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Abstract.
State Oriented Domains (SODs) are domains where agents are

concerned with moving the world from an initial state into one of
a set of target states. Negotiation in this environment was explored
by Rosenschein and Zlotkin [9], who provided an analysis of in-
centive compatible mechanisms over a variety of two-agent, single-
encounter types. Their model included the concept of an agent’s
worth (the agent’s benefit from achieving its goal), using it as a base-
line for utility calculation of a negotiation’s outcome. One scenario
left unexamined, however, was the case where agents know one an-
other’s worths, but not one another’s goals. This situation creates the
possibility of agents’ lying to one another solely about goals, to in-
fluence the outcome of a negotiation.

In this paper, we explore this specific case of known worths and
unknown goals in two-agent State Oriented Domains, in a variety of
encounter types. Through analysis and examples, it is shown that an
agent can benefit from declaring less costly goals, but that there are
certain limits to the lies an agent can beneficially declare. We also
analyze the connection of this work to classic game theory results,
including general work on incentive compatible mechanisms and the
revelation principle.

1 INTRODUCTION AND BACKGROUND

Negotiation in Multiagent Systems (MAS) is often used as a tech-
nique for agents to agree on a specific goal, on a plan of action, or
on an allocation of tasks among themselves. Models of negotiation
in MAS have been built for specific types of domains, one of the
most popular being so-called “State Oriented Domains” (SODs) [9].
In State Oriented Domains, agents are concerned with moving the
world from an initial state into one of a set of target states. The set
of target states is called the agent’s goal. This formalization implies
that goals cannot be partially achieved; a state is either in the goal
set, or it is not.

In order to reach one of the goal states, an agent carries out a se-
quence of actions (a plan), that terminates in a goal state. This state-
oriented description of an agent’s environment thus reflects the clas-
sical approach of artificial intelligence systems [10], and specifically
the state-space search of artificial intelligence planning [4].

In a multiagent SOD, the goals of individual agents may or may
not overlap. These multiple agents, to avoid harmful interference and
leverage helpful synergy, may agree on a deal that specifies each
agent’s plan (the actions that each one should execute), bringing the
world into a state that is in the intersection of their goal sets.

An agent’s plan to achieve a goal has a cost, reflecting (in some
sense) the amount of work to be done by the plan. Assume that each
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agent in a multiagent SOD has some upper bound on the cost that he
is willing to pay to reach a goal state. We call this upper bound the
worth of the agent’s goal (following [9]).

The utility for an agent of the plan that a deal prescribes for him
will be assumed to be the difference between the worth of his goal
and the cost of his role in that plan. We further assume that an agent
will only attempt to reach a goal using a specific plan if its utility
is greater than 0 (negative utilities imply that an agent loses more
than it gains, while 0 utility implies indifference between accepting
or rejecting the deal).

The definition of State Oriented Domains permits agent actions to
have side effects: agents can achieve one another’s goals (even when
such achievement is not the reason actions are being carried out), or
inhibit one another from achieving their goals. However, there can
also be a conflict between agents’ goals, and there is no guarantee
that the goal states of agents overlap. The possibility of agents reach-
ing a deal (i.e., an assignment of plans) that is mutually acceptable
depends both on the existence of a goal state that satisfies them both,
as well as the allocation of effort, which needs to provide them both
with positive utility.2

1.1 Incomplete Information

An environment in which agents have complete information about
other agents’ worth and goal set is relatively straightforward. Pro-
tocols may be implemented such that both agents will agree on a
deal that results in equal utility for participants, with the resulting
maximization of the product of agent utilities. This solution has cer-
tain attributes that an environment designer might find desirable to
achieve.

What about situations of incomplete information? Given our in-
teraction model, an agent might have incomplete information about
other agents’ worth and/or goals. There are three possible cases:

Worth Goals
unknown known
unknown unknown
known unknown

In order to cope with the lack of information (again, following [9]),
we add a “-1-phase” where agents simultaneously declare private in-
formation before the beginning of the negotiation. The negotiation
then proceeds as if the revealed information were true.

Rosenschein and Zlotkin analyzed the two cases where worth is
not known. In this paper, we analyze a situation that was not dealt
with in the original treatment, namely the case where worth is known

2 In [9] probabilistic deals are also explored, where even if no mutually ac-
ceptable goal exists, the agents might agree on a deal that leaves them both
with positive expected utility—though only one reaches its goal.



and goals are not known. The general conclusion of Rosenschein
and Zlotkin was that, in situations of partial information, a strategic
player can benefit by pretending that its worth is lower than it actu-
ally is, either by declaring lowered worth or by declaring a cheaper
goal. In our case, when the worth is known, an agent cannot lower
its worth, but as we will see, it can get more utility by declaring a
cheaper goal.

2 DEFINITIONS

We adopt the definitions of [9].

Definition 1 (State Oriented Domain) A State Oriented Domain
(SOD) is a tuple < S;A;J ; c > where:

1. S is the set of all possible world states.
2. A = fA1; A2; :::Ang is an ordered list of agents.
3. J is the set of all possible joint plans. A joint plan J 2 J moves

the world from one state in S to another. The actions taken by
agent k are called k’s role in J , and will be written as Jk. We can
also write J as (J1; :::; Jn).

4. c is a function c : J ! (R
+
)
n. For each joint plan J in J , c(J)

is a vector of n positive real numbers, the cost of each agent’s role
in the joint plan. If an agent plays no role in J , his cost is 0.

Definition 2 (Encounter) An Encounter within an SOD
hS;A;J ; ci is a tuple hs; (G1; :::; Gn)i such that s 2 S is
the initial state of the world, and for all k 2 f1:::ng; Gk is the set of
all acceptable final world states from S for agent Ak. Gk will also
be called Ak’s goal.

Definition 3 (Deals) Given an encounter in a two-agent SOD
hs; (G1; G2)i:

� We define a Pure Deal to be a joint plan J 2 J that moves the
world from state s to a state in G1 \G2.

� We define a Deal to be a mixed joint plan (J : p); 0 � p � 1 2 R

such that J is a Pure Deal.

The semantics of a Deal are that the agents will perform the joint
plan (J1; J2) with probability p, or (J2; J1) with probability 1� p.

Definition 4 (Cost) If Æ = (J : p) is a Deal then Costi(Æ) is de-
fined to be pc(J)i + (1 � p)c(J)k (where k is i’s opponent). c(J)i
is the i-th element of the cost vector, i.e., it is the cost of the i-th role
in J .

Definition 5 (Worth of a goal) The worth of goal Gi to agent i, de-
noted wi, is defined as the maximum expected cost that agent i is
willing to pay in order to achieve his goal Gi.

Definition 6 The utility of a deal Æ for agent Ai is defined as
ui(Æ) = wi � Costi(Æ):

Definition 7 A deal Æ is individually rational if, for all i, ui(Æ) � 0

Definition 8 A Deal Æ is Pareto optimal if there does not exist an-
other Deal that dominates it—there does not exist another Deal that
is better for one of the agents and not worse for the other.

Definition 9 The negotiation set NS is the set of all the deals that
are both individual rational and pareto optimal.

We also introduce several additional definitions, standard in the
game theory literature, that were not originally used in [9].

Definition 10 (Budget-Balance) A negotiation is said to be budget
balanced when the total payments received during the process from
agents is at least as great as the total payments made during the
process to agents [2, 7].

The concept of budget balance assumes that payments to and from
agents may be part of the negotiation mechanism.

Definition 11 (Efficiency) The negotiation is efficient when it max-
imizes the total (sum) of utilities of all agents.

We are interested in goals with (weakly) dominant strategies. The
agents will choose their best possible strategy, and this strategy will
be independent of what the other agents do. Furthermore, all of our
strategies will be incentive compatible (IC) [2, 3], meaning that the
agents will tell the truth during the negotiation process.

3 IMPOSSIBILITY AND HARDNESS RESULTS

In order to show the impossibility of solving the negotiation prob-
lem (i.e., finding a suitable deal), as formalized above, we show its
reduction to the multicast problem. The multicast problem is a par-
ticular case of a bilateral trading mechanism, in which several parties
attempt to bargain to achieve an agreed-upon goal. A well known re-
sult [6] states that it is impossible to achieve budget balance (BB) and
individual rationality (IR) while maximizing utility in these types of
problems. We will relate to this impossibility result below in Sec-
tion 5, where we design a mechanism for our scenario that exhibits
some of these attributes.

In fact, even if we are willing to forgo budget balance and merely
find the most efficient IC mechanism, the solution to the problem is
still NP-hard. This is due to a result [5] which states that the multicast
problem is NP-hard to solve, and another result [1] which states that
it is NP-hard even to approximate. We first define the multicast prob-
lem, and then show a simple reduction from the multicast problem to
the problem of negotiation, which demonstrates that it is impossible
to achieve BB and IR while maximizing welfare. This means that we
have to compromise on some of these properties.

Multicast transmission is defined as follows (we utilize the same
notation as [1, 5]). There is a user population P residing at a set of
nodes N that are connected by links L. There is a privileged node �
that will be called the source. We assume that there is a universal tree
T (P ). Given any set of receivers R � P , the multicast tree T (R) is
the minimal tree T (R) � T (P ) \ R. Each node has a valuation vi
if it is in R.

We now show the reduction between the SOD negotiation scenario
and the multicast problem. Let us assume for a contradiction that
there is a mechanism for the negotiation scenario that is IR, BB, and
maximizes welfare. We then show that there is such a mechanism
for the multicast problem. Given any multicast problem we define a
world in which there are P blocks (each corresponding to a different
player) that are in P different spaces and such that there is an empty
space to the right of each block. We define a set of P agents who
negotiate: agent i wishes that the blocks corresponding to a path to
node i in the multicast problem be moved to the right. The worth for
agent i of any state of the world that has these blocks moved is the
valuation in the multicast problem.

Note that any solution to this blocks world problem results in a
solution to the multicast problem, where R consists of blocks that
have been moved. By the definition of the states of the world, this set
R is connected along links in the multicast problem.



Since the multicast problem has no general solution that is IR, BB
and maximizes welfare, the blocks world similarly (a classic State
Oriented Domain) has no such general solution.

To summarize, by [6] it is impossible to find an IR+BB welfare-
maximizing mechanism for this problem (even in the case in which
there are no conflicts) no matter how much computational power we
invest. By [5] it is hard to find the most efficient allocation with IC
agents in polynomial time, and by [1] it is hard to even approximate
the most efficient solution in polynomial time. On the other hand, it
is possible to achieve some of the desired properties. For example,
IR plus BB can be achieved by the empty set. IR plus maximized
welfare can be achieved by the complete set (in the case where there
are no conflicts). BB plus maximizing welfare can be achieved by
charging one player for all of the cost incurred by the protocol.

4 INCOMPLETE INFORMATION ABOUT
GOALS

In this section, we consider agents negotiating with incomplete infor-
mation about goals, but knowing one another’s worth, in a variety of
encounter types: cooperative encounters using mixed deals, conflict
encounters using semi-cooperative deals (where there is a common
subgoal), and conflict encounters using multi-plan deals (where there
is no common subgoal).

We will use examples from the slotted blocks domain, a State Ori-
ented Domain, to illustrate agent interactions. In the slotted blocks
domain, there is a table with a bounded number of slots. The agent
operations are PickUp and PutDown; each operation has a cost of
one. An agent can only hold one block at a time. We assume that the
worth of both agents is publically known, but their goals are private
information.

Agents are assumed not to agree on a deal that is not individual
rational, which means they will not agree on a deal where either one’s
utility is negative. We tighten this assumption a little, for the purposes
of our analysis: we assume that if ui(Æ) = 0, an agent will prefer the
conflict deal, rather than Æ, even though the two options are the same
for him. The rationale for this is that the agent with utility 0 would
like to be able to proclaim to the other agent, “If I do not get more
than 0 from our deal, there will be no deal.”

4.1 Cooperative—Mixed Deals

Figure 1. Cooperative Situation

Suppose that the initial state is as in Figure 1. Agent A1’s goal is
that the white block is on a gray block at slot 2; he does not care

where the other blocks are. Agent A2’s goal is that the black block
is on a gray block at slot 1, also not caring where the other blocks
are. As stated above, the goals are private information, but worth is
public. Assume that w1=12, and w2=12. If each agent is alone in the
world, it will cost him 8 to reach his goal alone, which will result in
utility of 4 for agent A1 (12 � 8) and 4 for A2 (12 � 8). There is
no contradiction between the two goals since there exists a state that
satisfies both agents, and there is a joint plan to reach this state with
a total cost of 8.

The optimal plan has two roles, one requiring six operations and
one requiring two operations. One agent will lift the black (or white)
block, while the other rearranges all the other blocks appropriately.
The first agent will then put down the black (or white) block. When
they both tell the truth, they will agree on J :

1

2
where J = (J1; J2)

(which cost 2 and 6, respectively) giving each utility of 8.

Figure 2. Lying in a Cooperative Situation

Suppose that A1 decides to lie and instead of declaring his actual
goal, says that his goal is for the white block to be at slot 2 but not
on the table, as we can see in Figure 2. He would then not agree to
carry out a plan of cost greater than two, and the agents will agree on
J = (J1; J2) as a joint plan (p = 1). This means that A1 will always
assume the cheaper role, giving A1 utility of 10, and A2 utility of 6.
So by declaring a cheaper goal, A1 gets more utility; A1 is able to
reduce the apparent cost for him of achieving his goal alone, while
not compromising on the achievement of his real goal. This happens
because there is only one state that satisfies both A2’s goal and A1’s
lie, and this state also satisfies A1’s real goal.

4.2 Semi-Cooperative Deals

Beneficial lies can also exist in conflict situations, that is, when there
does not exist a state that satisfies both agents’ goals. In these situa-
tions, there can be a beneficial lie if there is a common subgoal for
the agents.

Consider, for example, the situation depicted in Figure 3. Agent
A1 wants the black block to be at slot 1, whereas Agent A2 wants
it to be at slot 3. In addition, both want to swap the blocks at slot 4.
The cost for each agent to achieve his goal alone is 10. An agent can
move the gray block to slot 3, then the white block to slot 2, move the
gray back to slot 4, then put the white on the gray, and finally move
the black to slot 1 (or slot 3, depending on the agent).

Assume that w1 = w2 = 12. If both agents tell the truth, they will
agree to do the swap cooperatively (which costs 2 for each agent, in-
stead of 8), and then flip a fair coin to decide who will continue with
his goal. This brings them an expected utility of 3: each agent will
do 2 operations for swapping the blocks at slot 4, and with prob-



ability 1

2
will achieve his goal (worth 12) with a cost of 2 more

(u1 = u2 =
1

2
(12� 2)� 2 = 3).

What if agent A1 lies and states that his goal is: “The black block
is at slot 1 and the white block is on the gray block”? The cost for A1

to achieve his apparent goal is 6 because he can build the reversed
stack at slot 3 with cost of 4. With this lie, assuming that A2 states
his true goal in the�1-phase, when they do not reach an agreement,3

A1 would get alone an apparent utility of 3 =
1

2
(12� 6). A2 would

get alone 1 =
1

2
(12� 10).

If A1 does not lie about his goal, the expected utilities of A1 and
A2 are equal. However, if A1 lies about his goal, it appears that A1’s
expected utility is greater than A2’s. In this situation, A1 can demand
to use a weighted coin with the claim that “my expected utility is
greater than yours”.

Even in this situation, it is better for them to cooperate, and “di-
vide” the saved utility. However, the question arises as to how they
should divide the additional utility. Let us take their utility without
agreement, (3,1), i.e., (A1,A2), and keep the relation of their utilities,
3:1, which leads to:

p (12� 4) + (1 � p)(�2) = 3[(1� p)(12� 4) + p(�2)]

meaning that the utility of A1 will be three times as much as the
utility of A2. Both agents will do the swap together, which will cost
2 for each. With probability p, A1 will win the coin toss and pay 2
more to achieve his goal, so we get p (12 � 4) + (1 � p)(�2). For
A2, the calculation is the same except that we switch (1� p) and p,
and in order to keep the relation of 3:1 we multiply it by 3.

¿From the equation above we get p =
13

20
, so A1 will get 4 1

2
and

A2 will get 1
1

2
. With his lie, A1 got more utility. This happened

because the cheapest way for the agents to cooperate still brought
the world to A1’s real goal state.

Figure 3. Common Subgoal

4.3 Multi-Plan Deals

There can also be beneficial lies in conflict situations with no com-
mon subgoal. Consider the initial interaction situation seen in Fig-
ure 4. The goal of A1 is to reverse the blocks in slot 2, and to leave
the blocks in slot 1 in their initial position. The goal of A2 is to re-
verse the blocks in slot 1, and to leave the blocks in slot 2 in their
initial position. The worth for each agent is known: w1 = w2 = 10.
If an agent is alone in the world he can achieve his goal with a cost
of at least 8.

The goals here contradict one another. There is no final state that
satisfies both agents, and in addition there is no common subgoal

3 We assume here that if agents fail to reach an agreement, they flip a fair coin
for who gets to do his work alone towards his own goal, and the agents do
not leave the world in the initial state.

that allows them to (partially) cooperate, as we had in the previous
section. But they can still flip a coin and then cooperate: they flip a
coin and then they work together to achieve the goal of the agent who
won the coin toss. To achieve any goal together costs a total of 4 for
the two agents—2 for each.4

If both agents tell the truth, they will agree on (Æ1; Æ2) :
1

2
, where

Æi brings the world to i’s goal state. The utility for each agent would
be 3 =

1

2
(10�2)+

1

2
(�2), with probability 1

2
that an agent gets his

goal satisfied, and he “pays” 2, yielding 1

2
(10� 2). With probability

1

2
his goal is not satisfied but he must pay 2 in order to achieve his

opponent’s goal, yielding 1

2
(�2).

Suppose agent A1 lies and claims that his goal is to reverse the
blocks in slot 2 and leave the blocks in slot 1 OR to have the white
block in slot 2. To achieve his new goal alone would cost him 6 in-
stead of 8. If they run into conflict, they will toss a coin and the
winner will do his work alone, giving A1 an apparent utility of 2
(2 =

1

2
(10�6)), and A2 utility of 1 (1 =

1

2
(10�8)). When they co-

operate they can do the work together with cost of 4 to achieve each
goal. They can still toss a coin and then work together to achieve the
winner’s goal.

So they will agree that A1 will get double the utility of A2, and
we get: p(10� 2)� (1� p)(2) = 2[(1� p)(10� 2)� p(2)] which
leads to p =

3

5
. When cooperating, they will bring the world to A1’s

real goal state because it is cheaper to accomplish this together than
it is to bring the world to his false goal state. This gives A1 utility of
4, and A2 utility of 2, so A1 benefited from his lie.

Figure 4. Conflict Situation

4.4 Analysis—Goal Fabrication, Worth is Known

As shown above, an agent can benefit by declaring a cheaper goal.
Furthermore, assuming true goals are internal to the agent and hidden
from the outside world, there is only a single, focused risk involved
in lying. Even if both agents lie, they can still reach agreement as
long as the intersection of their declared goals is not empty and is
included in their real goals. Basically, the more an agent reduces the
apparent cost of his goal, the more his expected gain increases. Note
that the choice of the false goal is dependent on the other agent’s
goal.

Consider, for example, the situation in Figure 5. Assume that
w1 = w2 = 12. Agent A1 lies and says that his goal is for the
white block to be at slot 2 but not on the table. Agent A2 lies and
says that his goal is for the black block to be at slot 1 but not on the
table. The combination of these two lies leads to a situation in which
both agents stand to gain the same amount as in the original case,
where neither agent lied.

4 We of course assume that agents can enter into a binding contract to cooper-
ate, even if they lose the coin toss—or that there are sufficient disincentives
to defection that an agent is motivated to cooperate even when he loses the
toss.



Figure 5. Two Agents Lying in a Cooperative Situation

They will agree on equal work for each, giving a utility of 8 to each
agent. Although it is the case here that when both agents lie, they get
the same utility as when both tell the truth, it is still “advisable” for
the agents to lie. For example, agent A1 cannot predict whether agent
A2 will lie, and if A1 tells the truth and A2 lies, A1 stands to lose.
Since when A1 lies he does not risk his gain, and he might increase
his gain, one may conclude that it is advisable for A1 to lie. Clearly
A2 should also lie for symmetric reasons. The Nash equilibrium for
the decision whether to lie or not is for both agents to lie.

If both agents declare a cheaper goal, they do not risk reaching an
agreement, because according to our assumption worth is known, and
of course higher than the new goal’s cost. The incentive to lie with-
out any risk is absolute — as long as the intersection of the agents’
declared goals is not empty and is included in their real goals.

If we compare this to the two other worth/goal cases from [9]
where worth is not known, we can see that when the goal is known,
the strategy is to declare lower worth, but if both lower their worth
too much they may not reach an agreement (depending on the
strict/tolerant mechanisms explored in that research). When both
goal and worth are unknown, the dominant strategy is to declare a
cheaper goal, and worth is calculated from the stand-alone cost. Be-
cause agents will agree on a deal that maximizes the product of their
utilities, by declaring a cheaper goal an agent can confidently reduce
the amount of work he will do in the final deal.

5 DESIGNING A MECHANISM

We would like to develop an incentive compatible mechanism for
our given negotiation scenario; such a mechanism would mean that
agents will gain nothing by lying. As noted in Section 3, it is easy
to get an incentive compatible mechanism if we have no additional
demands. In principle, we would like to have a welfare maximizing,
IR, and BB mechanism, but unfortunately this is impossible. So in
order to proceed, we relax our demands of the mechanism and require
one that maximizes welfare and is IR; such a mechanism will have
“truth telling” as a dominant strategy (in other words, agents will
disclose their true goals to the mechanism). For such a mechanism to
find a solution, it has to subsidize the agents such that the sum total
budget of the mechanism is negative (the mechanism “loses money”
to guarantee incentive compatibility).

For example, we can take the situation depicted in Figure 5. The
best lie that an agent can tell is as depicted in the figure; for agent
A1, the best lie is “The white block is at slot 2 but not on the table”
(similarly, for agent A2). Now the solution is that each agent will
pay only 2. One agent will lift the white block (with a cost of 2),
the other agent will arrange all the other blocks (with a cost of 6).
The mechanism will pay 4 to the one who did the role which cost
6, so we finish with an efficient and individual rational solution, and

the mecanism subsidized it (by 4). Here we got individual rationality
and efficiency, but not a budget balanced solution. In this situation,
no agent can gain any benefit from lying, no matter what the other
agents will do.

The first thing to note is that the mechanism has to subsidize all
of the common subgoals. This is simply because each player wishes
to impose the cost of this subgoal on another player. Secondly, there
are some lies that are hard to avoid, since it is possible for a player
to fabricate a goal that has a large subgoal with another player, but
is close to his real goal. Therefore, the agents will pay the cost from
their best lie to their goal.

This can be calculated by doing a breadth first search (BFS) from
the initial state. The depth of the BFS will be bounded by the sum
total of worths. For every possible goal for the agent i (holding all
other goals to be the declared goal), an optimal path can be calcu-
lated. Agent i will then pay the minimum from his goal to the path
that is closest to it. It is easy to see that this is IR, since the price that
player i pays does not depend on the valuation of player i, and since
the price is monotonic.

6 CONCLUSION

We have explored the case of known worths and unknown goals in
two-agent State Oriented Domains, in cooperative encounters using
mixed deals, conflict encounters using semi-cooperative deals (where
there is a common subgoal), and conflict encounters using multi-plan
deals (where there is no common subgoal). It was shown that agents
stand to benefit by lying so as to reduce the apparent cost of their
goals, even more than in other incomplete information scenarios;
they do not risk reaching an agreement, as long as the intersection of
their declared goals is not empty and is included in their real goals.

Along with the above analysis, we presented a reduction of our
negotiation scenario to the multicast problem, establishing the rele-
vance of impossibility and hardness results over our model. Although
we cannot have a general mechanism that is budget balanced and in-
dividual rational while maximizing utility, we did present an incen-
tive compatible mechanism that makes use of mechanism and agent
payments to maximize welfare and remain individual rational, while
forgoing budget balance.
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