy (AA) [16], although it approaches issues of autonomy
in a novel way. AA is about agents varying the level of their own autonomy based upon
the situation (thus leveraging three alternative modes of operation, fully autonomous,
semi-autonomous, and teleoperated). AA often deals with agents transferring control to
human users [19] in cooperative settings. In the context of the Behaviosite paradigm,
an agent transfers some of its autonomy to the behaviosite (usually unwittingly, and in
any case the agent is better described asceding autonomy). The behaviosite manipu-
lates the agent’s behavior to achieve altered performance of the system. In this way, the
behaviosite may create improved performance of the overallsystem (as we will demon-
strate in the parasitized El Farol problem [1]), or it may facilitate new behaviors of the
system.

Introducing behaviosites into a system may be either planned as part of the overall
system design, or added (after the fact) to an already working system. When planned
as part of the overall system, it is possible to choose between applying internal be-
haviosites(design hooks inside agents, so that behaviosites can attach to the agent and
manipulate them) orexternal behaviosites(which manipulate only the input/output of
the agent, vis-̀a-vis the environment). When applied to an already working system, ex-
ternal behaviosites are usually the only option. Both internal and external behaviosites
are discussed in Section 3.

Internal behaviosites require cooperation at the level of agent designer(s), so that
the appropriate hooks are in place for them to run (and alter agent behavior). Centrally-
designed MAS systems, of course, may include behaviosite hooks because overall sys-
tem performance can be improved. However, even in systems ofself-interested, het-
erogeneous agents, inclusion of a behaviosite hook may be mandated as a requirement
for operation within a given environment — thus giving the environment designer an
additional tool for improving overall system behavior.



1.2 A Distributed Approach to Altered Behavior

One of the major strengths of the Behaviosite paradigm is that it is a distributed solution
to issues raised in a distributed environment. Consider, for example, the El Farol prob-
lem [1] as an example of such a distributed environment. All agents want to go to a bar
called El Farol, but it has limited (comfortable) capacity.If there are more attendees at
the bar than that capacity, all attendees suffer from the crowdedness. With no option for
communication or collusion, an agent must learn the behavior of other agentsen masse,
in order to reach a decision: go to the bar, or stay at home.

With very simple agent behavior, the system reaches an equilibrium around the
given capacity. Unfortunately, personal and social utilities are extremely low, since
about half the time the bar is overcrowded. To this setting, we introduce behaviosites,
and the problem becomes the “parasitized El Farol” problem.We show that with simple
infection and manipulation strategies of these special agents, it is possible to dramati-
cally increase personal and social utilities, and even improve social fairness.

Although the El Farol problem is artificial, it has implications for many fields, in-
cluding game theory, congestion problems in networking, logic, and economics [8]. In
most, if not all, of these areas, the Behaviosite paradigm isapplicable. There are, in
addition, other possible applications for behaviosites, as will be discussed in Section 5.

The rest of the paper is organized as follows. In Section 2 we present a formalization
of the Behaviosite paradigm. In Section 3, we discuss the El Farol problem, and how
behaviosites could be employed in its solution. In Section 4we briefly overview the
concept of “parasite” in biology and computer science. We conclude in Section 5 with
an overall discussion of our approach and of future work.

2 Behaviosite Formalization

2.1 Overall Structure

The Behaviosite paradigm is composed of three parts: the environment, agents (also
referred to as hosts), and behaviosites. Environment, agents, and behaviosites will be
referred to collectively as “the system” (as in ecosystem).See Figure 1 for an illustration
of the environment/agent relationship.

Fig. 1.The environment/agent relationship

Environment: encapsulates all of the external factors, conditions, andinfluences that
affect a community of agents and behaviosites. For example,during the course of a



program run, it stores the runtime state of the system, and itis discarded when the
program ends. In some cases, the environment can be a degenerate instance, as in the
case where agents only influence one another. In other cases,it may have an important
role in the conduct of the system, as in the parasitized El Farol problem.

Agent society: A society of agents is a system composed of multiple, interacting,
possibly cooperating agents (see [21]). As there are many definitions of agency, we
use the one suggested by Franklin and Graesser [6]:An autonomous agent is a system
situated within and as part of an environment that senses that environment and acts on
it, over time, in pursuit of its own agenda and so as to effect [sic] what it senses in the
future.

Behaviosite: Most basically, a specialized type of agent. A behaviositeis an addi-
tional property/information added to a system with a society of agents, and is not (and
should not be) a property of the agent or the environment. Thebehaviosite is not re-
quired for the system, but should be beneficial in some sense;too many behaviosites
can degrade some aspects of the system. Below, we present specific definitions regard-
ing behaviosite elements. These definitions are further clarified in Section 3, which
presents (in the context of the El Farol problem) what behaviosites are, and their advan-
tages within a system.

2.2 Behaviosite Specifics

Required Traits Benefiting the system: Behaviosites come with costs to the system, as
will be discussed below. The design and use of behaviosites is unnecessary, unless they
are beneficial to the system in some respect. Behaviosites may influence a system in
two desired ways: they may increase social utility, or they may create new features in a
working system. Both are accomplished by altering the behavior of some of the agents.
Note that in the behaviosite paradigm, unlike with parasites in nature, the utility of the
behaviosite itself is not important when declaring them successful.

System knowledge: A behaviosite must be designed with deep understanding of how
the system works: agent-agent interactions, agent-environment interactions, and also in-
ternal workings of the agents in some cases. Such knowledge is essential for the success
of the behaviosites in improving the system. One type of system in which behaviosites
can be beneficial is a system that works in a suboptimal equilibrium. When building a
system, usually suboptimality is caused by the need to make it robust against failure.
However, there are examples in which sub-optimality results from the inherent struc-
ture of the system. The internet is one example of a system in suboptimal equilibrium,
with regard to the congestion problem caused by packet routing. The El Farol problem
presents another, similar example.

Not a property of the agent nor of the environment: Behaviosites exist in the middle
ground between agents and the environment, and should not bea property of either of
them.

Optional Traits Hidden or apparent infection: We usually will not want agents to
know who is infected by the behaviosite. Such knowledge may help individual agents
exploit the situation, harnessing its own behaviosite or some other parasitized agent to



its own needs and thereby damaging the designed mechanism ofenvironment-agents-
behaviosites. However, there are some settings in which such knowledge can benefit the
system (as also occurs in nature), for example, the elimination of ill-functioning agents
(a process known as “apoptosis” in cells).

Finding the host: In many cases in nature, finding the host is essential for thepara-
site. In the Behaviosite paradigm, it may also be an issue. A behaviosite designer may
endow the environment with the responsibility of infectingagents in the system using
some strategy (like in the parasitized El Farol problem), orit may leave the task of in-
fection to the behaviosites themselves, thus making the behaviosites more autonomous.
In certain contexts, hosts may also be equipped with defensemechanisms against infec-
tion.

Behaviosite communication: Behaviosites may communicate with one another within
a host (the host may be infected with more than one behaviosite), or across hosts. The
latter enables formation of a network of parasitized hosts,which may act in some kind
of parasite-induced coalition. This may enable the behaviosites to be a catalyst for the
creation of norms or social laws.

2.3 Placing the Behaviosite

To alter host behavior, the behaviosite designer must decide where to place the be-
haviosite in the flow of the system, as can be seen in Figure 2.

Fig. 2. (a) marks where an external behaviosite can alter the host’s behavior,by altering its in-
put/output. (b) marks where an internal behaviosite can alter the host’s behavior, by altering
internal data or by partial or full replacement of behavior modules.

In general, behaviosites can be divided into two main groups, external behaviosites,
and internal behaviosites. External behaviosites can alter the input or output of the agent
vis-à-vis the environment (Figure 2a). In this way, the host designer(s) need not know of
the possible existence of a behaviosite now or in the future.Moreover, the behaviosite
designer may introduce them into an existing system.1

1 Of course, these external behaviosites affect inter-agent communication only if it, too, travels
via the environment.



On the other hand, internal behaviosites usually require the system to be designed
“plug and play” for the behaviosite (Figure 2b). The host designer(s) will leave a (suf-
ficiently protected) hook, into which behaviosites can be plugged, possibly created by
another designer. Allowing the behaviosite internal access may seem dangerous, but it
holds many advantages.

Internal behaviosites can have two main manipulation methods: changing the host’s
internal data (Figure 2b, interaction between see-behavior-act modules) or replacing
some or all of its behavioral modules (Figure 2b, behavior module). In the first form of
manipulation, only relevant data will be changed, and in some scenarios, it can actually
solve the problem of dealing with noise resulting from the transduction of input from
the environment.2

The hook for the second manipulation method is very easy to program, by using
the behavioral design patterns suggested by the “gang of four” [7]. Introducing a new
behaviosite to a well-designed system may at times be much like programming a new,
special behavior for an agent (though it should not be a regular property of the host).
In specific systems, if needed, security measures will have to be taken to protect the
host from malicious parasites, which could exploit the existence of the hook. Such
security measures are abundant; one easy-to-implement example is public/private key
encryption (further consideration of these security issues is beyond the scope of this
paper).

2.4 Cost of Manipulation

In different scenarios, behaviosites have different typesof costs. The first cost that
should be considered is the cost to the system designer, for there is the immediate
issue of designing behaviosites and testing them. Analyzing system behavior can be
very complex, and analysis of a system in which behaviositesare integrated is even
more complex. This is because their impact on the system is usually hard to predict
without extensive testing. Other costs of behaviosites aresystem specific, such as bal-
ancing behaviosite complexity and number with the benefit they give to the system,
cost of possibly increased variation in the society, oscillations, run-time costs, and so
forth. Despite all of the above, there are many scenarios in which behaviosites prove
themselves very useful.

3 Parasitized El Farol Problem

3.1 The El Farol Problem and Related Work

The El Farol problem (or the Santa Fe bar problem) was introduced by Brian Arthur [1]
as a toy problem in economics for using inductive reasoning and bounded rationality.
In this problem,N (e.g., 100) agents decide independently each week whether to go to
the El Farol bar or not. Comfortable capacity is limited, andthe evening is enjoyable

2 This is somewhat reminiscent of Brooks’ subsumption architecture [3], in which various levels
can be designed to suppress input/output on other levels.



only if the bar is not overcrowded (specifically, fewer than 60 agents out of the possible
100 attend).

In the original problem, no communication or collusion is possible, and the only
information available to the agents is the number of attendees in the past. An agent
will go if it predicts less than 60 agents will go, and will stay home otherwise. Arthur
suggested that bounded rationality, together with learning, can yield solutions to prob-
lems of resource allocation in decentralized environments, using the El Farol problem
as an example [9]. At this point, the problem in the research literature diverged into two
branches, differentiated by their utility functions. The first branch was as in Arthur’s
paper:

Util(ag[i]) =











x attended and undercrowded

0 did not attend

−y attended and overcrowded

The second branch used another kind of utility function:

Util(ag[i]) =

{

x part of minority group

−y not part of minority group

In this paper, we use the first utility function, wherex = y = 0.5.3 Arthur showed [1]
that if each agent uses a set of personal basic deterministicstrategies (such as going if
more than 55 agents went last time), combined with a simple learning algorithm, then
the system converges to the capacity after some initial learning time. Moreover, mem-
bership kept changing, and some degree of fairness was maintained. Arthur described
the emergent ecology as almost organic in nature. In his work, Edmonds [5] took this
analogy a step further by using genetic algorithms for learning, and allowing commu-
nication. Edmonds showed that these were sufficient for the development of different,
interesting social roles.

However, both solutions produced systems that fluctuated chaotically around the ca-
pacity, resulting in low personal and social utility. High variation in the system was one
reason for suboptimality. The second was that at many times the bar was overcrowded
(above capacity), thus giving negative utility to attending agents.

Bell [2] tried to deal with the overcrowdedness problem by a simple adaptive strat-
egy used by all agents, which led to an outcome close to the socially optimal attendance.
Bell’s solution holds two pitfalls. The first is that the samestrategy must be used by all
agents, perhaps too strong a requirement in a distributed system with different design-
ers. The second is that in his simulations most of the attendees were “regulars” who
came all of the rounds, thus making for social injustice withthe “casuals”.

Greenwald [8] also tackled this suboptimality problem, butusing a different method.
Agents that attended El Farol were required to “pay” some of their utility, and this
payoff was distributed among all agents that did not attend.Not surprisingly, the optimal
payoff for optimal social utility converged to a 40% attendance fee, for the scenario of
100 agents and bar capacity of 60. Again, this solution may also be problematic in
many distributed systems, since it requires a central “utility distributer” that can reach
all agents.

3 For a review of the minority problem, see [14].



The learning algorithm used in the parasitized El Farol simulation was the addi-
tive updating learning algorithm, introduced in [9]. Basically, each agent has a pool of
simple, personal deterministic strategies. Each such behavior has a weight, initially dis-
tributed uniformly. The weights of all these basic strategies are updated in an additive
manner once a round, according to the number of attendees in that round, above or be-
low capacity (0.5 or −0.5 utility to attendees, respectively, or zero if it chooses not to
attend).

3.2 Using Behaviosites in the Parasitized El Farol Problem

The El Farol bar problem presents a distributed system, withsuboptimal social and
personal utility. The main idea of the parasitized El Farol problem is to increase social
utility with as few side effects as possible, using behaviosites. The main problem was
that agents learn and adapt themselves to new situations. Ifthe behaviosites are not
carefully crafted, then either their effect will soon vanish, and the system will return
to the equilibrium around the capacity with suboptimal social utility, or in each round
behaviosites will need to make a stronger impact to achieve the same effect.

Fig. 3. An illustration of the environment/agent/behaviosite relationship

The system is composed of environment, agents (hosts) and behaviosites (Figure 3).
Each agent has an internal behaviosite field that is always occupied, usually with the
null behaviosite (see [7]) which has no effect over its host’s behavior. Each round, the
environment infects some of the agents according to an infection strategy (as will be
discussed below), and infection lasts only one round. Agents are asked to provide a
decision (whether they will go to the bar or not). Then, the agent gives its behaviosite
private information before making the decision. If the behaviosite is not the null be-
haviosite, it alters the relevant host’s data (the behaviosite is placed between “see” and
“behavior” of Figure 2). In this way, the agent comes to a decision not using the data
received from the environment, but rather by using manipulated data.

Environment infection strategies: In this simulation, the environment had three strate-
gies of infection, which were not mixed. In the first strategy, all agents were candidates
for infection (infect all). In the second, only attending agents in the given round were
candidates for infection (infect attending). In the third, candidates for infection were
all attending agents at the given round, but only when the barwas overcrowded (infect
overcrowded). In each strategy, only a percentage of the candidates for infection actu-



ally got infected (responsibility of the behaviosite design), depending on the infection
rate (0%-100%).4

Behaviosite manipulation strategies: The chosen manipulation strategy was quite
simple. The behaviosite replaced the parasitized agents’ belief regarding the current ca-
pacity with a lower one, common to all behaviosites. Since capacity information was
kept as the private history of the agent, this decrease was also considered in future
rounds by the agent. If a parasitized agent decided to attendthe bar and the number of
attending agents was higher than the capacity the agent currently believed, it suffered
a utility decrease, even if the bar was actually undercrowded. This was intended to en-
force a stricter approach; agents were affected by the worldaccording to their personal
beliefs, and not according to some global truth.

3.3 Parasitized El Farol Simulation Results

The parasitized El Farol problem was simulated for 2000 rounds, assuming 100 agents
in the system. Three different capacities were tested: 50, 60, and 80, where the be-
haviosite manipulation strategy was to decrease capacity for parasitized agents (50 de-
creased to 40, 60 also decreased to 40, and 80 decreased to 60). For each such capacity,
three different environment infection strategies were tested, as mentioned above:infect
all, infect attending, andinfect overcrowded, giving a total of 9 different simulations.
For each of the 9 simulations, a different percentage of the agents who were candidates
for infection were actually infected, with infection ratesranging from 0% to 100% with
jumps of 10% (total of 11 different simulations for each). Each of these 99 different
simulations was repeated 50 times.

Mean Attendance As was mentioned above, agents’ mean attendance in the El Farol
problem converges to the capacity of the bar. In the parasitized El Farol problem, we
would like to increase the social utility, without loweringby too much the mean atten-
dance. From the bar owner’s point of view, this is one of the most important parameters.
From a social utility point of view, decreased mean attendance takes us further away
from an optimal solution.

Figure 4 shows how different infection strategies affectedthe mean attendance.
For all three different capacities, theinfect all strategy decreased the mean attendance
severely, as a function of the behaviosites’ infection rate. For 100% infection rate of
potential agents (in this case, all agents), the system converged to the capacity induced
by the behaviosites. For example, for capacity of 60, infection rate of 100% of course
resulted in convergence to 40, since the behaviosites’ manipulation strategy is to make
the host believe that the capacity is 40.

The infect overcrowdedstrategy resulted in a relatively low effect on the mean at-
tendance, since behaviosites infect agents only in a most particular situation — only
attendees, and only when the bar is overcrowded. The outcomeof the infect attending
strategy depended on the bar’s capacity. For capacity of 80,the infect all andinfect at-
tendingstrategies yielded very similar results, since most of the agents are candidates

4 Another possible design is that the entire infection strategy is a property of the behaviosite, but
this was not implemented.
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Fig. 4.Mean attendance for capacities of 50, 60, 80, respectively. Legend:.... :Infect All, —:Infect
Attending, - - - :Infect Overcrowded

for infection. For the capacities of 50 and 60,infect attendingstrategy’s effect resem-
bles theinfect overcrowdedstrategy, since it affects only a relatively small portion of
the agent society.

Mean Utility The main objective in the parasitized El Farol problem simulation was
to show that it is possible to increase social utility using behaviosites. This can be seen
clearly in Figure 5, which compares the effect of different capacities for each strategy.
Another goal, with roughly the same importance, was not to cause too much harm to
the system, namely social injustice, which will be discussed later.

infect all: Infecting all agents resulted in a similar graph shape for all three capaci-
ties, differing in the position of the peak, with impressiveimprovement of mean utility.
For capacities of 60 and 80 the improvement was 7–9 times the minimal received in a
system without behaviosites, and relatively close to the optimal (0.12 utility out of pos-
sible 0.3 for capacity of 60, and 0.23 utility out of possible0.4 for capacity of 80). For
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Fig. 5. Mean utility for Infect All, Infect Attending, Infect Overcrowded strategies, respectively.
Capacity legend: o–o: 50, +–+:60, *–*:80

capacity of 50, improvement was 27 times the minimal, thoughstill near zero (0.065
out of possible 0.25).

infect overcrowded: For all three different capacities, the mean utility increase was
moderate, with respect to other strategies. For capacitiesof 60 and 80, the maximal
mean utility was about 2.5–3.5 times the minimal mean utility, received by a system
with no behaviosites. For the capacity of 50, the maximal mean utility was 22 times
better than the minimal mean utility received for a system with no behaviosites, but still
near zero (0.034). For capacity of 80, the maximal mean utility (0.112) was not sig-
nificantly lower than the optimal possible (0.4), especially when compared to a system
without behaviosites (utility of 0.032).

infect attending: The outcome of this strategy depended heavily on the level of
the used capacity. For high capacities (specifically 80), the strategy’s behavior was very
much likeinfect all, because infecting all attending agents is very much like infecting all
agents. For low capacities (specifically 50), the strategy’s outcome was very much like
infect overcrowded, because it affected only a relatively small portion of the society, and



the actual effect of the behaviosite was mild. In between (specifically 60), the behavior
of this strategy combined features of both.
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Fig. 6. System’s fairness for capacities of 50, 60, 80, respectively. Legend: - - - :Infect All, —
:Infect Attending, .... :Infect Overcrowded

Forced Justice As was described earlier, two previous attempts to increasesocial util-
ity resulted in two proposed solutions, both with undesirable features in certain settings.
One feature was the need to charge utility from attending agents [8], which basically
kept the social utility within the system. Another led to thecreation of bullies [2] —
regulars and casuals. In the original El Farol problem, the membership of the agents
kept changing, thus keeping some level of social fairness. Social fairness is an impor-
tant parameter when characterizing the effect of behaviosites on the system, since we
do not wish to create regulars and casuals. This is especially true if agents are self-
interested, and have no prior incentive to allow behaviosites to infect and affect them.
Social fairness was calculated by the following formula:

1− 1
#trials

∑

t∈trials

Personal Attendance SD[t]
Mean Attendence[t]



Social fairness is captured by the mean of standard deviation, normalized according
to the mean of a specific iteration. In Figure 6, we can see thatfor capacities of 50
and 60,infect attendingandinfect overcrowdedstrategies constantly increase the social
fairness as a function of infection rate. For capacity of 80,they improved social fairness
only a small amount, since already the vast majority of agents go to the bar. However,
the infect all strategy increased social fairness as a function of infection rate until a
certain maximum was reached, and then decreased again. For capacity of 80, it reached
exactly the level of social fairness of capacity 60, as wouldbe expected.
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Fig. 7. Mean utility with and without harming behaviosites for capacities of 50, 60, 80, respec-
tively. Legend: - - - :Infect All, —:Infect Attending, .... :Infect Overcrowded. + is for behaviosites
that do not cause harm.

Cost of Manipulation In the specific design of this parasitized El Farol problem, be-
haviosites caused actual damage to the received utility of agents. If an agent came to
an undercrowded bar, but believed it was overcrowded, it would suffer utility loss that
unparasitized agents would not — thus imposing a cost upon agents. From the Designer
Perspective, behaviosites in the parasitized El Farol problem have several types of costs



— run time, integration time of behaviosites, and testing time of various infection and
manipulation strategies.

Reflections about DesignThe behaviosite in the parasitized El Farol problem pre-
sented above is an example of an internal behaviosite, in a system designed to accom-
modate behaviosites. However, it is also possible to createan external behaviosite, one
that the agents need know nothing about. The behaviosite canreside in the interface be-
tween the environment and the agent (Figure 2a). Parasitized agents can receive manip-
ulated information from the environment regarding the current capacity, or manipulated
information of number of attendees in a specific round. The effect of such altered data
should be the same as presented above, and social utility should, again, increase.

4 Related Work

4.1 Related Work in Biology

In nature, most common recorded behavior manipulations aredone by parasites with a
complex life cycle, as it ensures host-to-host transmission. For example, in the case of
Dicrocoelium[17], parasitized ants’ behavior (the upstream hosts) is modified so that
they crawl up grass stalks, thus improving chances of being ingested by a passing cow
(the downstream host). Although most parasite manipulations are harmful to the host,
there are examples in which parasites are beneficial, eitherto the host or to the society.

Increasing the fitness of the hosts’ society can usually be seen in the case of close
kin, such as ants or bees. Bumblebees have successfully mastered the use of parasite-
induced altered behavior to their own advantage [15]. A parasitized worker bee prolongs
its life span by changing its behavior and staying in the coldof night at the field (the
cold retarded parasitoid development). This way, the entire colony benefits from this
infection, due to increased foraging.

4.2 Related Work in Computer Science

The term “parasite” is used in various contexts in the computer science literature. How-
ever, in each context its meaning is substantially different from its use in the Behaviosite
paradigm. Host-parasite paradigm in computer science previously existed in three main
roles: for simulations of evolution such as Ray’s Tierra computer program [18], as a
driving force in genetic algorithms (usually in the contextof predator-prey and co-
evolution [10]), and as malware in the electronic world. None talked about using para-
sites to change the behavior of individual agents, to shift the equilibrium of the entire
society.

In their work, Mamei, Roli and Zambonelli [11] presented an idea similar to that
of the Behaviosite Paradigm, within the context of cellularautomata. They showed that
via an external perturbation that dynamically influenced the state transition of several
cellular automata, they can achieve a global effect within the system (i.e., control of
macro-spatial structures, as they termed it). Large-scalespatial structures emerged as a
result of those perturbations. The Behaviosite Paradigm presented in this paper posits



a more highly developed description of the perturbation mechanism — special agents
that infect and manipulate other agents. Mamei et al. maintain, as do we, that in the near
future there will exist more systems characterized by distribution and autonomy, oper-
ating within highly dynamic environments. These systems will by their nature require
decentralized control mechanisms, such as those presentedin [11] and in this paper.

Computer Agents’ Behavior Behaviosites affect behavior, but what constitutes “be-
havior”, both the agent’s and the system’s, is quite difficult to define; there are numerous
ways of approaching the issue. Two of the most common are logic-based behavior and
Brooks’ [3,4] emergent behavior and subsumption architecture. Behavior is considered
as an aspect of the individual agent, of an agent in a society,and of the whole soci-
ety. Much research explores the creation of agents with defined behavior, or analyzes
an existing system’s behavior. For our purposes, we do not attempt to define exactly
what behavior is, but rather use Brooks’ view, that behaviorresults from the agent’s
interaction with the environment.

5 Discussion and Future Work

In this paper, we presented the Behaviosite paradigm in the spirit of biomimetics —
parasites manipulating their hosts’ behavior. Although the term “parasite” is not new in
computer science, it has been used in different contexts than the Behaviosite paradigm
describes. We specified the behaviosite concept, which in essence is a special type of
agent, which infects and manipulates other agents to achieve altered performance of
the system. We described the parasitized El Farol problem, and showed that social and
personal utilities and social fairness can be increased using behaviosites; in some cases,
mean attendance deviates from the capacity by only a small amount.

The behaviosites used were internal behaviosites with a fixed, unchanging influence
over the agents (though it is equally possible to use external behaviosites, or those with
dynamic influence). The parasitized El Farol problem simulated self-interested agents.
However, behaviosites could also be integrated into a cooperative society to form new
norms or social laws, or to eliminate ill-functioning agents.

In our view, the major contribution of the Behaviosite paradigm is conceptual —
thinking of a system composed of environment and agents as whole, something that can
be manipulated using external forces (behaviosites) that employ local changes (affect-
ing agents’ individual behaviors) to bring about altered behavior of the entire system.
However, as users of this paradigm, we do not consider ourselves omnipotent — we just
use existing capabilities of the (possibly self-interested) agents and environment. Hence
this is not simply mechanism design, but rather augmenting the system, or parasitizing
it. It also differs from existing research in adjustable autonomy, because of this holistic
view, which AA is lacking.

After understanding what the Behaviosite paradigm is, one might wonder if the term
“parasite” is appropriate. There are, indeed, significant differences. The behaviosite
is not an autonomous agent in and of itself. Moreover, in nature the utility gain of
behavior manipulation is of the parasite, and not the host; is it not an important part of
being a parasite? However, we intend parasitic activity to be a metaphor, and need not



require an exact match between nature and behaviosites. Thekey analogy is the fact
that behaviosite actions constitute behavior manipulation of the host.

Behaviosites are not just a way of propagating false information within a system.
The intimacy of agent-behaviosite induces far more powerful effects. Lies can be disre-
garded or overcome by agents. However, when a host is parasitized, the behaviosite is
considered an almost integral part of the agent. Agents can doubt external information,
but rely on their internal beliefs — as was shown in the parasitized El Farol problem,
not acting on the basis of personal belief did not help “shake” the influence of the be-
haviosite.

As with the agent metaphor itself, the Behaviosite paradigmcan be very appealing,
but could also conceivably be overused. It is certainly the case that it is possible to use
solutions other than behaviosites — behavioral change can be entirely inside the agent
(e.g., random coin flips inside agents in the El Farol problem, with strategies similar to
the ones applied by the behaviosites), or it can be totally a property of the environment.
The analogy with agents is clear, for although sometimes an agent-like approach is
inappropriate (and solutions can theoretically always be engineered in other ways), the
key question is “what is the best solution?”. In some cases, the Behaviosite paradigm
presents conceptual advantages.

In the future, we would like to further strengthen the Behaviosite paradigm by show-
ing it is applicable and desirable in other scenarios. One example is using external be-
haviosites in an already-built real-time environment, namely the internet, for dealing
with the packet congestion problem. The solution should be similar to that of the para-
sitized El Farol problem with some modifications. Another application is the automatic
generation of stories; it is a rapidly growing field, with high potential in the gamer com-
munity. Behaviosites are an excellent solution for altering stories by changing some of
the characters’ behavior and adding new, unpredictable system behavior in a distributed
manner.
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