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Abstract

Recent work on interactions among rational agents has put forward
a computationally tractable, deduction-based scheme for automated
agents to use in analyzing multiagent encounters. While the theory has
defined irrational actions, it has underconstrained an agent’s choices:
there are many situations where an agent in the previous framework
was faced with several potentially rational actions, and no way of
choosing among them. This paper presents a probabilistic extension to
the previous framework of Genesereth, Ginsberg, and Rosenschein [5]
that provides agents with a mechanism for further refining their choice
of rational moves. At the same time, it maintains the computational
attractiveness of the previous approach.

The probabilistic extension is explicitly representing uncertainty
about other players’ moves. A three-level hierarchy of rationality is
defined, corresponding to ordinal, stochastic, and utility dominance
among alternative outcomes. The previous deduction-based formalism



is recast in probabilistic terms and is seen to be a particular special
case of a more encompassing dominance theory. A technique is pre-
sented for using the dominance ideas in interactions with other agents
operating under various types of rationality.

1 Introduction

1.1 Interactions Among Rational Agents

Research on artificial intelligence (AI) has begun to concern itself with the
design of an autonomous agent operating in real-world environments. Along
one dimension, this requires that the agent be capable of dealing with dy-
namic and incompletely specified situations. It must be able to reason about
change, recover from failures, and deal with uncertainty both in the state of
the world and in the effects of its own actions.

An equally important capability is the ability to interact flexibly with
other agents. There are, in fact, few scenarios where an agent could be
expected to operate with complete autonomy; almost always there will be
others with whom the agent must interact. This will be true whether the
agent is operating on a factory floor, building outposts on Mars, or running
errands to the corner store. These other agents will in general possess a
wide range of reasoning capabilities and thus the agent should be capable of
interacting flexibly with agents of different rationality “types”.

There has been considerable work in recent years by Al researchers on
formalisms for representing interagent beliefs [12, 13, 1, 14, 15, 7], an im-
portant component of the reasoning necessary for cooperation. Agents must
reason about one another’s beliefs to predict activity, provide information,
and adapt their own behavior to others’ expectations.

Another line of work has been considering the agent interactions them-
selves as objects about which to reason [4, 5, 17]. In this research, the agents
have been defined as operating under the constraints of various rationality az-
toms that restrict their choices in interactions. The effects of various axioms
and their relationships to one another have been analyzed.

The current paper continues along this latter line of research. The basic
extension proposed is to recognize that reasoning about other agents’ actions
must deal with uncertainty and to incorporate an explicit mechanism for do-



ing so. Uncertainty is inherent in encounters because of incomplete informa-
tion about others’ objectives, options, and reasoning processes. We are ad-
dressing issues of uncertainty against a backdrop of an increased in decision-
theoretic concepts of probability and utility theory in Al research [3, 8. At
the same time, we exploit the fact that decision- and game-theorists have
been considering the use of Bayesian decision theory in situations of strate-
gic interaction [2, 9, 21, 16]. Though we are not proposing an extension to the
concepts of equilibrium proposed by game-theorists, the work in this paper
integrates previous studies of rational interaction based on a deductive frame-
work with decision-theoretic ideas and is a first step towards operationalizing
recent advances in game-theoretic solution concepts.

1.2 Perspectives on Multiagent Interactions

We examine reasoning about other agents from two different perspectives, the
“prescriptive/descriptive” approach and the “jointly prescriptive” approach.
Both perspectives have their place in the theory of rational interacting agents,
though each leads us to ask different questions about how automated agents
should be designed. This paper is focused on prescriptive/descriptive issues,
though we make several observations and report results regarding jointly
prescriptive methods.

1.2.1 Prescriptive/Descriptive

A “prescriptive/descriptive” approach requires two types of theories [10] to
fully capture a multiagent interaction. First, we need a normative theory of
what our primary agent should do given its values and information. We have
a prescriptive theory when we not only define these normative principles for
rational behavior, but augment these with a prescription or method for iden-
tifying rational moves. This is precisely the approach we take in developing
our notion of prescriptive rationality. Second, we require a descriptive theory
of other agents. A descriptive theory is useful to the extent it can be used
to predict the actions of other agents, and may be based on varying degrees
of assumed “rationality” of others.

The “prescriptive/descriptive” approach is basically decision analytic: us-
ing our model of interaction, we prescribe a particular course of action for
one agent based on the description it has of other agents. This was the



approach taken in previous DAI work, where different information about
others’ rationality would cause an agent to act appropriately. This “pre-
scriptive/descriptive” perspective is central in our design of an agent capable
of interacting intelligently, particularly when we will have no control over
(and limited information about) the design of the other agents.

1.2.2 Jointly Prescriptive

Of course, if our descriptive theory is the same as our prescriptive theory,
i.e., if the best theory one has about other agents is based on introspection
regarding one’s own reasoning processes, this results in a “jointly prescrip-
tive” approach. “Jointly prescriptive” concerns form the basis for much of
modern game theory [11]. These approaches, by and large, develop mod-
els of interaction that have certain globally desirable properties, given that
all agents subscribe to the same fundamental solution strategies and have
common knowledge regarding most aspects of the problem. The “jointly
prescriptive” perspective is well-suited to closed systems where the interact-
ing agents are all centrally designed. With total control over their methods
of interaction (and hence the ability to engineer away uncertainty regard-
ing others’ decision-making strategies), the designer is looking for desirable
properties, such as stability and pareto-optimality of solutions.

The jointly prescriptive perspective also has a role to play in competitive
interactions. For example, some interaction strategies are known from the
game theory literature to be “stable,” i.e., if an agent uses this strategy, no
opponent can benefit from playing any other strategy. A designer could feel
safe in incorporating such a strategy into his agent—he need have no fear of
the strategy’s presence becoming known, since there is no effective counter-
strategy. Thus the identification of stable strategies (which is a jointly pre-
scriptive notion) can be important to any single agent’s designer. Similarly,
a demonstration of a strategy’s stability and pareto-optimality might be an
effective argument in getting many agents’ designers to incorporate it:* the
best that other agents can do is to “play along,” and the overall final results
have certain desirable characteristics.

!This was, for example, the argument made in [6]



1.3 Assumptions

This paper is concerned with single interactions among agents; though there
is a mechanism for using the results of past encounters, there is no explicit
concern about future interactions. Each agent is assumed capable of assigning
some value to a hypothetical outcome, and (in this paper) we will assume that
these assigned payoff values, for all agents, are common knowledge among
them all.? In addition, once the interaction has been recognized, there is
no further communication among the agents; each must decide on its action
alone. This is the no-communication scenario used in [5].*> The agents are
assumed to be operating under certain axioms, to be discussed, that control
their behavior.

1.4 Overview

In Section 2 we introduce the formal notation for our analysis. In Sec-
tion 3, various forms of dominance among alternatives are developed. The
deduction-based formalism given in [17] is recast in probabilistic terms, and
is seen to be a particular special case of a more encompassing dominance
theory.

In Section 4 we consider questions relating to the design of an agent
using the dominance relations, in the “prescriptive” portion of a “prescrip-
tive/descriptive” approach. Axioms of behavior are given in Section 5 that
might describe our agent’s opponents,* and the ramifications these axioms
have on the prescriptive dominance techniques are discussed. In Section 6
we briefly consider, from the “jointly prescriptive” perspective, the global
properties of the methods we have outlined.

2Uncertainty about payoffs can be incorporated into the framework, and is a topic for
future research. Also, common knowledge is not always required; for a fuller discussion of
how much knowledge is actually needed, see [18].

3While this scenario is a simplification of what might be found in real-world encounters,
it is a useful starting point for an analysis of interactions. There are also a variety of
instances when the assumption that no communication is possible is quite realistic, such
as when agents designed in different countries or by different manufacturers unexpectedly
encounter one another.

4Throughout this paper, our use of the term “opponent” should not be taken in its
colloquial sense. When our agent interacts with other agents, we will sometimes refer
to them as its opponents, without intending that the agents are necessarily involved in
conflict. There may be a convergence of interests among all parties.



2 Notation

We will follow the convention of representing a game as a payoff matrix.
Figure 1 is a representation of a two agent encounter.

K
c | d
1] 2

a3 "1

J 50 1

bla2 "o

Figure 1: A Payoff Matrix

A game corresponds to a set P of players and, for each player i € P, a
set M; of possible moves for i. For S C P, we denote P — S by S. We denote
by mg an element of Mg; this is a collective move (or a “joint” move) for the
players in S. To mg € Mg and mg € Mz corresponds an element m of Mp.
The payoff function for a game is a function

p: PxMp—1R

whose value at (i,71) is the payoff for player ¢ if move m is made. The
function p thus encodes the payoff matrix in function form.

We denote by prob;(mz | m;, &) the probability distribution that agent i
has over all the other players making move m; (with £ representing i’s knowl-
edge of the world, including his knowledge of other agents). The probability
may depend, as seen from this expression, on ¢’s own move m;.

We could use dual matrices to represent an interaction between agents,
with associated probability distributions on their moves. Consider the two
matrices in Figure 2.

The left matrix is to be interpreted in the same manner as it was above,
namely as defining the payoffs each agent will receive from various outcomes.
In addition, each agent is assumed to have a probability distribution on the
other’s moves, given a move of his own. The second matrix in Figure 2
displays these distributions. For example, if J considers that he will make
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Figure 2: Payoff and Probability Matrix

move b, he considers that there is a .7 probability that K will make move ¢,
and a .3 probability that K will make move d. Of course, in the probability
matrix the columns sum to 1 for K, and the rows sum to 1 for J.

We define a secondary payoff function pay(i, m;), which gives us the set
of possible payoffs to ¢ of making move m;:

pay(i,m;) = {p(i, ) : prob;(mz | m;,§) > 0}. (1)

The expression prob;(m; | m;, &) > 0 denotes the set of responses “con-
sidered possible” to i’s move m;.> There are many potential moves that
might be expected of other agents, depending on assumptions about them
(and their assumptions about you), and similarly, many different subjective
probability distributions that one might have over their potential moves. In
Section 5 we list several alternate definitions and indicate how each affects
the pay function or probabilities.

The final element of our notation that needs to be introduced is the
notion of a “utility function” over payoffs. The utility function summarizes
the agent’s attitudes toward uncertain options, while payoffs summarize the
agent’s valuation under certainty of each possible joint move. The wutility of
a joint move for agent i in our notation is represented as U;(p(i,m)); it is
a function from the real numbers to the real numbers. We then define the
expected utility for agent ¢ of a joint move as follows:

EU;(m) = Z _Ui(p(i,m))pmbi(mg | m;, €). (2)

More generally, the summation can be replaced by an integration. Von Neu-
mann and Morgenstern, in their foundational work [20] , formalized ratio-

5Careful readers will note that this expression subsumes the role of the allowed function
in [17].



nality in terms of axioms that require an agent to behave as if maximizing
expected utility.

3 Dominance

A concept essential to this work is dominance: when the payoffs resulting
from one move are better than those resulting from some other move, for
some precise definition of “better,” the inferior move is said to be dominated.
Previous treatments used only one kind of dominance, namely ordinal dom-
mance, an “absolute” dominance between the members of two sets. In this
paper we consider how two other kinds of dominance, stochastic and utility
dominance, can be combined with the axiomatic approach.

3.1 Ordinal Dominance

Ordinal dominance is straightforward: for nonempty sets {o;} and {5;},
we say that {a;} is ordinally dominated by {5;} (written {ov} <, {5;}) if
a; < B for all 4, j, and at least one element of {a;} is less than every element
of {#,}. For example, the set {5,3} ordinally dominates the set {3, 1}, since
every member of the first is greater than or equal to every member of the
second, and in at least one case the relationship is strictly greater than.

3.2 Stochastic Dominance
3.2.1 The Intuition

Before launching into the formal definition of stochastic dominance, we will
present the intuitions behind its use.

A lottery is defined to be a set of payoffs with associated probabilities. A
lottery can be viewed as a state contingent payoff—in an interaction between
agents, the payoff is contingent on the (uncertain) move of the opponent.

Stochastic dominance [22] between two alternative lotteries is commonly
represented graphically as follows. Consider a graph whose x-axis represents
various payoffs, and whose y-axis represents cumulative probabilities (i.e.,
runs from 0 to 1). For each agent’s lotteries, we draw a curve onto this
coordinate space whose y position at any x value represents the probability
that the agent will receive less than that value from that lottery. Each curve



begins at the point (p,0) and increases to a maximum of (¢,1), where p and
q are the minimum and maximum possible payoffs, respectively. If the first
lottery’s curve lies completely below and to the right of a second lottery’s
curve (with possible overlap—but no crossing—of the curves permitted), we
say that the first lottery stochastically dominates the second. This means
that for any given value, the player has a better chance of getting it or less
from the second lottery than from the first.

For example, consider an agent that has two lotteries available to him.
In the first, he has .2 chance of getting a payoff of 4, a .5 chance of getting a
payoff of 6, and a .3 chance of getting a payoff of 7. We draw this lottery’s
curve as in Figure 3. The curve rises by .2 at 4, rises an additional .5 at 6,
and rises an additional .3 at 7.

Figure 3: Agent’s First Lottery

Now imagine that there is a second lottery, where he has a .3 chance of
getting a payoff of 3, a .2 chance of getting 5, and a .5 chance of getting 6.
This second lottery’s curve looks like that in Figure 4.

If we now combine these two curves, it is evident that at all points the
second curve are above those of the first curve for a given payoff—thus, the
second lottery has a higher probability of getting a particular value or less for
all values and therefore the first lottery stochastically dominates the second
(see Figure 5).

6The diagram in Figure 3 is typical of lotteries with discrete moves and payoffs—a step
function. We could, just as easily, have a continuous set of payoffs, which would result in
a smooth curve in the diagram with no vertical climbs.
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Figure 4: Agent’s Second Lottery

Figure 5: A Comparison of the Two Lotteries
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Stochastic dominance is relevant in evaluating an agent’s choices in the
extended payoff matrix below, where purely ordinal considerations leave the
agent with an ambiguity. Assume that our agent J is faced with the inter-
action shown in Figure 6.

K proby(my | mg)
c d c d
4 3 4 4
a1 3 als5 5
J ! 5 prob ;(mg | my) 5 6
bla2 " |4 b 157 |5

Figure 6: An Uncertain Interaction

If J considers his own potential outcomes, given the probability distri-
bution he assumes over K’s moves, he will reason that he has a .5 chance
of receiving the value from either column, given any choice of his moves.
Thus, if he chooses move a, he faces a .5 chance of getting either 1 or 3; if he
chooses move b, he faces a .5 chance of getting either 2 or 4. Although there
is no ordinal dominance here, there is stochastic dominance between the two
moves, seen as two separate lotteries (Figure 7). Thus, a player who was
evalua ting stochastic dominance would realize that move a was dominated.

Figure 7: Stochastic Dominance Between Two Moves” Outcomes
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3.2.2 Formal Notation for Stochastic Dominance

Since there may be several outcomes with the same payoff to an agent, and
since in the probability analysis that the agent performs these outcomes are
identical, we would like to “collapse” these identical outcomes in our notation
(e.g., combine all the chances of getting 3 into a single probability). Thus,
we write agent ¢’s subjective probability of getting a certain payoff value,
given his choice of move m; and all his knowledge of the world, as follows:

prob;(v | m;, §) = Z probi(mz | m;, §).

{mz | p(i,m)=v}

We describe this as the payoff lottery for ¢ given move m;. When we have
va( [ [oprobi(v| e, dv < [ [aprobi(v| d;€)dv)

we will say that the payoff lottery for ¢ of move d; is stochastically dominated
by the payoff lottery for i of move ¢;.”

3.3 Utility Dominance

As opposed to ordinal or stochastic dominance, utility dominance employs
the aggregate measure of “expected utility,” which introduces a total order
(with equality) over payoff lotteries. The utility function encodes the agent’s
attitudes toward risky or uncertain payoffs. A utility function that is linear
in payoffs will result in expected value decision making.

When the following situation holds,

/ [ooU (v)prob;(v | d;, &) dv < / [coU (v)prob;(v | ¢;, &) dv, (3)
—00 —00
we say that the expected utility for agent ¢ of move ¢; dominates the expected
utility for agent ¢ of move d;. Note that the dominating move is on the larger
side of the inequality, in contrast to the definition of stochastic dominance,
where the dominating move is on the smaller side of the inequality.

"For the reader being newly introduced to stochastic dominance, it might seem odd
that ¢;’s lottery, being everywhere less than d;’s lottery, dominates d;. The curves for
better lotteries rise further to the right, and therefore their integrals are smaller up to any
given point.

12



4 Rational Moves—A Prescription for an Agent

In this section we describe a prescriptive theory for rational agents in in-
teractions. The criteria for optimality is that the agent should choose the
course of action that maximizes its expected utility. However, we propose a
method that makes use of alternative means of screening moves by which an
agent can reduce the number of, and data requirements for, expected utility
calculations.

4.1 Rationality Using Ordinal Dominance

We will denote by R,(p, i) the ordinally rational moves for the agent i in the
game p. An individual agent ¢ is said to be exhibiting ordinal rationality if
it makes moves solely from the set R,(p,i). The following axiom defines a
criterion for eliminating a move from R,(p,):

pay(iv dz) <o pay(i, Ci) = dz ¢ Ro(p7 2) (4)

In other words, if d; is ordinally dominated by ¢; (every possible payoff to i
of making move d; is less than every possible payoff to i of making move ¢;),
then d; is ordinally irrational for 7. Note that this does not imply that ¢; is
ordinally rational, since there may be still better moves available.

4.2 Rationality Using Stochastic Dominance

An individual agent i is said to be exhibiting stochastic rationality if it makes
moves solely from the set R(p,i). The following axiom defines a criterion
for eliminating a move from Rg(p,):

Vx(/ [zprob;(v | ¢;, &) dv < / [zprob;(v | d;, §) dv) = d; ¢ Ry(p,i). (5)
Thus, if d; is stochastically dominated by any ¢;, then d; is stochastically
irrational for agent i. Note again that this does not imply that ¢; is stochas-

tically rational—FEquation 5 is a rule to exclude moves from R, not to prove
that they are members.

13



4.3 Rationality Using Utility Dominance

An agent is utility rational if it seeks to maximize expected utility, as defined
in Equation 2. The following axiom defines a criterion for eliminating a move
from R,(p,i), the set of moves with maximal expected utility:

[m[mU(v)probi(v | d;, &) dv < [m[mU(v)probi(v | ¢;, &) dv=d; ¢ R,(p,i).
(6)

Thus, if the expected utility of d; is dominated by the expected utility of any
¢i, then d; is utility irrational for agent i. Note once again that this does not
imply that ¢; is utility rational. However, this definition of rationality differs
from the previous ones in that we know there is a unique member of R,,
or a set of equivalent members (i.e., with the same expected utility). Thus
this definition can actually be used to narrow the agent’s choices to a single
move, given the necessary computational resources to find it.

4.4 The Relationship Among Rationalities

The three definitions of rationality are related in the following ways:

di Q/ Ro(pa Z) = dz ¢ Rs(p7 2) A dz Q/ Ru(p7 2) (7)
Ry(p,i) € Rs(p,i) € Ro(p,1) (9)

The fact that ordinal dominance between two moves implies stochastic
dominance between the same two moves for any probability distribution is a
simple consequence of their definitions. The fact that stochastic dominance
implies utility dominance for any monotonic utility function is a well-known
result from decision theory. Stochastic dominance is a robust measure of
desirability for the agent, since moves can be eliminated no matter what the
risk attitude of the agent as encoded in a utility function.

4.5 Using the Dominance Relations

We will exploit the hierarchy of rationalities (as defined in Equation 9) in
our automated agent’s activity. Ultimately, he would like to identify the set
R, (p,i), but rather than directly trying to find the utility maximizing move,

14



he can prune his search space by eliminating moves from R, and R,. Our
agent therefore uses the three-level hierarchy of dominance relations, and
their related rationality axioms, as follows:

1. Remove ordinally dominated moves. If a single move remains, select it

and finish.

2. Assign and/or determine some properties of prob;(m; | m; &), the
probabilities of opponents’ moves given each of the agent’s possible
moves. We admit partial information regarding probabilities because
this partial information may be sufficient to eliminate irrational moves
in steps 3 and 5.

3. Remove stochastically dominated moves. If a single move remains,
select it and finish.

4. Assess and apply a utility transformation to the lotteries defined by
the remaining moves.

5. Remove utility dominated moves. All remaining moves will have iden-
tical expected utilities. Select one and finish.

Using this technique, our agent is able to maintain his commitment to
being a utility maximizer, and still reduce the computational burden of com-
puting expected utility. Information regarding the probability distributions
of opponents’ moves is used effectively. The search space can in many in-
stances be radically pruned using this technique.

4.6 An Example

Consider an agent who is confronted with an encounter represented by the
payoff matrix in Figure 8.

Using ordinal dominance, he is immediately able to rule out moves ¢ and
d, leaving him with options a and b. While neither of these moves is ordinally
dominated, he would still like to choose between them. He assesses the
likelihood that his opponent will make any particular move as equiprobable
(perhaps his opponent is only able to reason about ordinal dominance, and
thus has no dominated moves; see below, Section 5.2.1). He is then able to
conclude that move b is stochastically dominated by move a; move a is thus

15



Figure 8: Using Ordinal and Stochastic Dominance

chosen. Had there been no stochastic dominance, he would have proceeded
to compute the expected utility of moves a and b.

In general, however, the probability distributions over opponents’ moves
will not be readily available, and the computational burden of calculating or
estimating these probabilities will overshadow the burden of calculating the
best move given those probabilities. In the next section we describe various
approaches where the axiomatic description of opponents allows the agent
to deduce properties of the probability distribution for use in the framework
described above.

5 Axioms of Rationality—Description

As described above, the second element of our prescriptive/descriptive ap-
proach is a descriptive theory of other agents. We will call the agent to
whom we are endowing the prescriptive theory the “agent,” and the other
agents that we are describing as the “opponents.” We describe a framework
of rationality that allows us to express many levels of rationality that might
be operating in opponents. The ultimate purpose of these axioms is to allow
the agent to deduce prob;(mz | m;, £) from more fundamental information.
In the remainder of this section, we describe various classes of rational-
ity that this approach can address, and demonstrate how our three-tiered

16



dominance analysis operates in each situation. Finally, we describe how to
incorporate uncertainty about what axioms are present in other agents.

5.1 Minimal rationality

An assumption of minimal rationality corresponds to a situation where the
agent has no information regarding the rationality of his opponents. This may
include a recognition that other players are engaging in potentially irrational
behavior (e. g. that the choices the opponents make are independent of their
payoffs).

In this case we have

{mz : prob;(ms [ m;, §) > 0} = M,

that is, any combined set of moves by the other agents is possible. One
version of minimal rationality implies a commitment to equiprobable moves
by the opponents:

probi(ms | €) = prob;(m. | &)

for all opponents’ moves m; and m.. The effect of this is for the agent to
assume that the others will be choosing their moves arbitrarily and ignoring
any variation in payoffs.

Minimal rationality does not imply equiprobable assessments. Other in-
formation regarding tendencies and biases (aside from explicit consideration
of payoffs) that opponents have displayed in the past can form the basis
for assigning probabilities. The important point is that the assessment is
not based on any explicit model of rationality of opponents. It therefore
most closely resembles standard decision making under uncertainty, where
uncertainty arises from lack of information and stochastic processes in the
environment.

5.2 Separate rationality

In separate rationality the agent explicitly admits the possibility that each
opponent is rational (to a greater or lesser degree) and has specific capabilities
for reasoning about the moves others, including the agent, will take. Below,
we examine several types of rationality that might conceivably be exhibited
by opponents.

17



5.2.1 Ordinally Rational Opponents

If the agent assumes that his opponents are at most ordinally rational, then
a successive winnowing process can be used to reduce the payoff matrix to a
relevant set (this assumes, as well, that the opponents have knowledge of the
agent’s ordinal rationality; see [18]). Ordinally dominated moves, for both
the agent and opponents, are repeatedly removed. The agent then restricts
attention to a reduced matrix consisting of all ordinally undominated moves
(along with opponents’ responses). If the remaining set is a single entry, then
there is a unique solution.

If there are multiple entries, then the opponents and the agent are left
with an ambiguity—any of the moves not ordinally dominated are equally
desirable. The agent can assume that the opponents will choose arbitrar-
ily within the set of remaining moves—considering the opponents minimally
rational as in Section 5.1. The agent is permitted to make this inference be-
cause the opponents are only capable of reasoning about ordinal dominance;
thus further reasoning about the agent by the opponents is impossible (this
was the situation exhibited in the example of Section 4.6).

There is a potential subtlety in using the above method for ordinal domi-
nance. Consider a situation where our agent has several ordinally dominated
moves; does it matter which is “removed” first from the payoff matrix? As
it turns out, the order of removal, both for the agent and his opponents, is
irrelevant for ordinal dominance.

5.2.2 Stochastically and Utility Rational Opponents

Here we address the issue of opponents who, like the agent, are capable of
engaging in probabilistic reasoning. Since both agent and opponents can
reason probabilistically about each other, there is the potential for infinite
regress: the agent’s choice is dependent on what he believes his opponents
will do, which depends on the opponents’ beliefs about the agent, and so on.

One weak form of rationality that lends itself to probabilistic reasoning is
due to Strait [19]: if the agent prefers one payoff to another, then his opponent
will assign a higher probability to the move with that payoff, and similarly for
the agent’s assessments of the opponents. One consequence of this principle
is that the probability distribution over opponents’ moves is dependent on the
agent’s move, i.e., the agent must consider prob;(mz; | m;, ). This dependence

18



is not due to a causal linkage, since we are assuming simultaneous action, but
rather results from the agent reasoning about the possibility of the opponents
“outguessing” him given a particular move.

The foregoing principle results in a set of constraints on probabilities,
given our assumption that the payoffs in the encounter are common knowl-
edge and that all players have monotonic utility functions. There are var-
ious methods for dealing with constraints and/or bounds on probability in
decision-making situations.

We can strengthen Strait’s principle by adding an assumption that the
opponents are Bayesian decision makers. We will restrict our attention to
the case where there is a single opponent who is capable of screening moves
based on both stochastic and utility dominance relationships. Furthermore,
the opponents will be assumed to know that the agent is similarly an expected
utility maximizer in making choices.

The infinite regress of reasoning alluded to above is a real concern under
these assumptions. One way of dealing with the regress is by explicitly mod-
eling (by way of a probability distribution) the number of levels of regress
that the agent believes an opponent will reason, and encoding the agent’s
perception of the opponent’s uncertainty at each level. For example, the
agent could reason that there is a fifty percent chance that the opponent will
reason one level deep, a thirty percent chance two levels deep, a twenty per-
cent chance three levels deep, and zero for all others. This is computationally
complex, but is likely to be effective in a world inhabited by computationally
limited reasoners.

5.3 Unique rationality

Under unique rationality, the agent assumes that the opponents’ moves are
fixed in advance, i.e.,

probi(mz | ¢,§) = prob(mz | d,£)

for all moves ¢ and d to be made by agent 7. This can also be expressed as
the independence relation,

PT’Obi(mz ’ mz’af) = Pmbi(mz ’ 5)

8This situation more closely resembles the jointly prescriptive theories of game theory.
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which states that the agent’s probability distribution does not depend on
the move the agent makes. Conceptually, the opponents are assumed to have
sealed away their moves before the agent makes his choice. This is orthogonal
to the question of how the opponents will make their choices; thus, unique
rationality can be combined with the various forms of separate rationality
presented above, or with minimal rationality. The crucial question here is
not whether the opponents are reasoning about the agent, but whether their
moves will actually be dependent on the move made by the agent (as they
are in informed rationality below). In certain situations, the assumption of
unique rationality allows a technique called case analysis to be applied when
computing ordinal dominance (see [17]).

5.4 Informed rationality

Under informed rationality, the agent assumes that opponents have perfect
information—they know precisely what move the agent is to take. Informed
rationality eliminates uncertainty in the encounter when payoffs are common
knowledge. The agent’s task in this case is to make a choice that maximizes
his benefit, given that his opponents will respond omnisciently to his move.
This is the situation, for example, when there is a time-lag in the making of
choices, and the opponents will be able to actually respond to our agent’s
move.

5.5 Uncertainty about Rationalities

In this section we have sketched various classes of rational opponent that our
prescriptively designed agent might encounter, and presented some analysis
of how each case is analyzed. In general, though, an agent may be uncertain
about what class of opponent he faces in a given encounter. Probability
theory provides a solution—assign a probability distribution to the types of
agent that might be encountered and form a composite distribution over the
opponents’ moves based on analysis of each case.
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6 The Jointly Prescriptive Issues

Ideally, a set of agents who all use the three-level hierarchy of ordinal, stochas-
tic and utility rationality, with coherent probability distributions, will arrive
at stable solutions. In general, however, this cannot be guaranteed. Au-
mann [2| has shown that a construct termed correlated equilibria is the re-
sult of interactions between utility-maximizing agents. The equilibrium is
a probabilistic notion, a generalization of the mixed randomized strategies
developed by game theorists. Each agent selects a definite alternative—the
uncertainty in the equilibrium is due to the joint uncertainty of the agents
about other agents’” moves. The existence of correlated equilibria is based
on the existence of a common knowledge prior probability distribution over
some underlying state of nature. Differences in probability distributions by
the agents are the result of differences in information. Though Aumann has
provided a characterization of equilibria, they are inherently uncertain due to
the uncertainty of the participants and may in fact admit a wide range of pos-
sible solutions. Recently Nau and McCardle [16] have shown that correlated
equilibria are consistent with a notion of joint coherency in noncooperative
games. This work, however, has not provided an operational procedure for
deriving the equilibria based on a single agent’s information.

7 Conclusion

The design of automated agents can benefit from the theoretical underpin-
nings of decision analysis and game theory. Builders of autonomous agents
will want to know that their creations are capable of adaptive behavior in
the face of various opponents, and can use the “prescriptive/descriptive” as-
pects of decision analysis to guide their agents’ design. The builders of full
multiagent systems will want to ensure certain desirable global properties,
and can use the “jointly prescriptive” aspects of game theory to choose the
agents’ built-in strategies.

We have presented a technique that exploits the relationship among or-
dinal, stochastic, and utility dominance. Combining it with logical axioms
that describe opponents, it is particularly suitable for a deductive engine
to use in deciding on a move in an interaction. The technique is based on
computational considerations, pruning certain moves before performing com-
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putationally expensive operations (such as finding expected utility). We have
also presented a sampling of rationality axioms that might be useful to an
agent’s designer, and given some ramifications of their use. This is basically
a prescriptive analysis, discussing one way in which an interacting intelligent
agent could be built.
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