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Abstract

We consider Effort Games, a game theoretic model of
cooperation in open environments, which is a variant
of the principal-agent problem from economic the-
ory. In our multiagent domain, a common project
depends on various tasks; achieving certain subsets
of the tasks completes the project successfully, while
others do not. The probability of achieving a task is
higher when the agent in charge of it exerts effort,
at a certain cost for that agent. A central authority,
called the principal, attempts to incentivize agents to
exert effort, but can only reward agents based on the
success of the entire project.

We model this domain as a normal form game,
where the payoffs for each strategy profile are defined
based on the different probabilities of achieving each
task and on the boolean function that defines which
task subsets complete the project and which do not.
We view this boolean function as a simple coalitional
game, and call this game the underlying coalitional
game. We consider the computational complexity of
testing whether exerting effort is a dominant strategy
for an agent and of finding a reward strategy for this
domain, using either a dominant strategy equilibrium
or using iterated elimination of dominated strategies.
We show these problems are generally #P-hard, and
that they are at least as computationally hard as cal-
culating the Banzhaf power index in the underlying
coalitional game. We also show that in a certain
restricted domain, where the underlying coalitional
game is a weighted voting game with certain proper-
ties, it is possible to solve all of the above problems

in polynomial time.

1 Introduction

The computational aspects of many game theoretic
concepts have been thoroughly studied in recent
years, as they are significant for many real-world
domains, including auctions, voting, and electronic
commerce. A key issue in many such domains is con-
structing a proper reward scheme to achieve the de-
sired behavior of self-interested agents.

There are many such examples: auction theory is
sometimes used to design auctions that maximize the
revenue of the auctioneer; social choice theory at-
tempts to design mechanisms that give agents incen-
tives to truthfully reveal their preferences so that an
optimal social choice is made; solution concepts in
coalitional game theory are used to make sure that
rewards are distributed in a fair manner, or so that
the coalitions that are formed are stable. The com-
putational aspects of such concepts are critical, since
in order to use them in practice, one must find a
tractable way to compute them.

1.1 Our Setting

In this paper, we deal with the computational com-
plexity of finding a reward scheme in effort games
in open environments. In our model, the mecha-
nism’s purpose is to incentivize agents to exert ef-
fort when working on a common project. Complet-
ing the project requires the performance of various
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tasks. Some of the subsets of the tasks are “win-
ning” subsets, so that when these tasks are completed
the project succeeds, and some subsets are “losing”,
so when only these tasks are completed, the project
fails.

A self-interested agent is in charge of each task.
This agent can exert effort, which increases the prob-
ability that its task will be completed successfully.
However, this exertion of effort has a certain cost for
the agent. On the other hand, the task has a cer-
tain probability of being completed successfully even
if the agent in charge of it does not exert any ef-
fort. A natural way to reward agents is based on the
effort they have exerted. However, in open environ-
ments this information is sometimes not available to
the mechanism.

One example of such a situation is maintenance
efforts. Consider, for example, a communication net-
work with a source node and a target node, where
agents are in charge of maintenance tasks for the links
between the nodes of the network. If no maintenance
effort is expended on a link, it has a some probability
α < 1 of functioning, but if a maintenance effort is
made for the link, it functions with a higher prob-
ability β > α. Consider a mechanism in charge of
sending some information between source and target.
This mechanism only knows whether it succeeded in
sending the information, but if that attempt fails,
may not know which links failed or if they failed due
to lack of maintenance. Another example is voting
domains, which we consider in Section 4.

In the above examples, the interested party, called
the principal, cannot observe the agents’ decisions
about whether to expend effort. The only informa-
tion available to it is the overall result of the project.
However, the agents have a certain cost to exerting
efforts, and require a certain reward as an incentive
for making such an effort. The principal cannot offer
any reward based on whether an agent has exerted ef-
fort or not, since it does not have that information. It
can, however, offer the agents a certain reward only if
the project is successful. Since agents have a certain
capability of increasing the probability of obtaining
this outcome, they may exert effort in order to get
their reward. However, they would only do so if the
expected reward from exerting effort is greater than

the cost of that effort for them.
The principal thus offers a reward vector r =

(r1, . . . , rn), where for all i, ri ≥ 0. If the project suc-
ceeds, the reward of agent ai is ri, and if the project
fails then for all ai the reward of ai is 0. Consider a
principal that wants to motivate a certain subset of
the agents to exert effort. Of course, it can offer each
agent in this subset a reward that is high enough to
make sure it is worthwhile for them to exert effort
no matter what the other agents do. On the other
hand, the principal wants to minimize the total re-
wards given when the project succeeds,

∑n
i=0 ri.

In this paper, we examine the computational com-
plexity of finding out whether a certain reward vec-
tor makes it the dominant strategy of a certain agent
to exert effort, and the computational complexity of
constructing a reward vector that guarantees a cer-
tain subset of agents exert effort. The paper proceeds
as follows. In Section 2 we present several required
game theoretic notions, and give the formal model of
effort games. In Section 3 we present the main results
regarding the computational complexity of calculat-
ing a successful reward scheme, and in Section 4 we
present algorithms for restricted types of weighted
voting games. In Section 5 we discuss related work
and similar problems. We conclude in Section 6.

2 The Formal Model

2.1 Preliminaries

We now define several game theoretic notions re-
quired for defining effort games. The definition of
effort games relies on the definition of both normal
form games and simple coalitional games.

Definition 1. An n-player normal form game is
given by a set of agents (players) I = {a1, ..., an}, and
for each agent ai a (finite) set of pure strategies Si,
and a utility (payoff) function Fi : S1×S2×...×Sn →
R. Fi(s1, ..., sn) denotes ai’s utility when each player
aj plays strategy sj.

For brevity, we denote the set of strategy pro-
files Σ = S1 × S2 × ... × Sn, and denote items in
Σ as σ ∈ Σ (σ = (s1, ..., sn), where si ∈ Si). We
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also denote Σ−i = S1 × ... × Si−1 × Si+1 × ... ×
Sn, and given an incomplete strategy profile σ′ =
(s1, ..., si−1, si+1, ..., sn) ∈ Σ−i we denote (σ−i, si) =
(s1, ..., si−1, si, si+1, ...sn) ∈ Σ.

Given a normal form game G, we say agent ai’s
strategy sx ∈ Si strongly dominates sy ∈ Si if ai’s
utility is higher when using sx than when using sy,
no matter what strategies the other agents use.

Definition 2. Strictly dominating strategy. Given
a normal form game G, we say agent ai’s strategy
sx ∈ Si strictly dominates sy ∈ Si if the following
holds: For any incomplete strategy profile σ−i ∈ Σ−i
we have Fi((σ−i, sx)) > Fi((σ−i, sy)).

Definition 3. Dominant Strategy. Given a normal
form game G, we say agent ai’s strategy sx is ai’s
dominant strategy if it dominates all other strategies
si ∈ Si.

Given a certain game, game theoretic solution con-
cepts specify which outcomes are reasonable, un-
der various assumptions of rationality and common
knowledge. In this paper, we will deal with two so-
lution concepts: dominant strategy equilibrium, and
iterated elimination of dominated strategies. Given
a certain game, an agent ai may or may not have a
dominant strategy. One known game theoretic solu-
tion concept is a dominant strategy equilibrium. This
concept defines a single reasonable strategy profile
(and derived payoffs) for certain games.

Definition 4. Dominant Strategy Equilibrium.
Given a normal form game G, we say a strategy pro-
file σ = (s1, ..., sn) ∈ Σ is a dominant strategy equi-
librium if for any agent ai, strategy si is a dominant
strategy for ai.

Another solution concept is that of iterated elim-
ination of dominated strategies. In iterated dom-
inance, strictly dominated strategies are removed
from the game, and no longer have any effect on fu-
ture dominance relations. A certain strategy sx ∈ Si
may not dominate sy ∈ Si, because sy performs bet-
ter against σa ∈ Σ−i. However, if one of the strategies
in σa is removed, that profile is no longer applicable,
so sx may now dominate sy. It is a well-known fact
that if we remove dominated strategies until no more

dominated strategies remain, in the end the remain-
ing strategies for each player will be the same, regard-
less of the order in which strategies are removed [10].
Some authors refer to this as the fact that iterated
(strict) dominance is path-independent.

The heart of an effort game is a boolean function
that decides which task subsets complete the common
project successfully, and which task subsets do not.
Our results depend on viewing this boolean function
as a simple coalitional game. We now define a simple
coalitional game.1

Definition 5. A coalitional game is a domain that
consists of a set of tasks, T , and a characteristic func-
tion mapping any subset of the tasks to a real value
v : 2T → R, indicating the total utility of a project
that achieves exactly these tasks.

In a simple coalitional game, v only gets values of 0
or 1 (v : 2I → {0, 1}). We say a subset C ⊂ T wins if
v(T ) = 1, and say it loses if v(C) = 0. We denote the
set of all subsets of tasks that win the simple game
as Twin = {T ′ ⊂ T |v(T ′) = 1}. A task t is critical
in a winning subset C if the task’s removal from that
coalition makes it lose: v(C) = 1, v(C \ {t}) = 0. A
game is increasing if for all subsets C ′ ⊂ C ⊂ T we
have v(C ′) ≤ v(C). We will assume achieving more
tasks is always better for the project, so games are
increasing. Thus, if a certain subset of tasks C ⊂ T
wins, every superset of C also wins.

We now define the weighted voting game, which is
a famous game-theoretic model of cooperation in po-
litical bodies. In this game, each agent has a weight,
and a coalition of agents wins the game if the sum of
the weights of its members exceeds a certain thresh-
old.

Definition 6. A weighted voting game is a simple
coalitional game with tasks (agents) T = (t1, ..., tn),
a vector of weights w = (w1, ..., wn) and a thresh-
old q. We say ti has the weight wi. Given a coali-
tion C ⊆ T we denote the weight of the coalition
w(C) =

∑
i∈{i|ti∈C} wi. A coalition C wins the game

1Rather than defining the function over agents, as typically
done in definitions for coalitional games, we call the players in
this game tasks, to keep our terminology consistent with the
rest of the paper.
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(so v(C) = 1) if w(C) ≥ q, and loses the game (so
v(C) = 0) if w(C) < q.

A question that arises in the context of simple
games, and especially weighted voting games, is that
of measuring the influence a certain task (player) has
on the outcome of the game. One approach to mea-
suring this notion is power indices. A possible defini-
tion of the power of an agent is its a priori probability
of having a significant impact on the outcome of the
game. Different definitions of “significant impact”
have resulted in the definition of different power in-
dices, one of which is the Banzhaf index [3].

Definition 7. The Banzhaf index is a power index
that depends on the number of coalitions in which an
agent is critical, out of all possible coalitions. It is
given by β(v) = (β1(v), ..., βn(v)) where

βi(v) =
1

2n−1

∑
S⊂T |i∈S

[v(S)− v(S \ {i})].

The Banzhaf power index reflects the assumption
that the agents are independent in their choices. An-
other prominent power index, the Shapley-Shubik
power index does not reflect such an assumption.
This property of the Banzhaf index is similar to some
of the assumptions of effort games.

2.2 The Effort Game Model

We now define effort game models and related prob-
lems.

Definition 8. An effort game domain is a domain
that consists of the following: A set of n agents, I =
{a1, ..., an}; a set of n tasks, T = {t1, ..., tn}; a simple
coalitional game G with task set T , such that |T | = n,
and with the value function v : 2T → {0, 1}; a set of
success probability pairs (α1, β1), (α2, β2), ..., (αn, βn)
so that αi ∈ R, and that 0 ≤ αi ≤ βi ≤ 1; a set of
effort exertion costs c1, ..., cn ∈ R, so that ci > 0.

Informally, this domain is interpreted as follows.
A joint project depends on the completion of cer-
tain tasks. Achieving some of the subsets of tasks
completes the project successfully, and some fail, as
determined by the simple game G. An agent ai is

responsible for each such task ti. That agent may
exert effort, which gives the task a probability of βi
to be completed. However, exerting effort costs that
agent a certain utility ci. If the agents shirks (does
not exert effort) the agent does not incur the cost
ci, and the task has a lower probability αi of being
completed.

We now formally describe the domain. Each of the
agents ai ∈ I is responsible for the task ti ∈ T . For
each coalition of agents C ⊂ I, we denote the set of
tasks owned by these agents T (C) = {ti ∈ T |ai ∈ C}
. We say the common project is successful if a subset
of tasks T ′ ⊂ T is achieved, so that v(T ′) = 1 (so
T ′ is winning in G). Each agent can either choose to
exert effort or shirk. In the effort games model, we
assume the tasks succeed or fail independently of one
another. If ai exerts effort, task ti is completed with
probability βi. If it does not exert effort (and shirks
instead), task ti is completed with a lower probability
αi < βi. However, each agent has a cost for exerting
effort, ci > 0, which is deducted from the utility ob-
tained by the agent. Suppose the agents in C exert
effort, and that the agents in I \ C do not. Given C
we know the probability that each task is completed:
if ai ∈ C then ti is completed with probability βi. If
ai /∈ C, ti is completed with probability αi.

Given the coalition of agents that contribute effort,
C, we denote the probability that a certain task ti is
completed as pi(C), defined as follows:

pi(C) =

{
βi if ti ∈ C
αi if ti /∈ C

Consider a subset of tasks T ′ ⊂ T . Given the coali-
tion C of agents that exert effort, we can calculate the
probability that exactly the tasks in T ′ are the ones
achieved: PrC(T ′) =

∏
ti∈T ′ pi(C)·

∏
ti /∈T ′(1−pi(C)).

We can calculate the probability that any winning
subsets of tasks is achieved, and denote this by
PrC(Win) =

∑
Tw∈Twin PrC(Tw).

In our model we have a central authority (called
the principal) interested in successfully completing
the common project. The principal attempts to make
sure a certain subset of agents exert effort, and needs
to reward the agents so they will exert effort despite
their cost of doing so. He thus designs a reward
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scheme, but attempts to minimize his costs.

Let C ⊂ I be the coalition of agents that have
exerted effort, and T ′ be the set of achieved tasks.
On the one hand, T ′ may not contain all the tasks of
the agents that have exerted effort, since if βi < 1, a
task has a probability of failing even when the agent
exerts effort. On the other hand, T ′ may contain
some tasks for which agents did not exert effort, since
if αi > 0, a task has a probability of succeeding even
if an agent does not exert effort. We assume that the
principal knows whether the project succeeded or not
(whether v(T ′) = 1 or v(T ′) = 0), knows ci, αi, βi of
all the agents, but does not know whether an agent ai
has exerted effort (so ai ∈ C) or shirked (so ai /∈ C).
Thus it cannot reward only those agents that have
exerted effort. It can only promise each agent ai a
certain reward ri if the project succeeds, and a reward
of 0 if it does not. The principal can choose among
various reward vectors r = (r1, ..., rn).

Given the reward vector r = (r1, ..., rn), and given
that the agents that exert effort are C ⊂ I, ai’s
expected reward is ei(C) =

∑
Tw∈Twin PrC(T ′) · ri.

Agent ai has a cost ci of exerting effort. It can choose
between two strategies—exert effort, or shirk. Exert-
ing effort increases the expected reward, but has a
cost ci. If ai shirks he does not incur the cost ci, but
his expected reward is smaller. The effort game is the
normal form game obtained due to a certain reward
vector r chosen by the principal.

Definition 9. An Effort Game is the normal form
game Ge(r) defined on the above domain with a sim-
ple coalitional game G and a reward vector r =
(r1, ..., rn), as follows.

In Ge(r) agent ai has two strategies: Si =
{exert, shirk}. Denote by Σ the set of all strategy
profiles Σ = S1 × ... × Sn. Given a strategy profile
σ = (s1, ...sn) ∈ Σ, we denote the coalition of agents
that exert effort in σ by Cσ = {ai ∈ I|si = exert}.
To fully define the game, we must also define the pay-
off function of each agent Fi : Σ → R. The payoffs
depend on the reward vector r = (r1, ..., rn): the pay-
off of each agent in strategy profile σ is his expected

reward minus the cost of the effort exerted. Thus:

Fi(σ) =

{
ei(Cσ)− ci if si = exert

ei(Cσ) if si = shirk

Ge depends on r, so we denote it Ge(r).

Given a simple coalitional game G, each reward
vector r defines a different effort game Ge(r). Given
an effort game, the principal may want to make sure
a certain subset of the agents exert effort, and it is up
to him to choose a reward vector that achieves this,
under certain assumptions on the rational behavior of
these agents. The strategies used by the agents are
determined by a certain game theoretic solution con-
cept. Such solution concepts typically define different
possible strategy profiles. A reward vector that guar-
antees that a certain coalition C ′ exerts effort, under
a certain solution concept, is an incentive inducing
scheme for C ′.2

Definition 10. Incentive Inducing Scheme for a
Coalition C ′ in the Effort Game Ge is a reward vector
r = (r1, ..., rn), such that in the effort game Ge(r), in
any strategy profile σ ∈ Σ allowable by the solution
concept, the agents in C ′ exert effort, so C ′ ⊂ Cσ.

Although there may be many possible incentive in-
ducing reward vectors, the principal is self-interested,
and attempts to minimize the total of rewards it pays,∑n
i=1 ri.
Given an effort game domain Ge and a coalition

of agents C ′ ⊂ I that the principal wants to exert
effort, we now define two types of incentive inducing
schemes: a dominant strategy scheme, and an iter-
ated elimination of dominated strategies scheme.

Definition 11. A Dominant Strategy Incentive In-
ducing Scheme for C ′ is a reward vector r =
(r1, ..., rn), s.t. for any ai ∈ C ′, exerting effort is
a dominant strategy for ai.

2Several papers regarding the “combinatorial agency” [1]
have focused on a Nash equilibrium domain. We survey some
of this work in Section 5. In this paper, we focus on a domi-
nant strategy implementation, and on an iterated elimination
of dominant strategies implementation.
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Definition 12. An Iterated Elimination of Domi-
nated Strategies Incentive Inducing Scheme for C ′ is
a reward vector r = (r1, ..., rn), such that in the effort
game Ge(r), after any sequence of eliminating domi-
nated strategies, for any ai ∈ C ′, the only remaining
strategy for ai is to exert effort.

2.2.1 Strategy Changes and Expected Re-
wards

We first define the following relation regarding effort
exertion in strategy profiles. Let D be an effort game
domain, and r = (r1, . . . , rn) be a reward vector. Let
σ1, σ2 ∈ Σ be two strategy profiles in Ge(r), so σ1 =
(s1,1, s1,2, . . . , s1,n) and σ2 = (s2,1, s2,2, . . . , s2,n). We
say σ1 is more exerting than σ2, and denote σ1 >e σ2

if the following holds: all the agents that exert effort
in σ2 also exert effort in σ1, and at least one agent
that exerts effort in σ1 does not exert effort in σ2, so
for all ai we have s2,i = exert ⇒ s1,i = exert , and for
some aj we have s2,j = shirk and s1,j = exert .

We now show that the expected reward of a given
agent increases when more of the other agents ex-
ert effort (no matter whether that agent exerts effort
himself or not). We first prove that if a single agent
that shirked decides to exert effort, the expected re-
wards of all agents increase.

Theorem 1. Let D be an effort game domain, r =
(r1, . . . , rn) be a reward vector, and ai be a certain
agent in that domain. Let σ1, σ2 ∈ Σ be two strategy
profiles in Ge(r) so that for all aj 6= ai we have that
σ1, j = σ2j , and that σ1, i = exert and σ2, i = shirk.
Then for all j we have that ej(Cσ1) > ej(Cσ2).

Proof. The only difference between σ1 and σ2 is the
strategy used by ai, who shirks in σ2 but exerts effort
in σ1. Agent ai is in charge of task ti. Cσ is the set
of agents that exert effort in strategy profile σ, so
Cσ1 = Cσ2 ∪ {ai}.

Consider a task subset Tx. If ti /∈ Tx, denote
T dx = Tx ∪ {ti}, and if ti ∈ Tx denote T dx =
Tx \ {ti}. The notation in Section 2.2 denoted the
probability that exactly the tasks in Tx are the ones
achieved as PrC(Tx) =

∏
ti∈Tx pi(C) ·

∏
ti /∈Tx(1 −

pi(C)). We note that if ti ∈ Tx then PrCσ1 (Tx) =∏
tj∈(Tx\{ti})pj(Cσ1) ·

∏
tj∈(T\Tx\{ti})(1 − pi(Cσ1)) ·

βi >
∏
tj∈(Tx\{ti)pj(Cσ1) ·

∏
tj∈(T\Tx\{ti})(1 −

pi(Cσ1)) · αi = PrCσ2 (Tx). Thus, if ti ∈ Tx then
PrCσ1 (Tx) > PrCσ2 (Tx).

We denote the probability of completing Tx given
a partial strategy profile σ−i (with a missing strat-
egy for ai) as PrCσ−i (Tx) =

∏
tj∈(Tx\{ti}) pj(C) ·∏

tj∈(T\Tx\{ti})(1 − pj(C)). We note that this prob-
ability ignores the question of whether ti was com-
pleted (even if ti ∈ Tx) and only takes into consid-
eration the tasks in Tx \ {ti}. Given this notation,
we can see that for any task subset Tx we have that
PrCσ1 (Tx) + PrCσ1 (T dx ) = PrCσ2 (Tx) + PrCσ2 (T dx ),
since: PrCσ1 (Tx) + PrCσ1 (T dx ) = PrCσ−i (Tx) · βi +
PrCσ−i (Tx) · (1−βi) = PrCσ−i (Tx) ·αi + PrCσ−i (Tx) ·
(1− αi) = PrCσ2 (Tx) + PrCσ2 (T dx ).

In Section 2.2 we defined the expected reward
as ei(Cσ) =

∑
Tw∈Twin PrC(Tw) · ri. We have

assumed the underlying coalitional game G is
increasing (Section 2), so if a task subset Ta wins,
so does any superset of it, so if Ta ⊂ Tb then
Ta ∈ Twin ⇒ Tb ∈ Twin. Consider a winning task
subset Tw ∈ Twin. Either ti ∈ Tw or ti /∈ Tw. If
ti /∈ Tw, then T dw is also winning and T dw ∈ Twin
since Tw ∈ Twin and G is increasing (and Tw ⊂ T dw).
Thus, for any winning task subset Tw ∈ Twin either
ti ∈ Tw or T dw is also winning, so T dw ∈ Twin. Since
ek(Cσ) = rk ·

∑
Tw∈Twin PrCσ (Tw), we can express it

as:
ek(Cσ) = rk·(( 1

2

∑
Tw∈{T ′∈Twin|T ′∈Twin∧T ′d∈Twin}(PrCσ (Tw)+

PrCσ (T dw))) +
∑
Tw∈{T ′∈Twin|ti∈T ′} PrCσ (Tw)). Since

when moving from Cσ2 to Cσ1 the first sum remains
the same and the second increases, we have that
ek(Cσ1) > ek(Cσ2). We chose ak to be any agent, so
this holds for all agents.

We now show that the expected reward of any
agent increases when more of the other agents exert
effort.

Theorem 2. Let D be an effort game domain, r =
(r1, . . . , rn) be a reward vector, and ai be an agent in
that domain. Let σ1, σ2 ∈ Σ be two strategy profiles
in Ge(r) so that σ1 >e σ2, and so that σ1,i = σ2i .
Then ei(Cσ1) > ei(Cσ2).

Proof. Since σ1 >e σ2, the only difference between
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σ1 and σ2 are several agents that exert effort in σ1

but shirk in σ2. It is thus possible to create a series of
strategy profiles σ2 <e σ

′
1 <e σ

′
2 <e . . . <e σ

′
k <e σ1,

such that σ′i and σ′i+1 are identical, except for one
agent that shirks in σ′i but exerts effort in σ′i+1. We
can then apply Theorem 1, and get that ei(Cσ′i+1

) >
ei(Cσ′i), and that ei(Cσ1) > ei(Cσ2).

The above Theorems 1 and 2 have considered the
expected rewards given a certain strategy profile, but
can also be stated with regard to the probability of
having a winning task subset.

Corollary 1. If σ1, σ2 ∈ Σ are strategy profiles
such that for all aj 6= ai we have that σ1, j =
σ2j , and that σ1, i = exert and σ2, i = shirk,
then for all j we have that

∑
Tw∈Twin PrCσ1 (Tw) >∑

Tw∈Twin PrCσ2 (Tw). If σ1 >e σ2 are strategy pro-
files such that σ1 >e σ2 and such that σ1,i = σ2i , then∑
Tw∈Twin PrCσ1 (Tw) >

∑
Tw∈Twin PrCσ2 (Tw).

Proof. We simply consider Theorems 1 and 2 for the
case where ri = 1.

3 The Complexity of Incentives

Given an effort game, agents naturally consider
whether they should exert effort, and the principal
naturally considers how it should incentivize a cer-
tain subset of the agents to exert effort, while min-
imizing the sum of rewards it must give. Different
assumptions the principal has about the rational be-
havior of the agents are reflected in the solution con-
cept it uses. We now formally frame the above prob-
lems. In the rest of this section, we consider an ef-
fort game domain D, with agents I = {a1, . . . , an},
where each ai is responsible for task ti ∈. The under-
lying coalitional game is G, with the value function
v : 2T → {0, 1}. The set of success probabilities
is (α1, β1), . . . , (αn, βn), and the effort exertion costs
are c1, . . . , cn.

The following problems concern a reward vector
r = (r1, . . . , rn), the effort game Ge(r), and a target
agent ai.

Definition 13. DSE (DOMINANT STRATEGY
EXERT): Given Ge(r), is “exert” a dominant strat-
egy for ai?

Definition 14. IEE (ITERATED ELIMINATION
EXERT): Given Ge(r), is “exert” the only remain-
ing strategy for ai after iterated elimination of dom-
inated strategies? This means that if Σ′ is the set of
strategy profiles remaining after a sequence of iter-
ated elimination, then for any strategy profile σ′ =
(σ′1, . . . , σ

′
n) ∈ Σ′ we have σ′i = exert.

The following problems concern the effort game do-
main D, and a coalition C.

Definition 15. D-INI (DOMINANT INDUCING
INCENTIVES): Given D, compute a dominant strat-
egy incentive inducing scheme r = (r1, . . . , rn) for C
(see Definition 11).

Definition 16. IE-INI (ITERATED ELIMINA-
TION INDUCING INCENTIVES): Given D, com-
pute an iterated elimination of dominated strategies
incentive inducing scheme r = (r1, . . . , rn) for C (see
Definition 12).

The computational complexity of these problems
is investigated in the following sections.

3.1 Rewards and the Banzhaf Power
Index

We now show the relation between the complexity of
the above problems, and power indices in the under-
lying coalitional game.

Theorem 3. Let D be an effort game domain, where
for ai we have αi = 0 and βi = 1, and for all aj 6= ai
we have αj = βj = 1

2 . Let r = (r1, . . . , rn) be a re-
ward vector, so that for ai exerting effort is a domi-
nant strategy in Ge(r). Then, ri > ci

βi(v)
(where βi(v)

is the Banzhaf power index of ti in the underlying
coalitional game G, with the value function v).

Proof. Agent ai only has two strategies in Ge(r):
Si = {exert , shirk}. As in Definition 9, ai’s pay-
off in Ge(r) when exerting effort is ei(Cσ) − ci, and
ei(Cσ) when not exerting effort. Given an incomplete
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strategy profile σa−i (with a strategy missing for ai),
we denote its completion with ai exerting effort as
σae = (σ−i, si = exert), and its completion when ai
shirks as σas = (σ−i, si = shirk). σae and σas are two
complete strategy profiles, which are identical in all
strategies, except that of ai.

For exerting effort to be a dominant strategy, ai’s
payoff when exerting effort must be greater than
its payoff when shirking, no matter what the other
agents do. Thus, for exerting effort to be a dominant
strategy the following must hold: for all incomplete
strategy profiles σa−i we have that:

ei(Cσae )− ci > ei(Cσas ).

We can restate this as:∑
Tw∈Twin

ri Pr
Cσae

(Tw)− ci >
∑

Tw∈Twin

ri Pr
Cσas

(Tw)

or more briefly as:

ri >
ci∑

Tw∈Twin(PrCσae (Tw)− PrCσas (Tw))

It remains to show that
∑
Tw∈Twin(PrCσae (Tw) −

PrCσas (Tw)) = βi(v).
Let Tw ∈ Twin be a task subset so that ti ∈ Tw.

Since αi = 0 and βi = 1 and since for any j 6= i we
have αj = βj = 1

2 , for any σa−i we have PrCσae (Tw) =
( 1
2 )n−1 and PrCσas (Tw) = 0.
On the other hand, let Tw ∈ Twin be a task subset

so that ti /∈ Tw. Due to the same reason, for any σa−i
we have PrCσae (Tw) = 0 and PrCσas (Tw) = (1

2 )n−1.
Thus we have:∑
Tw∈Twin(PrCσae (Tw)− PrCσas (Tw)) =∑

Tw∈Twin|ti∈Tw(PrCσae (Tw)− PrCσas (Tw)) +∑
Tw∈Twin|ti /∈Tw(PrCσae (Tw)− PrCσas (Tw)) =∑
Tw∈Twin|ti∈Tw(( 1

2 )n−1 − 0) +∑
Tw∈Twin|ti /∈Tw(0− ( 1

2 )n−1) =
( 1
2 )n−1 · [

∑
Tw∈Twin|ti∈Tw 1 −

∑
Tw /∈Twin|ti∈Tw 1] =

βi(v)
Note that the final equality requires that v is in-

creasing, so every winning coalition C that ai /∈ C
also wins when ai is added to that coalition, so
C ∪ {ai} also wins.

Consider an effort game domain D, the reward vec-
tor r, and the resulting effort game Ge(r). We now
show that DSE, testing whether exerting effort is a
dominant strategy for a certain agent ai, is at least
as hard computationally as calculating the Banzhaf
power index in the underlying coalitional game G.
Since calculating the Banzhaf index is known to be
#P-hard in various domains (see Section 5), this
shows that in general DSE is also #P-hard.

Theorem 4. DSE is as hard computationally as cal-
culating the Banzhaf power index of its underlying
coalitional game G.

Proof. Consider a simple coalitional game G with
a characteristic function v. We reduce the prob-
lem of calculating βi(v), the Banzhaf index of agent
ti in G, to a polynomial number of DSE prob-
lems. There are 2n−1 possible values βi(v) can take:

1
2n−1 ,

2
2n−1 ,

3
2n−1 , . . . , 1. We perform a binary search

on the correct value of βi, by using DSE queries. We
construct an effort game domain, that contains an
agent aj for each task tj in G. The success probabili-
ties for ai are αi = 0 and βi = 1. For all other agents
aj 6= ai the success probabilities are αj = βj = 1

2 .
The effort exertion costs are ci = 1 for all the agents.

The first DSE query is regarding the reward vector
of r = (r1 = 0, r2 = 0, . . . , ri−1 = 0, ri = 2 · ci, ri+1 =
0, . . . , rn = 0). Due to Theorem 3, if the DSE answer
is “yes”, the following must hold: ri = 2 · ci > ci

βi(v)
,

or equivalently βi(v) > 1
2 . Similarly, to test if βi >

1
k , we simply test DSE with the reward vector r1 =
0, r2 = 0, . . . , ri−1 = 0, ri = k · ci, ri+1 = 0, . . . , rn =
0. Thus, we are able to find βi in O(log2(2n−1)) =
O(n), so a polynomial procedure for DSE can be used
to construct a polynomial procedure for calculating
the Banzhaf power index in the underlying game.

One domain of coalitional games where calculating
the Banzhaf power index is known to be NP-hard is
weighted voting games [5]. Thus, in an effort game
where the underlying coalitional game is a weighted
voting game, it is NP-hard to test if exerting effort is
a dominant strategy. Obviously, calculating a reward
vector that will make the dominant strategy of all
the agents be “exert effort” is harder than testing
whether a given reward vector makes exerting effort
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a dominant strategy for some agent, so D-INI is also
generally NP-hard.

4 Inducing Incentives in
Weighted Voting Games

We now consider a restricted class of effort games
in weighted voting domains, and show how to find
a dominant strategy incentive inducing scheme, or
an iterated elimination of dominated strategies in-
centive inducing scheme, in these domains. The do-
main highlights the relation between power in the
underlying coalitional game, and the incentives for
the resulting effort game domain.

In our domain, voters decide on a course of action
using weighted voting. Each voter has a weight, and
a decision passes if the total weight of the agents that
vote for it exceeds a certain threshold. We will con-
sider the case where the voters may have different
weights (voter i has weight wi), but the quota is so
high that in fact the decision can only pass when all
of the agents vote for it: we assume that the quota
for passing the decision is q =

∑n
i=1 wi. Thus, in

this restricted setting, all the voters have equal power
(so the Banzhaf power index is the same for all the
agents, even though they have different weights).

Suppose each voter has a probability of α to vote
in favor of the decision. An agent ai may increase
the probability of voter vi voting in favor of the de-
cision to β > α, at a certain cost of exerting this
effort, ci. In our domain, we will assume the effort
exertion cost is proportional to the voter’s weight, so
ci = wi. Consider a principal, that wants to maxi-
mize the probability of this decision passing. In this
case, the principal wants all the agents to exert their
effort, so all the voters would have a high probability
of accepting the decision. Formally we model this sit-
uation as an effort game domain D. The underlying
coalitional game G has the tasks T = (t1, . . . , tn). A
coalition of tasks C ⊆ T wins in G if it contains all
the tasks and loses otherwise, so v(T ) = 1, and for
all C 6= T we have v(C) = 0. The success proba-
bility pairs are identical for all tasks: (α1 = α, β1 =
β), (α2 = α, β2 = β), . . . , (αn = α, βn = β). Agent

ai is in charge of ti, and the effort exertion costs are
the weights in the underlying weighted voting game,
so ci = wi.

Consider the above effort game domain D. Given a
reward vector r = (r1, . . . , rn) we get the effort game
Ge(r). We show how to compute both a dominant
strategy incentive inducing scheme (D-INI) and an it-
erated elimination of dominated strategies incentive
inducing scheme (IE-INI) in this domain. We also
show how to find such an IE-INI vector that mini-
mizes

∑n
i=1 ri.

We first show how to calculate the minimal reward
ri that makes exerting effort a dominant strategy for
ai in the above domain.

Lemma 1. If ri > ci
αn−1·(β−α) , then exerting effort

is a dominant strategy for ai.

Proof. As seen in Theorem 3, the condition
for exerting effort being a dominating strategy
for ai is that for every σa ∈ Σ−i: ri >

ciP
Tw∈Twin

(PrCσae
(Tw)−PrCσas

(Tw)) . However, in this do-

main, the only winning task subset is T , so we can
restate this as: ri > ci

(PrCσae
(T )−PrCσas

(T )) . Since the

only difference between σae and σae is that ai exerts
effort in the first and shirks in the second, we have
PrCσae (T ) = Pσa(T ) · β and PrCσas (T ) = Pσa(T ) · α
(the notation Pσa(T ) denotes the probability of com-
pleting T given a partial strategy profile σa ∈ Σ−i
similar to the notation used in Theorem 1). Thus, an
equivalent condition for having exerting effort be the
dominant strategy for ai is that for every σa ∈ Σ−i
we have ri > ci

PrCσa (T )·(β−α) . Each σa ∈ Σ−i thus re-
quires a different minimal reward ri, and the smaller
PrCσa (T ), the higher ri must be. In our domain,
PrCσa (T ) is smallest when all the agents shirk in σa,
so Cσa = φ and PrCσa (T ) = αn−1.

The above lemma allows us to solve D-INI in this
domain in polynomial time—we have a simple for-
mula for the minimal reward vector r which is a dom-
inant strategy incentive inducing scheme.

Corollary 2. D-INI is in P for the effort game in
the above specific weighted voting domain. The fol-
lowing reward vector is a dominant strategy incentive
inducing scheme: r∗ = ( c1

αn−1·(β−α) , . . . ,
cn

αn−1·(β−α) ).
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Proof. A D-INI solution is a reward vector that
makes exerting effort the dominant strategy for each
of the agents. Due to Lemma 1, r∗ is indeed such a
vector. We also note that if ri < ci

αn−1·(β−α) , shirking
is the better strategy for ai under the strategy profile
where all the other agents shirk, so the above r∗ is the
dominant strategy incentive inducing scheme which
is minimal in terms of

∑n
i=1 ri. This direct formula

can be calculated in polynomial time.

We now consider IE-INI, computing an iterated
elimination of dominated strategies incentive induc-
ing scheme in this domain. We show that such a
scheme can significantly reduce the total rewards∑n
i=1 ri. We suggest an IE-INI procedure for this

domain.
Due to Lemma 1, if ri > ci

αn−1·(β−α) , then exert-
ing effort is a dominant strategy for ai. Thus, after
one step of elimination of dominated strategies, ai is
sure to exert effort in the game. Consider an agent aj ,
who knows ai would exert effort. We denote the set of
strategy profiles which miss both the strategies for ai
and aj as Σ−{i,j} = Σ1×. . .×Si−1×Si+1×. . . Sj−1×
Sj+1 × Sn. Similarly to the notation in Theorem 1)
we denote the probability of completing Tx ⊆ T given
a partial strategy profile σb ∈ Σ−{i,j} = (missing
the strategies of both ai and aj) as PrC

σb
(Tx) =∏

tk∈(Tx\{ti,tj}) pk(C) ·
∏
tk∈(T\Tx\{ti,tj})(1− pk(C)).

We note that this probability ignores the question
of whether ti or tj were completed (even though
ti, tj ∈ Tx) and only takes into consideration the
tasks in Tx\{ti, tj}. The following lemma shows that
the fact that one agent is sure to exert effort makes
it cheaper to make sure another agent exerts effort.

Lemma 2. Let ai, aj be two agents,and ri, rj be
their rewards so that ri > ci

αn−1·(β−α) and that rj >
cj

αn−2·β·(β−α) . Then under iterated elimination of
dominated strategies, the only remaining strategy for
both ai and aj is to exert effort.

Proof. We follow steps similar to Lemma 1. Since ai
exerts effort, the condition for exerting effort being a
dominating strategy for aj (after eliminating shirking
as a strategy for ai) is that for every σb ∈ Σ−{i,j} we
have rj >

cj
PrC

σb
(T )·β·(β−α)

. Similarly to Theorem 3,

each σb ∈ Σ−{i,j} requires a different minimal reward
rj , and the smaller PrC

σb
(T ), the higher rj must be.

Again, PrC
σb

(T ) is smallest when all the agents shirk
in σb, so Cσb = φ and PrC

σb
(T ) = αn−2. Thus, if ai

is known to exert effort, a reward rj >
cj

αn−2·β·(β−α)

guarantees that exerting effort is a dominant strategy
for aj (when ai is known to exert effort).

We now consider an iterated elimination of domi-
nated strategies incentive inducing scheme (IE-INI).
We first choose an ordering of the agents. We then go
through the agents in that order, and find the mini-
mal reward required to make exerting effort a domi-
nant strategy for each of them, given that its prede-
cessors exert effort as well. Denote by π a permuta-
tion (reordering) of the agents (so π : {1, . . . , n} →
{1, . . . , n} and π is reversible). We denote the set
of all such permutations Π. π(i) is the location of
ai in the new ordering of the agents. In the gener-
ated reward scheme, the strategy “shirk” for aπ(i) is
eliminated during round i of strategy elimination.

Theorem 5. IE-INI is in P for the effort game
in the above mentioned specific weighted voting do-
main. For any reordering of the agents π ∈ Π, a
reward vector rπ where for all agents ai we have:
rπ(i) >

cπ(i)

αn−π(i)·βπ(i)−1·(β−α)
is an iterated elimination

incentive inducing scheme.

Proof. The above definition requirement for the first
agent in the reordering, ai such that π(i) = 1, is
exactly as required in Lemma 1, and for the second
agent exactly as in Lemma 2. We can continue the
process: given that ri > ci

αn−1·(β−α) and that rj >
cj

αn−2·β·(β−α) , we can calculate the minimal reward rk
that makes exerting effort a dominant strategy for yet
another agent, ak. Similarly to the proof of Lemma 2,
we can see that rk > ck

αn−3·β2·(β−α) . By induction and
using the same proof technique as in Lemma 2, we can
see that rπ(i) >

cπ(i)

αn−π(i)·βπ(i)−1·(β−α)
makes “exert” a

dominant strategy for aπ(i) after i rounds of elimi-
nating dominated strategies. This direct formula can
be calculated in polynomial time.

We note that each reordering π of the agents results
in a different reward vector. The principal is inter-
ested in minimizing

∑n
i=1 ri. We show that the best
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ordering is according to the agents’ exertion costs
ci = wi.

Lemma 3. The reward vector rπ that minimizes∑n
i=1 ri is achieved by sorting agents by their weights

wi = ci, from smallest to biggest.

Proof. Let a = (ai1 , ai2 , . . . , aik−1 , aik , aik+1 , aik+2 , . . . , ain)
and b = (ai1 , ai2 , . . . , aik−1 , aik+1 , aik , aik+2 , . . . , ain)
be two reorderings of the agents that are identical
except switching places between the adjacent aik
and aik+1 . Let ra = (ra1 , . . . , r

a
n), rb = (rb1, . . . , r

b
n), be

the resulting reward vectors for these orderings, as
in Theorem 5. It suffices to show that if wik > wik+1

then
∑n
i=1 r

b
i <

∑n
i=1 r

a
i , since if this holds, we have

a “bubble sort” sequence of switches of agent pairs
that monotonically drops the total rewards paid,
and ends in the ordering of the agents according to
their size.

Consider an agent ai which is in the k’th location in
the sequence. That is, the rewards for all the agents
in locations 1, 2, ..., k − 1 are such that after k − 1
rounds of elimination of dominated strategies, they
are all sure to exert effort.

Due to Theorem 5, the required reward for it is ri >
ci

αn−k·βk−1·(β−α)
. Moving it to the k+1 location would

make this required reward be ri > ci
αn−k−1·βk·(β−α)

.
The ratio between the two required rewards is α

β < 1.
Denote by A the required reward for aik when he

is on the k’th location, so Aq is the required reward
when he is in the k + 1’th location. Denote by B
the required reward for aik+1 when he is on the k’th
location, so Bq is the required reward when he is
in the k + 1’th location. Thus switching the agent’s
location in the sequence changes the total rewards
from A + Bq to Aq + B. We note that A > B, due
to the equation of Theorem 5. Since q < 1 and since
A > B the change in reward A + Bq − Aq + B is
positive, so we can improve the principal’s situation
by switching these agents. Thus, wik > wik+1 , and
then

∑n
i=1 r

b
i <

∑n
i=1 r

a
i .

We have thus shown that in this domain we can
find an IE-INI by sorting the agents according to their
weights (and thus costs of exerting efforts), and us-
ing the equation from Theorem 5 to construct the re-
ward vector. Section 3.1 discussed effort games over

general weighted voting games, and showed that in
that domain it is NP-hard to find an IE-INI, since
it is NP-hard to compute the Banzhaf power index
in weighted voting games. However, this section dis-
cusses weighted voting games where the threshold is
so high that the only winning coalition is that of all
the agents. In this domain, all agents have the same
Banzhaf power index, which can be calculated using
a direct formula, and indeed, for this domain we have
shown that IE-INI is in P.

5 Related Work

The effort games model relies on both cooperative
and non-cooperative game theoretic models. Dom-
inant strategy equilibria, Nash equilibria, and iter-
ated elimination of strictly dominated strategies are
all known solution concepts. However, the compu-
tational complexity of iterated elimination of domi-
nated strategies has been less studied than the com-
plexity of Nash equilibria. A few papers that do deal
with this issue are [6, 8, 4].

The concept of power indices originated from work
on cooperative game theory. The Shapley-Shubik in-
dex [12], an application of the Shapley value [11],
has been used to measure power in committees and
politics. The Banzhaf power index originated in
[3]. Several papers have dealt with the computa-
tional complexity of calculating power indices. [9] has
shown that calculating the Banzhaf index in weighted
voting games is NP-complete. [2] has considered
the problem of calculating the Banzhaf power in-
dex in network flow games. In this coalitional game,
which models a certain problem in network reliabil-
ity, agents control links in a network flow graph, and
a coalition wins if it manages to allow a certain flow
between a source vertex and a target vertex. It was
shown for that domain that calculating the Banzhaf
index is #P-complete.

Our model of effort games considers the fact that
agents working in teams may not exert effort when
their decisions are unobservable. This creates a moral
hazard problem. Such considerations are also dis-
cussed in [7].

A model very similar to ours appears in [13]. That
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paper considers a simple situation, where a set of
identical agents are working on a common project.
Each agent may exert effort or not. Similarly to our
model, each agent is in charge of a certain task, which
has a probability of β = 1 of succeeding when effort is
exerted, and some probability α of succeeding even if
the agent shirked. However, that paper defines a very
restricted effort game, where in the underlying coali-
tional game the only winning coalition is the grand
coalition I, where α is the same for all agents, and
where a task is always completed when the agent in
charge exerts effort, so β = 1. [13] considers a princi-
pal who attempts to incentivize all the agents to exert
effort, and shows a certain, easily calculable, reward
vector which is an iterative elimination of dominated
strategies implementation. Since agents in that do-
main are identical, yet the rewards are different, it
shows that a certain discrimination allows the prin-
cipal to minimize his payments while still having the
project succeed with probability of 1. Our model of
effort games extends that model, by allowing differ-
ent subsets of the tasks to complete the project. The
focus of [13] is on the economic question of discrim-
ination in such settings, whereas our paper concen-
trates on the computational features of effort games,
and their relation to power indices.

A model similar to ours is also given in [1]. That
work also considers a domain where a principal em-
ploys agents in a joint project. The common theme
of this paper and [1] is that the actions taken by the
agents affect the probability that the project is suc-
cessful. However, the model there is more general—it
allows agents to take more than one action, and each
strategy profile results in a certain distribution over
the possible outcomes for the joint project. One ma-
jor difference between our model and their model is
the choice of a solution concept. [1] focuses on a
Nash Equilibrium, while this paper focuses on the
stronger notion of a dominant strategy equilibrium
and on iterated elimination of dominated strategies
equilibrium. Thus, our probablistic model can be
represented within “combinatorial agency”. How-
ever, we have different assumptions about the ratio-
nal behavior of the agents, which are reflected in the
solution concept used. These different solution con-
cept changes the complexity of inducing incentives,

so our results are very different from those in that
line of related work.

6 Conclusions and Future
Work

We defined the effort games model of cooperation,
discussed how an effort game relies on an underlying
coalitional game, and showed that the complexity of
inducing incentives (or even simply testing if exert-
ing effort is a dominant strategy) is at least as hard
as calculating the Banzhaf power index in the un-
derlying game. We also discussed effort games where
the underlying coalitional game is a restricted class of
weighted voting games, and showed that for this do-
main we can answer several questions regarding the
incentives in polynomial time. Defining the relation
between computing incentives in an effort game and
calculating the Banzhaf index in the underlying game
allows us to easily use complexity hardness results re-
garding power indices to show complexity results in
effort games.

It remains an open problem to examine the com-
plexity of inducing incentives for other classes of un-
derlying games. It also remains an open problem
to consider the relation between the computational
complexity of inducing effort in effort games, and the
computational complexity of other problems in the
underlying coalitional game. For example, we believe
that inducing incentives in effort games is at least as
hard computationally as various counting problems.
Given our hardness results for general effort games,
it will also be interesting to see if incentive inducing
schemes can be approximated in polynomial time.
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