
Explainable Reinforcement Learning via Model
Transforms

Mira Finkelstein, Nitsan Levy Schlot, Yoav Kolumbus, Jeffrey S. Rosenshein
Benin Scool of Computer Science and Engineering

Hebrew University of Jerusalem

Lucy Liu, David C. Parkes
John A. Paulson School of Engineering And Applied Sciences

Harvard University

Sarah Keren
Taub Faculty of Computer Science

Technion - Israel Institute of Technology

Abstract

Understanding the emerging behaviors of reinforcement learning agents may be
difficult because such agents are often trained using highly complex and expressive
models. In recent years, most approaches developed for explaining agent behaviors
rely on domain knowledge or on an analysis of the agent’s learned policy. For
some domains, relevant knowledge may not be available or may be insufficient for
producing meaningful explanations. We suggest using formal model abstractions
and transforms, previously used mainly for expediting the search for optimal
policies, to automatically explain discrepancies that may arise between the behavior
of an agent and the behavior that is anticipated by an observer. We formally define
this problem of Reinforcement Learning Policy Explanation (RLPE), suggest a
class of transforms which can be used for explaining emergent behaviors, and
suggest methods for searching efficiently for an explanation. We demonstrate the
approach on standard benchmarks.

1 Introduction

A major limitation of AI models is the performance-transparency trade-off Rudin (2019). As the inner
workings of a model increase in complexity, it becomes more powerful, but the process through which
it makes decisions becomes harder to understand. Accordingly, interest in Explainable Artificial
Intelligence and the development of transparent, interpretable AI models has increased rapidly in
recent years Arrieta et al. (2020). This trend is particularly prevalent in reinforcement learning (RL),
and deep reinforcement learning (DRL), where an agent autonomously learns how to operate in its
environment. While RL has been successfully applied to solve many challenging tasks, including
traffic control Arel et al. (2010), robotic motion planning Kober, Bagnell, and Peters (2013), board
games Silver et al. (2016, 2018); Schrittwieser et al. (2020), and more, it is becoming more and more
challenging to explain the behavior of RL agents, especially when they do not operate as anticipated.
Therefore, in order to allow humans to collaborate with them effectively, it is important to develop
methods for reasoning and explaining the agents’ behaviors.

While there has been a variety of recent works on explainability of DRL (see Puiutta and Veith (2020)
for a recent survey), most of these methods do not exploit the full formal model of the environment,
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Figure 1: Reinforcement Learning Policy Explanation example (left) and model (right)

typically modeled as a Markov Decision Process (MDP), but instead focus on one element of the
model (e.g., the agent’s reward function Juozapaitis et al. (2019)) or reasoning about the structure of
the underlying network Greydanus et al. (2017).

In this work, we suggest a novel approach to explainability that makes use of formal transforms of the
underlying environment to automatically generate explanations of emerging behavior. As is common
in most RL work, we assume the stochastic environment is modeled as a Markov Decision Process
(MDP) Bertsekas (2005). This makes it possible to generate explanations without relying on domain
knowledge. Instead, it uses transforms (abstractions) used so far in the literature to expedite RL and
planning solutions Bonet and Geffner (2005); Li, Walsh, and Littman (2006); Abel et al. (2018);
Yoon et al. (2008). While for planning, the benefit of such transforms is in highlighting the features
of the environment that influence the solution quality and time, we use them to isolate features of the
environment that cause an agent to deviate from a behavior that is anticipated by an observer.

We consider an explainability setting, which we refer to as Reinforcement Learning Policy Explanation
(RLPE), as comprised of three entities. The first entity, the actor, is an RL agent that seeks to maximize
its accumulated reward in the environment. The second entity, the observer, expects the actor to
behave in some way and to follow a certain policy, which may differ from the one actually adopted
by the actor. We refer to this policy as the anticipated partial policy, which specifies which actions an
observer expects the actor to perform in some set of states. Finally, the explainer is an entity that has
access to the description of the environment, to the approach (algorithm) used by the actor to compute
its policy, to the anticipated partial policy, and to a set of MDP transforms. The explainer seeks
a sequence of transforms to apply to the environment so that the actor’s policy in the transformed
environment aligns with the observer’s anticipated policy.1

Example 1 To demonstrate RLPE, consider Figure 1, which depicts a variation of the Taxi domain
Dietterich (2000). In this setting, the actor represents a taxi that operates in an environment with
a single passenger. The taxi can move in each of the four cardinal directions, pick up, and drop
off the passenger. The taxi incurs a small cost for each action it performs in the environment, and
gains a high positive reward for dropping off the passenger at her destination. There are walls
in the environment that the taxi cannot move through. The observer has some partial view of the
environment and actor’s model. She knows which actions the taxi can perform and how it can
collect rewards. With the information available to her and the possibly incorrect assumptions she
makes about the actor’s reasoning, the observer anticipates that the taxi will start its behavior by
moving towards the passenger (so it can later pick her up and drop her off at her destination). This
description of the anticipated behavior over a subset of the reachable states in the environment is
the anticipated partial policy. The prefix of this policy is depicted by the green arrow in the figure.
However, the actual policy adopted by the actor, for which the prefix is represented by the red arrow
in Figure 1, is to visit some other location before moving towards the passenger. In order to explain
the actor’s behavior, the explainer applies different action and state transforms to the environment.
The objective is to find a transformed model in which the actor follows the anticipated partial policy.
In our example, the explainer first applies an action abstraction that allows the taxi to move through
walls and trains the actor in the transformed environment. Since the policy in the transformed model

1In some settings, the observer and explainer may represent the same entity. We use this structure to separate
the role of an observer from the attempt to explain the actor’s behavior.
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still does not match the anticipated policy, the explainer can infer that the reason for the discrepancy
is not the fact that the observer may be unaware of the walls in the environment, and therefore this
transform would not represent a meaningful explanation. As a second attempt, the explainer applies
an abstraction that relaxes the constraint that a car needs enough fuel to be able to move, and allows
the taxi to move regardless of its fuel level. After training, the actor’s policy in the transformed
environment aligns with the anticipated partial policy. This indicates that the observer may not be
aware of the fuel constraint, and therefore does not expect the actor to drive towards the gas station
before driving to the passenger. This transform can therefore be used to explain the discrepancy
between the anticipated and actual policies.

Beyond this illustrative example, the ability to understand the “anticipation gap” between an agent
and its user is important in many applications. Examples include autonomous driving Kiran et al.
(2020), where it might be critical to know why a vehicle deviates from an anticipated course of action,
medical applications, where it is crucial to explain why an AI system recommends one treatment over
another Komorowski et al. (2018), and search and rescue missions Kulkarni et al. (2020), where a
robot is moving in an unknown environment, far from its operator, and may behave unpredictably.

The contributions of this work are threefold. First, we present the first use of formal model transforms
and abstractions to produce explanations of the behavior of RL agents. Second, we formulate the
Reinforcement Learning Policy Explanation (RLPE) problem and specify classes of state and action
abstractions that can be used to produce meaningful explanations. Finally, we implement our approach
and provide an empirical evaluation of this approach on a set of standard RL benchmarks.

2 Related Work

A variety of recent studies investigate the use of abstractions to provide meaningful post-hoc explana-
tions for the behavior of RL agents. Most of these methods focus on a particular element of the model
and investigate its effect on the agent’s behavior. For example, Juozapaitis et al. (2019) decompose the
reward function into an aggregation of meaningful reward types, and then classify actions according to
their reward type. Lin, Lam, and Fern (2021) use human-designed features to represent action-value
functions. The features correspond to meaningful information about the agent’s predictions for its
future, such as the distance from the goal. Huber et al. (2020) use human user-studies to extract
saliency maps for RL agents, which evaluate the relevance of features with regards to mental models,
trust, and user satisfaction. Greydanus et al. (2017) and Mundhenk, Chen, and Friedland (2019)
use saliency maps to produce visual explanations. Amir and Amir (2018) produce a summary of an
agent’s behavior by extracting important trajectories from simulated behaviors of the agent.

Our approach supports arbitrary transforms that can be applied to the environment model without
relying on domain-specific knowledge or on a particular learning approach of the agent. This
variety of transforms that can be used for generating explanation relies on the rich literature of
methods suggested for expediting the search for RL setting solutions. Li, Walsh, and Littman
(2006); Abel, Hershkowitz, and Littman (2016). Our approach is similar to Sreedharan et al. (2020)
work which suggests learning partial symbolic models of the environment and task and identifying
missing preconditions to explain the actor’s behavior. However, this work focuses on a deterministic
environment where the agent is assumed to compute an optimal plan. In contrast, our work supports
arbitrary transforms applied to stochastic environments with partially informed RL agents.

3 Background: Reinforcement Learning (RL) and Markov Decision
Processes (MDP)

Reinforcement learning (RL) deals with learning policies for sequential decision making of agents
that operate in an environment for which the dynamics is not fully known Sutton and Barto (2018). A
common assumption is that the environment can be modelled as a Markov Decision Process (MDP)
Bertsekas (2005), which is a widely used formalization for sequential decision-making in stochastic
environments. An MDP is typically defined as a tuple 〈S, s0, A,R, P, γ〉, where S is a finite set of
states, s0 ∈ S is an initial state, A is a finite set of actions, R : S ×A× S → R is a Markovian and
stationary reward function that specifies the reward r(s, a, s′) an agent gains from transitioning from
state s to s′ by the execution of a, P : S ×A → P[S] is a transition function denoting a probability
distribution p(s, a, s′) over next states s′ when action a is executed at state s, and γ ∈ [0, 1] is a
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discount factor, representing the deprecation of agent rewards over time. In this work we use factored
MDPs Boutilier, Dean, and Hanks (1999), where the set of states is described via a set of random
variables X = X1, . . . , Xn, and where each variable Xi takes on values in some finite domain
Dom(Xi). A state is an assignment of a value Xi ∈ Dom(Xi) for each variable Xi.

A solution to an RL problem is either a stochastic policy, indicated π : S → P[A], representing a
mapping from states s ∈ S to a probability of taking an action a at that state, or a deterministic policy,
indicated π : S → A, mapping from states to a single action. The agent’s objective is to find a policy
that maximizes the expected accumulated reward.

There are a variety of approaches for solving RL problems Szepesvári (2010); Sutton and Barto
(2018); Levine et al. (2020), that can be generally categorized as either policy gradient methods (e.g.,
Stochastic Gradient Ascent) which learn a numerical preference for executing each action, value-
based methods (e.g., Q-learning), which estimate the values of state-action pairs, and actor-critic
methods (e.g., A3C Mnih et al. (2016)), which combine the value and policy optimization approaches.
Another important distinction exists between model-based methods, where a predictive model is
learned, and model-free methods, which learn a control policy directly. In this work, we support this
variety by assuming the algorithm that is used by the actor to compute its policy is part of our input.
Our requirement is each state can be characterized by a set of possible actions for each state.

4 MDP Transforms

In this work we use formal MDP transforms to explain the behaviors of RL agents. The explanation is
generated by searching for a set of transforms to the MDP used to model the underlying environment
such that the actor’s behavior in the modified model aligns with the observer’s expectations. If the
transition from the original to the transformed environment is meaningful, the difference between the
models can help the observer reason about the actor’s behavior, thus representing an explanation.

We formally define this process in following sections and devote this section to describing various
transforms from the literature for expediting the search for optimal MDP policies and suggesting
using for explainability. To account for different modifications that can be applied, we define a
transform as any mapping T :M 7→M that can be applied to an MDP to produce another MDP. We
use the term “transforms" rather than other common terms used in the literature to avoid restricting
our discussion to specific kinds of mappings. In particular, we do not use the terms “abstractions" or
“relaxations", since these are terms typically used to represent mappings that expedite and facilitate
planning, and we want to account for arbitrary transforms that can be relevant as explanations.

Transforms may modify any element of the MDP. We provide some examples of transforms that can
be applied, but our framework supports any transform to produce explanations. We start by defining
transforms that modify the representation of the MDP’s state space.

Definition 1 (State mapping function) A state-mapping function φ : S 7→ Sφ maps each state
s ∈ S, into a state s′ ∈ Sφ. The inverse image φ−1(s′) with s′ ∈ Sφ, is the set of states that map to
s′ under mapping function φ.

When changing the state space of an MDP, we need to account for the induced change to the other
elements of the model. For this, we use a state weighing function that distributes the probabilities and
rewards of the original MDP between the states in the transformed MDP.

Definition 2 (State weighting function) Li, Walsh, and Littman (2006) A state weighting function
of a mapping function φ is function wφ : S 7→ [0, 1] where for every s̄ ∈ Sφ,

∑
s∈φ−1(s̄) w(s) = 1.

Definition 3 (State-Space Transform) Li, Walsh, and Littman (2006) Given a state mapping func-
tion φ and a state abstraction weighting function wφ, a state space transform Tφ,w maps an MDP
M = 〈S, s0, A,R, P, γ〉 to T (M) = 〈S̄, s̄0, A, R̄, P̄ , γ〉 where for every action a:

• S̄ = Sφ

• s̄0 = φ(s0)

• R̄(s̄, a) =
∑
s∈w−1(s̄) w(s)R(s, a)
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• P̄ (s̄, a, s̄′) =
∑
s∈φ−1(s̄)

∑
s′∈φ−1(s̄′) w(s)P (s, a, s′)

State-space transforms can, for example, group states. In factored representations, this can be easily
implemented by ignoring a subset of the state features. In Example 1, a state-space transform can
ignore the fuel level, grouping states that share the same taxi and passenger locations.

Another family of transform change the action space.

Definition 4 (Action mapping function) An action mapping function ψ : A 7→ Aψ maps of every
action in A to an action in Aψ. The inverse image ψ−1(a′) for a′ ∈ Aψ, is the set of actions that
map to a′ under mapping function ψ.

Various action space transforms have been suggested in the literature for planning with MDPs Mausam
and Kolobov (2012); Abel et al. (2020a) and can be used for the RL settings we consider here. For
example, in cases where the transition function of the MDP is assumed to be (partially) specified, it is
possible to apply the single-outcome determinization, where all outcomes of an action are removed
(associated with zero probability) except for one. In most practical applications, the most likely or
desired outcome is preserved. Another widely used transform is the all outcome determinization where
the planner can choose a desired outcome Yoon, Fern, and Givan (2007b); Keller and Eyerich (2011a).
This transform is typically implemented by creating a separate deterministic action for each possible
outcome of the original formulation. In settings where actions are associated with preconditions, it is
possible to apply a precondition relaxation, by which a subset of the preconditions of an action are
ignored Sreedharan et al. (2020). For example, for MDPs represented via a factored state space, each
action A is associated with a set PRE specifying the required value of its random variables subset. A
precondition relaxation transform removes the restriction regarding these variables.

Another popular formalism for organizing the action space of an agent are options, which represent
correlated, long-horizon sequences of actions Sutton, Precup, and Singh (1999); Abel et al. (2020b).
Options are defined via three components that indicate at which states the option can be executed,
under which condition it terminates, and what is the policy to perform between these conditions.
Options are known to expedite learning and support generalization in RL (e.g., Konidaris and Barto
(2007); Bagaria et al. (2021a). Such representations can support explanations, in particular for
model-based option discovery approaches Bagaria et al. (2021b), where the model itself can be used
to reason about the options that are discovered and the agent’s behavior.

5 Transforms as Explanations

We view the explainability problem as comprised of three entities: an actor, who is an agent operating
in the environment, an observer, who has some anticipation about the behavior of the actor that may
not be met by the actual behavior, and an explainer, who wishes to clarify the discrepancy between the
anticipated and actual behavior. The input to a Reinforcement Learning Policy Explanation (RLPE)
problem includes a description of the environment, a description of the behavior (policy) of an RL
agent in the environment, a set of possible behaviors an observer expects the actor to follow, and a set
of possible transforms that can be applied to the environment.

Definition 5 A Reinforcement Learning Policy Explanation (RLPE) model is defined by the tuple
R = 〈M,A, π̃, T 〉, where:

• M is an MDP representing the environment,

• A :M→ Π represents the actor, which is associated with an RL algorithm that it uses to
compute a policy π ∈ Π ,

• π̃ is a set of possible anticipated partial policies defined over M an observer expects the
actor to follow and,

• T :M→M is a finite set of transforms.

We assume the actor is a reward-maximizing RL agent. The anticipated behavior is expressed as a
partial policy describing what the observer expects the actor to do in a subset of its reachable states.

Clearly, the settings of interest here are those in which the actual policy that the actor follows differs
from the anticipated policy. We denote by T the universal set of transforms. Each transform T ∈ T
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is associated with a mapping function for each of the MDP elements that it alters. We let φT and ψT
denote the state and action mapping functions, respectively (when the MDP element is not altered
by the transform, the mapping represents the identity function). When a sequence of transforms is
applied, we refer to the composite state and action mapping that it induces and define it as follows.

Definition 6 (Composite State and Action Space Function) Given a sequence ~T = 〈T1, . . . , Tn〉,
Ti ∈ T , the composite state space function of ~T , is φ~T (s) = φTn

·, . . . , ·φT1
(s). The composite

action space function is ψ ~T (s) = ψTn
·, . . . , ·ψT1

(s).

The explainer seeks a sequence of transforms that produce an environment where the actor follows a
policy that corresponds to the observer’s expectations. Formally, we seek a transformed environment
where the actor’s policy satisfies the anticipated policy, i.e., for every state-action pair in the anticipated
policy, the corresponding state in the transformed model is mapped to its corresponding action. Given
a partial policy π, we let S(π) represent the set of states for which the policy is defined, and define
policy satisfaction as follows.

Definition 7 (Policy satisfaction) Given a partial policy π defined over MDP M =
〈S, s0, A,R, P, γ〉, a partial policy π′ defined over MDP M ′ = 〈S′, s′0, A′, R′, P ′, γ′〉, a state
mapping function φ : S 7→ S′ and an action mapping function ψ : A 7→ A′, π′ satisfies π, denoted
π′ |= π, if for every s ∈ S(π), φ(s) ∈ S(π′) and ψ(π(s)) = π′(φ(s)).

Clearly, for any two policies there exist state and action mappings that can be applied to cause any
policy to satisfy another policy. In order to produce valuable explanations we need meaningful
transforms that are applied to the underlying MDP, which change it in a way that highlights the
elements of the model that cause unexpected behaviors in the actor’s policy. In addition, inspired
by the notion of Minimal Sufficient Explanation Juozapaitis et al. (2019), we want to minimize the
change that is applied to the environment. Intuitively, the more similar the original and transformed
MDPs are, the better the explanation. We therefore assume the input to an RLPE problem includes
some distance metric d :M×M→ R+ between a pair of MDPs.

There are a variety of metrics for measuring the distance between two MDPs Song et al. (2016);
Ammar et al. (2014). A straightforward way to measure the distance between two MDPs is to
count the number of transforms that are applied to the original MDP to reach the new MDP, but this
definition is meaningful only with atomic transforms, that change a single element of the MDP (e.g.,
changing the transition probabilities of a single action). Another measure is the one suggested by
Song et al. Song et al. (2016), where the distance between two MDPs M and M

′
is calculated by

computing the accumulated distance between every state in M and its corresponding state in M ′.
Wang et. al. Wang, Dong, and Shao (2019) use a representation of an MDP as a bipartite graph
of state and action vertices and define state and action distances between two vertices recursively
according to the similarity between their neighbors in the graph. They show advantage of this method
in quantifying structural similarities compared with the bisimulation approach of Ferns et. al. Ferns,
Panangaden, and Precup (2004). The method is designed for measuring similarities within the
same MDP, but may be applicable in our context to measure distances between an original and a
transformed MDP, as long as a mapping between the states and actions of the models are given.

The objective of the explainer is to find a sequence of transforms that yield an MDP M ′ such that
actor’s policy in M ′ satisfies π̃. Among the sequences that meet this objective, we are interested in
sequences that minimize the distance between the original and the transformed MDP. Formally:

Definition 8 Given a RLPE model R and a metric function d :M×M→ R+ , a RLPE problem
seeks a transform sequence ~T = 〈T1, . . . , Tn〉, Ti ∈ T s.t.

1. the policy π′ of the actor in ~T (M) satisfies π̃, i.e, π′ |= π̃,

2. among the sequences that satisfy [1], ~T minimizes the distance d(M, ~T (M)).

6 Finding Explanations

In an RLPE setting, the explainer has access to a set of transforms, but does not know which transform
sequence will produce meaningful explanations. This means that the explainer may need to consider a

6



Figure 2: Search in the transform tree.

large set of possible sequences. Therefore, even though an optimal (i.e., minimum distance) sequence
of transforms that satisfies the anticipated policy can be found using an exhaustive search over T , a
naive approach is impractical as the number of transform combinations is exponential in |T |.
To address this computational challenge, we offer three approaches for streamlining the search
process. Inspired by the search for an optimal MDP redesign by Keren et al. (2019), a basic approach
is a Dijkstra-like search through the space of transform sequences. We assume a successor generator
(oracle) is available to provide the MDP that results from applying each transform. The search graph
is constructed in the following way. The root node is the original environment. Each edge (and
successor node) appends a single transform to the sequence applied to the parent node, where the
edge weight represents the distance between the adjacent MDPs according to the distance measure
d. For each explored node we examine whether the actor’s policy in the transformed MDP satisfies
the anticipated policy. The search continues until such a model is found, or until there are no more
nodes to explore. The result is a transform sequence that represents an explanation. This approach is
depicted in Figure 2, where the top of the figure depicts the search in the transform space, while the
lower part depicts the MDPs corresponding to each transform sequence.

This approach is guaranteed to return an optimal (minimum distance) solution under the assumption
that the distance is additive and monotonic w.r.t the transforms in T , in that a transform cannot
decrease the distance between resulting MDP and the original one. From a computational perspective,
even though in the worst case, this approach covers all the possible sequences, in practice, it may find
solutions much quicker. In addition, in cases where the transforms are independent, in that their order
of application does not affect the result, it is possible to expedite the search by maintaining a closed
list that avoids the re-computation of examined permutations. The depth of the search can also be
bounded by a predefined fixed number of transforms.

In spite of these computational improvements, the above solution requires recomputing an actor’s
policy in the transformed environment for each node in the search graph. One way to avoid this is by
preserving the agent’s policy in the original environment and using it for bootstrapping the re-training
of the agent in the transformed environment. Another way to expedite the search is to group together
a set of transforms and examine whether applying the set leads to a change in the actor’s policy. If
this compound transform does not change the actor’s policy, we avoid computing the values of the
specific transforms. The approach can potentially reduce the computational effort in settings in which
aggregation can be done efficiently, e.g., when transforms have parameterized representations. In
our example, if allowing a taxi to move through walls does not change the actor’s policy, we avoid
computing the value of individual transforms that allow movement through a single wall.

7 Empirical Evaluation

Our empirical evaluation is dedicated to examining the ability to produce meaningful explanations
via MDP transforms, and to examine the efficiency of our suggested approaches for finding satisfying
explanations. Each RLPE setting includes a description of the underlying environment, the actual
policy followed by the actor, and the policy anticipated by the observer. We describe each of these
components below, before describing our results.
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7.1 Environments

We used three domains: Taxi, Apple Picking, and Frozen Lake. The Taxi domain is an adaption of
the domain suggested in Dietterich (2000) with an addition of a fuel constraint, and is described in
Example 1. The environment is deterministic and episodic. Episodes end when the passenger arrives
at her destination, the taxi runs out of fuel, or the agent completes 60 steps.

The Frozen Lake domain Brockman et al. (2016) is a 8× 8 gridworld representing a navigation task
on an icy lake. There are four actions for moving north, south, east, or west, and the agent’s state is its
location. The environment description, specifies Start and Goal locations in the corners of the grid, as
well as the locations of holes in the ice. The reward is a constant -1 per step until termination, which
occurs when the agent reaches the goal (+20 reward) or falls in a hole (-20 reward). The Frozen Lake
environment is stochastic: when the agent moves in direction D, there is a 50% chance of moving
in direction D and a 50% chance of slipping on the ice and instead moving in a direction directly
clockwise or counterclockwise to D.

The Apple Picking environment is a 5× 5 gridworld representing a navigation task in an orchard.
There are five actions for moving north, south, east, or west, and picking an apple. The environment
state consists of the agent location and the status of the apples distributed in the grid in random
locations. Thorny walls scattered on the grid. The reward for stepping into a thorny wall is -5, and
there is a constant -1 per step until termination, which occurs when the agent picks all apples (+20
reward) or the episode terminates. The domain is stochastic: when moving near a thorny wall, the
agent succeeds with probability 0.6 and falls into the thorny wall with probability 0.4.

7.2 Setup

Observer: We consider an observer with partial knowledge about the environment. In the taxi domain,
for example, the observer may have access to the map and reward function, but may be unaware of
the need for fuel for movement. For all environments we assume that the observer anticipates that the
actor follows an optimal policy in the observer’s partial model. We compute the observers anticipated
policy using a breadth-first search, using a determinization for stochastic domains. We keep track of
multiple optimal paths that may exist, resulting in more than one anticipated policy.
Actor: We use the DQN, SARSA and CEM algorithms, from the keras-rl library2 to represent the
actor. Note that we could use any other algorithm since our framework is agnostic to the method used
by the actor. We trained the agents for 600,000 episodes for the Taxi domain, and the Frozen Lake
domain, and 1,000,000 episodes for the Apple picking domain, each with 60 maximum steps per
episode. Our experiments were run on a cluster using a mix of CPUs, with 4 cores using 16GB RAM.
Explainer: For the explainer, we use the following transforms:

• most likely outcome: a special case of the single-outcome determinization by Yoon, Fern,
and Givan (2007a).

• precondition relaxation as variant of the usage by Sreedharan et al. (2020) based on STRIPS
models Geffner and Bonet (2013).

• all outcome determinization suggested by Keller and Eyerich (2011b).

We implemented all three transforms as atomic transforms that each modify a single action. For the
most likely outcome, we create one transform for each action. For the all outcome determinization,
we create a transform for each action and stochastic outcome pair. For the precondition relaxation
transform we created a transform for each action and precondition pair.3

We used three methods for searching for explanations, which were detailed in the previous section (for
further details see the supplamentary materials). The BASE approach is a Dijkstra search, PRE-TRAIN
is a Dijkstra search in which we bootstrap the learning in the modified environment by using the
policy on the original environment. We also prune transforms that do not directly effect the anticipated
policy. The third method, CLUSTER, computes values of transform clusters.

2https://github.com/keras-rl/keras-rll
3Further details on the methods and domains are found in the supplementary materials.
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BASE PRE-TRAIN CLUSTER
sol time sol time sol time

DQN
Taxi 99% 5.5h 95% 3h 98% 1h
Frozen Lake 100% 2h 0% 2h 79% 0.5h
Apple Picking 98% 6h 94% 4h 93% 1.5h

SARSA
Taxi 100% 5h 97% 2.5h 98% 1h
Frozen Lake 85% 3h 0% 3h 81% 0.5h
Apple Picking 99% 6.5h 96% 4h 3% 1.5h

CEM
Taxi 100% 5h 97% 2.5h 98% 1h
Frozen Lake 50% 0.5h 50% 0.5h 74% 0.25h
Apple Picking 92% 4h 88% 3h 78% 1h

Figure 3: Satisfaction rate per domain (left), comparing method performance (right).

7.3 Results

To assess the ability to produce explanations using environment transforms, we measured the satis-
faction rate of each transform in a given environment. This measure is defined as the fraction of the
number of states for which the anticipated policy and actor policy agree among all states for which
the anticipated policy is defined, i.e., the number of states s ∈ S(π) for which φ(s) ∈ S(π′) and
ψ(π(s)) = π′(φ(s)). We also measured the length of the explanation, which we used as our distance
measure (that should be minimized).

In Figure 3 we examine the satisfaction rate achieved per transform in each domain. As can be seen,
in each domain there is at least one transform combination that fully satisfies the anticipated policy.
For the taxi domain the highest matching rate of 1.0 is reached when the precondition of the fuel for
the actions down, right, pickup and drop-off are relaxed. This result aligns with our taxi example
where the observer wasn’t aware of the fuel limitation. For the apple picking domain, the highest
satisfaction rate is achieved by applying the all outcome determinization and the most likely outcome
transforms. For the Frozen Lake domain the all outcome determinization achieved the best results.

Table 3 compares the performance of the different search methods, showing the ratio of instances that
were solved (denoted in the table as “sol”) and the average computation time in half hour intervals
(denoted in the table as “time”) for the instances that were solved by all approaches. The results show
that, as expected, the exhaustive BASE method outperforms the two other methods in terms of ratio of
instances solved. However, it consumes up to 5 times more computation time. In addition, although
the PRE-TRAIN and CLUSTER methods prune transform sequences heuristically, the compromise
in terms of solved instances is negligible.

8 Conclusion
We introduced a novel formulation of explainability of RL, and an approach to generating explanations
using formal model transforms, which were previously mainly used for facilitating the computation
of MDP policies. In addition, we presented approaches for finding a sequence of transforms that
represents an explanation to the actor’s behavior. Our empirical evaluation on a set of standard RL
benchmarks illustrates the ability of formal symbolic MDP transforms to produce explanations that
can be interpreted by a human user, and the efficiency of our approaches for searching through the
space of transform sequences.

There are various ways to extend our approach. First, our empirical setup can be enriched to include
anticipated policies as they would be expected by human users, and to evaluate the extent by which
the generated explanations are meaningful to them. Secondly, while this work uses a restrictive
satisfaction relation that required a complete match between the anticipated policy and the actor’s
behavior, it may be useful to use more flexible qualitative evaluation metrics for satisfaction. Finally,
while the focus in this setting has been on single-agent domains, we plan to extend this approach to
explain behaviors of agents in multi-agent domains and to add transforms that are relevant to both
collaborative and adversarial multi-agent settings.
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