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Abstract. We introduce Weakest Link Games (WLGs), a cooperative
game modeling domains where a team’s value is determined by its weak-
est member. The game is represented as an edge-weighted graph with
designated source and target vertices, where agents are the edges. The
quality of a path between the source and target is the minimal edge
weight along the path; the value of a coalition of edges is the quality of the
best path contained in the coalition, and zero if the coalition contains no
such path. WLGs model joint projects where the overall achievement de-
pends on the weakest component, such as multiple-option package deals,
or transport domains where each road has a different allowable maximum
load.

We provide methods for computing revenue sharing solutions in WLGs,
including polynomial algorithms for calculating the value of a coalition,
the core, and the least-core. We also examine optimal team formation in
WLGs. Though we show that finding the optimal coalition structure is
NP-hard, we provide a O(log n)-approximation. Finally, we examine the
agents’ resistance to cooperation through the Cost of Stability, providing
results for series-parallel graphs.

1 Introduction

Consider a travel agency preparing to offer a fixed-price travel deal. The deal
must include a flight to a travel destination, and a hotel stay. People who decide
whether to take the deal or not would examine the hotel that’s being offered, and
are only likely to take the package if the hotel’s quality is sufficient for their taste.
Similarly, if the airline’s quality is not high enough, people are likely to reject
the deal. A potential buyer would reject the package when either the hotel or the
airline do not have the required quality. Thus the total number of buyers, and
the agency’s revenue, is determined by the weakest part of the package. Now
consider a voucher that allows the buyer to choose one of several such travel
package deals (for example, a flight and a hotel in New York, or a flight and a



hotel in Hawaii). As before, the value of each package (the New York package or
the Hawaii package) depends on the weakest component in the package. However,
the voucher allows a choice between the two packages, so the number of people
the agency would attract is likely to depend on the higher-quality package.

Alternatively, consider a truck driver who would like to deliver as much cargo
as possible from New York to Los Angeles. Even if the truck can carry all the
available cargo, any path from the source to the target involves using toll roads
with bridges and tunnels, each limiting the weight or height of vehicles going
through them. Any road used places a restriction on the load the truck could
carry when passing through it. Any possible path between the source and target
consists of several such roads, and is limited by its weakest link (i.e., the road
with the most stringent restrictions along the path). The optimal path to use is
the one with the best weakest link, as it allows the highest feasible amount of
cargo to be transferred.

In the above examples, the value of a package depends on its weakest compo-
nent. However, the individual components can be composed into various pack-
ages, in ways captured by certain graph structures. If these components are
controlled by self-motivated agents, how are the agents likely to share the pack-
age’s total value? For example, which travel packages are likely to form? How
would the toll road owners, or the hotel and airline providers, share the obtained
revenues?

Many domains where self-motivated agents interact have been studied in the
artificial intelligence literature; game theory has been used to analyze strategic
behavior in scenarios where each agent is free to choose its action, but the
outcome depends on the combination of all of these choices. The past decade
has seen increased exploration of cooperative game theory, which studies domains
where self-motivated agents must collaborate with one another, and emphasizes
negotiation among agents. In such domains, having enforceable contracts among
the agents has an important impact on the equilibrium outcome that emerges.

Our contribution: we propose a new class of cooperative games, called
cooperative Weakest Link Games (WLGs), which capture domains (such as the
examples above) where the value a coalition can achieve is determined by its
weakest member. Our WLG model makes use of an edge-weighted graph with
designated source and target vertices, where the agents are the edges of the
graph. The quality of a path from the source to the target is the minimal edge
weight along the path; the value of an agent coalition is the maximal quality of
all the paths contained in the coalition (i.e., all the paths that are comprised of
edges that are all in the coalition).

We provide a polynomial algorithm for computing the value of a coalition
in a WLG. We then study agent agreements in WLGs using cooperative game
theory, providing polynomial algorithms for computing solutions based on team
stability: the core [19], e-core, and least-core [29]. We also provide algorithms for
quantifying the stability level of a game, using the Cost of Stability [8] which
measures the minimal external subsidy required to allow stable payoff allocations
to exist. Finally, we explore finding the best partitioning of the agents to teams,



known as optimal coalition structure generation [STJ28[2427]. Though we show
the problem is NP-hard, we provide a polynomial O(logn) approximation for it.
There are many complex problems where the outcome a team achieves de-
pends on its “weakest link”, but where several alternative teams exists, that can
be modeled as WLGs. For example, crowdsourcing tasks and large projects are
typically comprised of several parts, and the overall quality may depend primar-
ily on the lowest-quality part: a retailer website might have a product catalogue
search, an item description, and a purchasing interface, and if any one of these
fails then the retailer cannot sell its products; an operating system scheduling a
parallel task achieves an overall runtime that is determined by the slowest pro-
cessor. As WLGs can model such domains, we believe it to be quite an expressive
representation for these types of interactions, highlighting the need for tractable
algorithms for solving such games using cooperative game-theoretic concepts.

1.1 Preliminaries

A coalitional game is comprised of a set of n agents, I = {1,2,...,n}, and a
characteristic function mapping agent subsets (coalitions) to a rational value
v : 2l — Q, indicating the utility these agents achieve together. We assume
v(0) = 0. An imputation (p1,...,pn) divides the gains of the grand coalition I
(i.e., the coalition consisting of all the agents) among the agents, where p; € Q,

such that > p; = v(I). We call p; the payoff of agent i, and denote the payoff

i=1
of a coalition C as p(C) = Y p;.
icC
A basic requirement for a good imputation is individual rationality, stating
that for all agents ¢ € C, we have p; > v({i}) — otherwise some agent is

incentivized to work alone. Similarly, we say a coalition B blocks the payoff
vector (p1,...,pn) if p(B) < v(B), since B’s members can split from the original
coalition, derive the gains of v(B) in the game, and give each member ¢ € B
its previous gains p; and still some utility remains, so each member can get
additional utility. If a blocked payoff vector is chosen, the coalition is unstable.
A solution based on this is the core [19].

Definition 1. The core of a game is the set of all imputations (p1,...,pn) that
are not blocked by any coalition, so that for any coalition C C I, we have:
p(C) > v(C).

In some games, every imputation is blocked by some coalition, so the core
is empty. The core is too restrictive in such games, so one alternative is to use
relaxed stability requirements. One such model assumes that coalitions that have
only a small incentive to drop-out from the grand coalition will not do so — the
e-core [29].

Definition 2. The e-core, for € > 0, is the set of all imputations (p1,...,pn)
such that for any coalition C C I, p(C) > v(C) —e.



Unlike the core, the e-core always exists for a large-enough €. For € = max p(C)—

v(C) the e-core is always non-empty, so the set {e|e-core is non-empty} has a
minimal element. The minimal €* for which the e-core is non-empty is the least-
core value of the game, and the €*-core is the least-core (LC).

When the core is empty, an external party interested in having the agents
cooperate may offer a subsidy if the grand coalition is formed. This increases
the total payoff, but does not change any of the core constraints, so when a
large-enough subsidy is given, the perturbed game has a non-empty core. The
minimal subsidy required to achieve a non-empty core can be used to measure
the degree of instability or the agents’ resistance to cooperation in the game,
and is called the Cost of Stability [§].

Definition 3. A game’s Cost of Stability (CoS) is the minimal external subsidy
that allows the game to have a non-empty core. Formally, given a game with
characteristic function v : 21 — Q, the modified game va is the game with the
characteristic function v’ : 21 — Q where v'(I) = v(I) + A and for every C C I
we have v'(C) = v(C) (V' is a super-imputation, as v'(I) > v(I)). The CoS is
the minimal A such that va has a non-empty core.

In certain domains several disjoint agent coalitions may emerge, each work-
ing independently, creating a structure of coalitions [I3]. When the same char-
acteristic function v : 27 — Q determines the utility obtained by each such
coalition, we may seek the optimal partition of the agents maximizing the total
value obtained. This problem is called the optimal coalition structure generation
problem [28/24].

Definition 4. A coalition structure is a partition C'S of the agents (I) into
several disjoint sets (CSy,...,CSy). The total value of a partition is the sum of
k

the values of the parts, so v(CS) = > v(CS;). The optimal coalition structure
i=1
is the partition with the maximal value: arg maxcgs v(CS).

We provide results on how a package’s composition affects the stability of the
game, which rely on series-parallel graphs [I7I32]. A two terminal graph (TTG)
is a graph with a distinguished source vertex and a distinguished target vertex. A
base graph is a TTG that consists of a source vertex and target vertex connected
directly by a single edge (i.e., the graph K5). The parallel composition P(G1, Gs2)
of TTGs G and G5 is the TTG generated from the disjoint union of G1, Gy by
merging the sources of G1, Gy and merging their targets. The series composition
S(G1,G2) of TTGs G1 and G4 is the TTG generated from the disjoint union of
G1, G2 by merging the target of G; with the source of G5. An example is given
in Figure

Definition 5. A Series Parallel Graph (SPG) is a TTG formed by a sequence of
parallel and series compositions starting from a set of base graphs (i.e., a graph
built recursively by the two composition operations over base graphs).
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Figure 1: Composition

2 Weakest-Link Games

Weakest Link Games (WLGs) model domains such as the examples in Section
using an underlying graph structure. A Weakest Link Domain (WLD) consists
of a graph G = (V, E) with designated source and target vertices s,¢ € V, and
an edge weight function w : E — QT mapping any edge to the “restriction”
applied on it (the set W includes all different weights in the graph). We denote
the set of all paths between s and t as R ;). The strength of a path r =
(€1,-..,em) € R(sy) (where (e1,...,e,) are the edges along the path) is the
minimal edge weight along this path: ¢(r) = minejETw(ej)ﬂ Given an edge
subset C' C E, we denote the set of s-t paths that consist only of edges in C' as
R(C;,t) ={r=(e1,...,em) € Rs)l{e;}jro C C}.

Our game is defined over a WLD (G = (V, E),s,t,w), where the agents
I are the edges in the graph, so I = E, and we denote |I| = |E| = n. The
characteristic function v : 2/ — Q maps a coalition C' C I to the strength of the
best (strongest) path that consists solely of coalition edges.

Definition 6. A Weakest Link Game (WLG) is defined over a domain (G =
(V,E), s, t,w) where agents are edges I = E, and using the following character-
istic function:

5 In other words, a chain of edges forming a path is only as strong as its weakest link.



v(C) = max ¢(r) = max minw(e;)

C C .
reRE, PERE, , i €p

By convention, if for a coalition C C E no such path exists (i.e., R(C; H = 0) we
set v(C) = 0.

Intuitively, the value of coalition C' is the highest threshold 7 such that there
exists a path between s and ¢ using only edges in C with weight at least 7.

2.1 The Core and Least-Core

We now study how agents in a WLG are likely to share the gains, focusing
on payoff allocations that guarantee stability of the formed team, providing
polynomial algorithms for computing core, e-core and least-core solutions.

Observation 1 The value v(C) of any coalition C in a WLG over the graph
G(V, E) is the weight of one of the edges in the graph, so v(C) € W = {w(e)|e €

Proof. By definition, a coalition’s value is the weight of the lightest edge in a
certain path (weakest link of maximal weight), so v(C') is the weight of one of
the edges in the graph, and can take at most |W| < |E| different values.

Theorem 2. Computing the value v(C) of a coalition C' in a WLG can be done
in polynomial time.

Proof. Due to Observation [I| v(C) takes one of the values in W. For each of the
possible edge weights 7 € W, we can test whether there exists an s-¢ path that
is comprised solely of the edges in C' whose weight is at least 7, as follows. Let
C7 Dbe the set of edges in C' with weight at least 7. Denote by G'(V,C7) the
subgraph with vertex set V' and edge set C"™. The graph G'(V,C") can easily be
computed in polynomial time, by iterating through the edges and eliminating
those that have a weight lower than 7. Given G'(V,C7) we can check whether
there exists any path connecting s and ¢ in it using a depth-first search (DFS),
which again requires polynomial time. If such a path exists we say the test was
positive for 7, which indicates that v(C) > 7, and if such a path does not exist
we say the test was negative, indicating that v(C) < 7. After iterating over all
possible values 7 € W we return the maximal 7 for which the test was positive.
Since |W| < |E| the entire procedure requires polynomial time.

Theorem 3. Testing whether an imputation p = (p1,...,pn) s in the core of a
WLG can be done in polynomial time.

Proof. To check if there exists a coalition B with v(B) > p(B), we iterate over
all possible values that v(B) can take. By Observation [l it suffices to use a
procedure that searches for blocking coalitions with value exactly 7, and run it
for all possible values 7 € W. If no blocking coalition is found whose value is



exactly 7 for any 7 in the set W, no blocking coalition exists. If a coalition B
has value 7, it must contain a path P connecting s and ¢ consisting solely of
edges with weight at least 7. The value of path P as a coalition is also v(P) = 7.
Thus if B is a blocking coalition, P is also a blocking coalition. Therefore, to
find a blocking coalition B where v(B) = 7 it suffices to examine all the paths P
where v(P) = 7. If there are several such paths P where v(P) = 7, it suffices to
examine the path @ with minimal payoff p(Q) = > ;.o pi if p(Q) <v(Q) =7
then we have a blocking coalition @, and if p(Q) > v(Q) = 7 then for any path
Q' where v(Q') = 7 we have p(Q') > p(Q) > v(Q) = 7 so Q' cannot be a
blocking coalition.

Therefore, to seek a blocking coalition B where v(B) = 7 it suffices to ex-
amine the minimal payoff path P where v(P) = 7 (i.e., an s-t path @ where
v(Q) = 7 that minimizes p(Q) = >_,. o p; of all such paths with value 7). If this
path is not a blocking coalition then there are no blocking coalitions with value
7. To search for such a path, we construct a weighted graph G, with the same
vertices as G, while dropping all edges where w(e) < T, retaining only edges
with weight of 7 or more. However, we change the weights of the retained edges
— we replace the weight of an edge e € E with its payoff under the imputation,
so w'(e) = pe (by w’(e) we denote the new weight). In the generated graph G
we can find the “shortest” s-t path S;, under the new weights, using Dijkstra’s
algorithm. The payoff of S; under the imputation p is its total length in G,
under the new weights. If p(S;) < 7 then S, is a blocking coalition with value
at least 7, and if p(S;) < 7 then no blocking coalition with value 7 existsﬂ

Since the above procedure takes polynomial time, and is repeated |W| < |E|
times (for each possible value of 7), the entire algorithm has a polynomial running
time.

The algorithm in Theorem [3] tests whether an imputation is in the core of
a WLG. We now show that relaxed solution concepts can also be computed in
polynomial time, using this algorithm as a building block. Note that it is possible
to construct a linear program (LP) with n variables, whose set of solutions are
all the e-core imputations. This LP has a variable p; for each of the agents,
which represents its payoff in an imputation. The LP has 2™ constraints, one per
possible coalition. The core is recovered when setting € = 0.

VYO CI: ) pi>v(C)—e
i€C

> pi=v(N)
iEN
LP1: Linear program for the core and e-core

5 Decreasing weights of some edges potentially reduces the values of some coalitions;
thus the procedure might “miss” a blocking coalition, when the true value of the
coalition under the new weights is lower than under the true weights. However, this
is not a coalition whose value is 7, but rather one whose value is 7’ > 7. This would
be found later, when examining the value 7'.



Solving the LP formulations enables finding the core or e-core imputations.
Although it is possible to solve LPs using the Ellipsoid method in time polyno-
mial in the size of the LP, we note that the size of the above LP formulation is
exponential in the number of players. Our solution to this problem uses a sepa-
ration oracle, a method that takes a possible LP solution as an input and either
finds a violating constraint or verifies that no such violating constraint exists.
Since the Ellipsoid algorithm can run using only a separation oracle, without
explicitly writing the entire LP, finding a polynomial separation oracle for an
LP enables solving it in polynomial time.

Theorem 4. Testing core emptiness, finding an e-core imputation and finding
the least core value are in P for WLGs.

Proof. The algorithm of Theorem [3| can serve as a separation oracle for the
core LP [1] Tt takes a proposed imputation p = (p1,...,pn) and either returns a
blocking coalition yielding a violating constraint, or verifies that no such coalition
exists, in which case all the LP constraints are satisfied. Thus is it possible to
solve the core LP [I| in polynomial time, and either find a core imputation or
verify that it is empty.

We note that it is easy to adapt the algorithm in Theorem [3] to serve as a
separation oracle for the e-core LP [l Rather than check whether a path forms
a blocking coalition for a given value of 7, we can perform a relaxed test: check
whether it is blocking by a margin of at least € by constructing G, as in Theo-
rem [3] finding the shortest path S, and checking if 7 = v(S,) < p(S;) —e. Since
we have a separation oracle for the e-core LP [I] it can be solved in polynomial
time, allowing us to either find an e-core imputation or verify that the e-core is
empty. To find the least core value (LCV) we can perform a binary search on
the minimal value of ¢, at each step solving the e-core LP [I| for the current value
of €. We repeat this as many times as needed to compute the least-core value up
to any required degree of numerical accuracy.

2.2 Cooperation, Series and Parallel Compositions

The Cost of Stability (CoS) is the subsidy an external party must pay to enable
a stable payoff allocation (see Section 7 so it can be used as a measure of the
agents’ resistance to cooperation. In WLGs, two disjoint s-¢ paths (i.e., parallel
s-t paths) are substitutes, as either path may be used to reach the target from
the source. In contrast, two disjoint edge subsets of a single simple s-t path, such
as two sub-paths that are joined serially to form a full s-t path, are complements,
as both parts are required. Intuitively, we expect complement agents to find it
easier to cooperate, as they need each other to achieve a high value, whereas
substitute agents resist cooperation as each group can achieve value on its own.

Though WLGs are defined for any graph, the restricted case of SPGs cap-
tures very natural structures: a series composition indicates that a project has
two parts and its overall success depends on the weaker component; a parallel
composition indicates that either part can be used to complete the project. We



show how the resistance to cooperation, measured by the CoS, is affected by
series and parallel composition. In a WLG setting, when joining graphs {G,},
the characteristic function of the newly-formed SPG (v) can be expressed in
terms of the characteristic functions of the joined graphs {v;}: for every C C G,
’U(C n Gl) = ’Ui(C n Gl>

Theorem 5. If graph G is a parallel composition of graphs G;, the CoS of G is
(; CoS(G;) +vi(Gy)) — rnG%X(Ui(Gi))'

Proof. First, we show that the CoS is not larger. Examine the minimal super-
imputation of each G; when it is considered on its own. For each graph, the sum
of this super-imputation is Z CoS(G;) + v;(G;), which, when summed over, is
G;
the size of the super-imputation we suggest. Suppose there is a blocking coalition
C, for which v(C) > ij. As there are no edges connecting the separate Gjs,
jec
every route between s and t passes through only a single G;, so there is an i
for which v(C N G;) > Z p;j. However, since p was a super-imputation over
JjECNG;
G, that is impossible. A smaller CoS is not possible either: suppose there is a
smaller super-imputation, so there is a G; for which Z p; < v;(G;)+CoS(Gy).
JEG;
This contradicts the very definition of the CoS.

Theorem 6. If G is a series composition of the graphs G;, the CoS of G
is min COS(GZHIH#"(U(G]'))), where G?‘m#"'(v(Gj)) is G; in which all edges with

weight above min(v(G;)) are lowered to that value.
it

Proof. We first show that the CoS cannot be larger. It cannot be larger than

any CoS(GEmn#i(V(G"))), as every path from s to ¢t has a maximal value of
min(V(G;)), so no path from s; to ¢; can be larger than that. A valid super-
J

imputation is a super-imputation of G~ #(V(C; )), giving 0 to everyone else. As
all routes from s to t pass through G; (with the capacity limit), that does not
induce any coalitions which do not receive their value. We prove that a smaller
CoS is not possible using induction. Given graphs G; and Ga, suppose the CoS
is smaller than COS’(GY(GQ)) and C’OS(G;/(GI)). Then construct a path made of
a single path from s; to ¢; with value of V(G1) and from t, all of G5. This is
actually G;/ (G (due to the constraints of the first path), and we know that the
smaller imputation does not satisfy it.

For any n graphs, we look at the first n— 1 graphs as a single graph G’, hence

CoS(G) = min(CoS(G’V(G")),COS(GX(G/))). Since V(G') = I&invi(Gi) and

from the induction definition CoS(G"Y (¢n)) = n;léin(G;nin(V(G”)’Hlinj*""#"L(V(Gj)))) =
I};ﬁin(Gmin#i(V(Gi))), as required.



The above theorems yield a polynomial algorithm computing CoS over an
SPG structure by recursively applying the formulas on the graph’s structure
(CoS of a base graph is 0).

2.3 Optimal Coalition Structure Generation

The optimal coalition structure is a partition of the agents into disjoint sets that
maximizes the sum of the values of the parts. Each such part has a non-zero value
only if it contains some s-t path. If a single part of the partition contains more
than one s-t path, it could be broken down into two sub-parts, each containing
a path, which results in a higher value. Thus it seems that finding the optimal
coalition structure is related to a decomposition of the agent set into sets of
disjoint paths.

Theorem 7. It is NP-hard to determine whether the value of the optimal coali-
tion structure exceeds an input k.

Proof. We use a reduction from the Disjoint Paths Problem (DPP), shown by
Karp to be NP-Hard [23]. In the DPP problem we are given an undirected graph
G(V,E) and k pairs of source-target vertex pairs {(s;,¢;)}%_,, and are asked
whether there are k edge-disjoint paths in G such that the i’th path connects s;
and ¢;.

We reduce a DPP to finding the optimal coalition structure in a WLG. We
take the original graph G(V, E) and add two special vertices: a meta-source s
and a meta-target . We add k edges from s to the k sources {s;}*_, with weight
1 —¢; for an arbitrary set of k distinct values {¢;}¥_; in range (0,1) (by distinct
we mean that €; # ¢; for any ¢ # j). Similarly we add an edge from each t; to ¢
with weight 1 — ¢; for any 1 <4 < k. We set the weights of all edges in G to be
1.

In the optimal coalition structure problem we seek disjoint paths between s
and ¢ maximizing the sum of the values of the paths. At best, for each 1 < i < k,
there is a path from s; to ¢;, and one can use the edges (s,s;) and (¢;,1), each
with weight 1 — ¢;, to complete it to an s-t path. Thus Zle(l —€;) is an upper
bound for the optimal coalition structure’s value in the reduced instance. This
upper bound is achieved only if the weights of the two end-edges of our s,t
paths match: if one of our paths starts with weight 1 — ¢; and ends with weight
1 —¢; for some i # j, there is no way to complete this solution with total value
Zle 1 — ¢;. In this case, we only get min{w((s, s;)), w((¢;,t))} for this part of
the partition, failing to achieve a value of Zle(l —€).

We propose a polynomial approximation for this problem.

Theorem 8. A polynomial time O(logn)-approximation exists for the optimal
coalition structure problem in WLGSs.

Proof. We consider the following problem: given a weighted graph G(V, E) with
designated source vertex s € V and target ¢ € V and threshold 7, find the



maximal number of edge-disjoint s-t paths that only use edges whose weight is
at least 7. We present a polynomial time algorithm to solve this problem. First,
remove all edges that weigh below the threshold 7, and set the weights of the
remaining edges to be 1 (unit weight), to obtain the graph G,. Note that every
path in G that only uses edges whose weight is at least 7 is equivalent to a path
is G. So it suffices to find the maximal number of edge-disjoint s-t paths in
G, which can be done by finding the maximal flow between s-t (e.g., by using
the Edmonds-Karp algorithm). The value of this flow is the maximal number
of edge-disjoint s-t paths in G, as due to unit capacity, no edge is used twice
(partition into paths can be obtained by keeping track of augmenting paths
found during the run).

Let w’ be the value of the coalition of all agents, i.e., v(I). Define n; to be
the maximum number of disjoint s-t paths in G that only use the edges with
weight at least “’—/ The value of the optimal coalition structure is upper-bounded
by >, m% Because the number of coalitions in the optimal solution with

’LU/ U}I

value in the range [%r, 5i=r] does not exceed n;, and for each of them we get

value at most 5i=7.

To find an O(log(n)) approximation of the optimal coalition structure, we
perform the following procedure. For all possible thresholds 7 in the set W, we
find the maximum number of disjoint paths in G.. We then find the value 7 = 7*
that maximizes the product of 7 and the number of disjoint paths in G.. We
claim that these disjoint paths in G« form an O(log(n)) approximation solution.

The analysis is similar to the log(n)-competitive algorithms for the matroid
secretary problem [5]. We prove that in the sum o, nl2w—_/1, the sum of terms
for i > 2log(n) is not more than 2w’/n which is at most 2/n fraction of the whole
sum. We know that n; is at most n, the number of agents, for every i. Thus the

. ’ ’
sum of those terms is not more than nw’ Z?imog(n)ﬂ FoT = Nt = 2%.

‘We conclude that more than 1— % fraction of the sum is concentrated in the first

2log(n) terms, and consequently there exists an ¢ for which nlﬁ”—:l is at least
1-2/n
2log(n)
has value of at least n; 5, which proves that our solution has at least £2(log(n))
fraction of the above sum, and therefore it is an O(log(n)) approximation.

fraction of the sum. By the definition of 7*, we know the solution we get

3 Related Work

The Weakest Link Game (WLQG) is a specific class of a cooperative game (see [25/13]

for a survey of cooperative games). Similarly to other classes such as[30/2T122/T6ITO4TSIOITTITATHIT2],
it is based on a graph representation, where selfish agents control parts of the

graph. However, the value function of WLGs differs from all of these other forms.

In flow games [2122] a coalition’s value is the maximal flow it allows between

source and target, so a coalition always gains by adding another path. In con-

trast, in WLGs a coalition’s value is determined by a single path, so it gains

nothing from adding a path unless it is better than even the best path in it. In

graph games [10] the agents are vertices, and the coalition’s value is the sum of



the edges occurring between coalition members, as opposed to WLGs where we
examine paths between two specific vertices.

WLGs are somewhat reminiscent of Connectivity Games [10], where agents
are vertices and a coalition wins if it contains a path from the source to the
target. WLGs are also based on paths from a source to a target, but the agents
in them are the edges. Further, in WLGs the graph is weighted, and the value of
a coalition depends on these weights through a max-min structure. Other game
forms also have very different network goals from WLGs: finding an optimal
project or matching [30l2], spanning a set of vertices [4], or interdicting paths [9].

The solutions we focus on are the core [19], e-core and least-core [29]. The core
was proposed as a characterization of payoff allocations where no agent subset
is incentivized to deviate from the grand coalition and work on its own [I9].
One limitation of the core is that it can be too restrictive, as in some games
no imputation fulfills its requirements. Such games can be solved by the more
relaxed solutions of the e-core and least-core. Cost of Stability (CoS), the minimal
subsidy that allows stable agreements, was proposed in [8] to model domains
where an external party wishes to increase cooperation by offering a subsidy.

One key area in algorithmic game theory is team formation, and the prob-
lem of optimal coalition structure generation was widely studied [311282726/1]
along with its applications, ranging from vehicle-routing tasks to sensor net-
works, along its relation to other solutions [20].

Although even very restricted versions of the coalition structure generation
problem are hard [33l28], exponential algorithms and tractable approximations
have been proposed [31] and studied empirically [24].

Arguably, the state of the art method for general games [26] has a reasonable
runtime on average cases, but has a worst case runtime of O(n™). Many coali-
tion structure generation algorithms use an oracle for computing the value of a
coalition, in contrast to our approximation which relies on the restricted WLG
representation. Another method solves the coalition structure generation prob-
lem [6], but relies on a different representation called coalitional skill games [7],
which is based on set-cover domains.

4 Discussion and Conclusions

We introduced new family of cooperative games, WLGs, that models domains
where an endeavor can be achieved by various agent combinations, and where
the quality of any combination depends on its weakest part. WLGs capture such
domains using a weighted graph and a maximin value function (min along the
path, and max among paths).

We proposed efficient algorithms to compute a coalition’s value and find
stable payoff allocations, and showed how the stability level changes as sub-
games are composed. Although we showed that finding the optimal coalition
structure is hard for WLGs, we proposed a polynomial O(logn) approximation.
Our results are summarized in the table above.



Problem Complexity
Computing a coalition’s value (v(C)) P
Testing core membership and emptiness P
Finding an e-core / least-core imputation P
Coalition structure generation NP-Hard
(polynomial O(logn) approximation)

Complexity of problems in WLGs

Several questions remain open for future research. Are there efficient algo-
rithms for computing other solution concepts in WLGs, such as the nucleolus or
power indices? Can the coalition structure generation problem be solved exactly
for restricted classes of graphs? Finally, how can we handle uncertainty regarding
agent performance in WLGs?
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