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Abstract. Cooperation among automated agents is becoming increasingly im-
portant in various artificial intelligence applications. Coalitional (i.e., &vap
tive) game theory supplies conceptual and mathematical tools usefid anti-

ysis of such interactions, and in particular in the achievement of stableroat
among self-interested agents. Here, we study the minimal externatiguies
quired to stabilize the core of a coalitional game. Following@uost of Stability
(CoS) model introduced by Bachrach et al. [3], we give tight bowordthe re-
quired subsidy under various restrictions on the social structure ofatine g\We

then compare the extended core induced by subsidies with the leastf¢bee o
game, proving tight bounds on the ratio between the minimal subsidy and the
minimal demand relaxation that each lead to stability.

1 Introduction

Transferable utility (TU) coalitional games are commonsed to model interactions
where groups of agents differ in the profits that they canajutae to themselves. Given
that a particular coalition is formed (and specifically, gnand coalitionof all agents),
a key question that arises is how to allocate payments.

Various solution concepts have been suggested in receatidgcspecifying desired
allocations according to criteria of stability and fairaeBue to the increasing ubiquity
of automated agents, and in pursuit of cooperative behawmmmg self-interested enti-
ties, such solutions are being studied and applied in nteltipeas of Al research (for
several recent papers, see [6, 12, 7, 14]).

As a motivating example, consider three companiesB, andC, interested in a
cooperative advertising campaign. Expected profit in@geas more companies coop-
erate (e.g., due to exposure in multiple media). A joint effiy all three companies
will result in a total profit of$12 Million (the value of the coalition{ A, B, C}). Al-
ternatively, the campaign can be carried out by jistnd B (with profit of $10M), or
each company can choose to advertise alone (with profithf). If companies are to
cooperate, they must decide how to share the resulting qrofit

Thecoreis one of the earliest and most attractive solution con¢eytd it directly
addresses the issue of stability. The core contains all pay@illocations (called im-
putations) that are stable, in the sense that no subgrougeoit® could gain more by



“breaking away” from the grand coalition; that is, the paymallocated to the agents
of every coalition is at least that coalition’s value.

Unfortunately, in many TU games (including our example a)akie core is empty,
and the game is inherently unstable, as there is always aaalltion that is better off
apart. Several relaxations of the core have been proposwdén to maintain stability
in games with empty cores. One prominent approach is to assugh departing from
the grand coalition incurs some cost to the deviating agéeststhat coalitions will be
satisfied with a payoff that is slightly lower than their valT'heleast coreaims to cap-
ture the minimal relaxation in coalitions’ demands that efiable a stable imputation.

An alternative assumption is that certain coalitions atéaly to form due to social
reasons or other practical limitations (e.g., it may be dliffi for a large coalition to
coordinate its deviation). Such restrictions can take niamys, and generally make the
game more stable, as fewer coalitions are likely to devrat®fa proposed allocation. If
companiesd and B cannot cooperate withodt, then the core in our previous example
becomes non-empty (by allocatingM to each of the companies).

Whereas the two previous relaxations depend on the envinaironen the behavior
of the agents themselves, a different approach is to staliie game with an external
monetary intervention. By subsidizing particular outcaroéthe game, for example the
formation of the grand coalition, an external authority @aauce stability. While the
injection of sufficiently large subsidies can always gusgara non-empty core (e.g.,
if every agent gets more than the highest value in the game)would naturally like
to minimize the intervention. The minimal subsidy that dtaés the coalitional game
is known as itsCost of Stability(CoS) [3]. In our advertising example, a subsidy of
$2M allows us to allocate ¥M to A, $5M to B, and $IM to C, thereby achieving full
cooperation with a stable allocation.

Our contribution. The value of the least core (i.e., the minimal demand reiemat

and the cost of stability can both serverasasure®f the (in)stability of a given game.
This paper answers certain natural questions regardingatheeptual and quantitative
relationship between these measures. We prove tight baamtise ratio between the
minimal subsidy (the CoS) and the minimal demand relaxatian each stabilizes the
game. In addition, we measure the amount by which severaraiatestrictions on

coalitions reduce the cost of stability.

1.1 Related work

Subsidies have been proposed by several researchersdifféngnt models and names.
The reader is referred to the papers mentioned below fotiaddl useful references
and motivating examples.

Our work follows the model suggested by Bachrach et al. [Bjctvstudied bounds
and computational aspects of the CoS, focusing on the farfilieighted voting games
That initial work has been extended by several other rebeesd20, 15, 2], who ad-
dressed the computation of the CoS in various families of @degs, including Network
Flow games, Graph games, Connectivity games, Anonymoussgjaand others.

A model for subsidies was independently suggested by BejdrGamez [5], who
focused (as we do) on the relationship between subsidiestied solution concepts.



We adopt some of their notation, which is useful in our caseels However, in their
work the additional payment required to stabilize a gametbered from the partici-
pating agents by means of a specifigationsystem, rather than injected into the game
by an external authority. We do not assume any form of taratio

Particular attention has been devoted in Economiegpense sharingames, where
agents share tteostof a project, rather than its profits (see, for example, [B79)). In
some of these papers there are additional requirementdgliticandito stability, whereas
we impose none.

Restrictions on the cooperation structure have also beeliest extensively, where
the specific restriction may depend on the particular apptia (see [16,10, 1, 19]).
While the interaction with many solution concepts has begii@ity addressed, we
are unaware of previous work that aims to quantify the aftéctuch restrictions on
stability.

1.2 Paper structure

Section 2 provides some notation, and gives the formal diefinof the Cost of Stabil-

ity. In Section 3 we compute worst-case bounds on the CoS afdries with restricted
interactions. Our main results are in Section 4, where waygtie relationship between
the extended core and the least core. We prove tight bountiseoratio between the
minimal subsidy and the minimal relaxation that are eacficseiit to stabilize the

game, thereby improving on the results of Bachrach et al.lfBjhe final section, we

discuss the relationship to some other solution conceptspeopose future directions
for research.

This paper is currently under review for IJCAI-11.

2 Preliminaries

We briefly present the definitions required for our model. famre background, see
for example [18]. Atransferable utility (TU) coalitional gamis defined by specifying
the collective utility that can be achieved by every coafitof agents. Formallyi; =
(N,v), whereN is a finite set of agent® = {1,...,n}, andv is a functionv : 2% —
R. For a singletoni € N, we writev(s) instead ofv({:}). The functionw is called the
characteristic functiorof the game. We assume by convention #h@) = 0. Also, we
restrict our attention in this paper to positive, monotoamgs unless explicitly stated
otherwise. That is(S) > 0 for all S, andv(S) > v(S’) forall S' C S.

A TU game is callecsimpleif v(S) always equals either or 1. Coalitions with
v(S) = 1 are calledvinningcoalitions. A TU game isuperadditivef for all S, T € 2V
stSNT =0,v(SUT) > v(S)+v(T).

A payoff vectorx = (z1,...,x,) (also called a preimputation) divides the gains of
the grand coalition among its members, where. \; z; = v(N). We callz; the payoff
of agenti, and denote the payoff of a coalitighasz(S) = >, o z;. We denote the
set of all preimputations i by X(G).

A preimputationx € X(G) is individually rationalif no agent; can gain more than
x; by itself, i.e., ifx; > v(i) for all i € N. Individually rational preimputations are

€S



calledimputations Similarly, a coalitionS € 2~ blocksx € X(G), if #(S) < v(S).
The core of G, denoted CG), consists of all imputations that are not blocked by any
coalition.

2.1 The least core

Consider a gamé&' with an empty core, and a valée> 0. We define theveake-core
of G as

WC.(G) = {x € X(G) : VS € 2V, 2(S) > v(S) — ¢|S|}.

Clearly for a large enough WC,(G) in not empty. We denote bty (G) the smallest
es.t. WG.(G) # 0. Theew-core ofG is referred to as theveak least corgand denoted
by WLC(G).

Thestronge-coreis defined as

SC.(G) = {x € X(G) : VS € 2NV, 2(S) > v(S) — €},

and we defines(G) and thestrong least cor¢SLC) accordingly.

2.2 The cost of stability

Let A > 0 be a payment that an external authority is willing to pay treng coalition,
in case such is formed. This induces a new gaiiel) = (N,va), St.oa(N) =

v(N) + A. The value of all other coalitions remains unchanged. GlearA is large
enough, therd7(A) has a non-empty core (e.g. & = n - v(IV)). TheCost of Stability
is defined as

CoSG) = min{A > 0s.t. QG(AQ)) # 0}.

The game induced by the minimal extra payment is denoted by G(CoSG))
(which has a non-empty core).

A preimputation inG(A) is called asuperimputatiorof G. A superimputatiorx’
is anextensiorof the preimputatiorx (denotedx’ > x), if «; > z; forall i € N.
The extended coreonsists of all preimputations that can be extended to estadoyoff
vectors with minimal subsidy. Formally,

EC(G) = {x € X(GQ) s.t.3x' > x,x" € C(G)}.

In general, we define for any € X(G) its cost of stability, as the smallest payment
required to extend to a stable payoff vector, i.e.,

CoSx,G) = min{A > 0s.t.3x' > x,x" € C(G(AQ))}.

Clearly Co$x, G)>CoSG), with equality iff x € EC(G). The extended core in our
initial example containg = (5,5, 2), which can be extended to the (minimal) stable
superimputatior(5, 5,4). In contrastp’ = (3,4,5) ¢ EC(G), as Co$p’,G) = 3 >
2 = CoSG).



2.3 Balanced collections and linear programs

The CoS can also be formulated in a closed form, using the &end-Shapley charac-
terization of the core. We use a variant of the theorem thidbevused later in Section 4.

Definition 1. LetD be a collection of coalitions, and denotedy € R the coefficient
of coalition S. We say thaD is a balanced collectioif there are{ds}scp, such that
for every agent, Y ¢ p.icgds = 1.

A balanced collectio is calledminimal, if there isnoD’ C D s.t.D’ is balanced.

Theorem 1 (Bondareva-Shapley Theorem)The core ofG is non-empty iff all [min-
imal]® balanced collections hol" ¢ , dsv(S) < v(N).

By a simple continuity argument, it follows that@there is at least one [minimal] col-
lection, for which the above holds with an equality. Suchesslons are calledolutions
of G. Itis easy to verify that for any gani@ with empty core,
CoS(G) = max Y dsv(S) —v(N). (1)
SeD

balancedD

Another way to define the gantéis by a linear program, whefe , . ; #; should be
minimized, and every constraint corresponds to a coal(8eer [3]). The solutions of the
dual linear program (whose variables correspond to coeffisiof coalitions), coincide
with the solutions of5. See [11] for a detailed discussion on balanced collectiamg
a proof of Theorem 1.

2.4 The relative CoS

It is sometimes convenient to treat the external paymentrakatve fraction ofv(NV)
(as we do in Section 3). We therefore define Redative Cost of Stabilitgs

N)+ A
RC0SG) = min {U()—’— >0s.t. JG(AQ)) # @} .
u(N)
Note that the transformation is straightforward, as RCoS= 2N)+CoSG) LJ(FI%‘;S(G) Trivial

bounds on the RCoS ate< RCoSG) < n, and these are tight.

3 Games with Restricted Coalitions

Suppose that there is some given subset of coalitibns 2% that can deviate (we
assumeT contains all singletons). Given a gare= (NN, v) and a restrictiorv’, we
define the restricted gan@|; = (N, v|7), wherev|+(S) = v(S) if S € T,and 0
otherwise. We emphasize that the restrictions are givegenausly to the game, and
do not depend on the value function or the structure of theegam

Clearly, the more we restrict allowed coalitions, the fetherconstraints on allowed
imputations, and therefore the core can only expand. Thenms¢hat such restrictions
can only decrease the CoS of the game. We now consider howrsatomal restrictions
affect the (relative) CoS of the game.

% There are versions with and without the minimality requirement.



1. Only coalitions of size at mostare allowed, i.e.7 = {S € 2V : |S| < k}.

2. N is divided according to some fixed partitidgh = {C4,Cs,...,Cy}, andT =
{Se2N.5cqy).

3. Relations between agents are described by a (non-dijemenmunication graph
(N, E). A coalition S is allowed only if the subgraptS, E|s) is connected.

The third restriction was proposed by Myerson [16], motidaby the approach that
members of a coalition in a society are not allowed to comeatei through non-
members. Note that the second restriction is a special ¢dabe third, where the graph
is a block graph.

Without further assumptions on the game, restricting thaitton structure does
not give a better bound on the CoS (in the worst case): conaidenple games =
(N, v) where all nonempty coalitions win; then RG@8+) = n even if only singletons
are allowed in7. We therefore consider only superadditive games (i.e.otiginal
value functionv is superadditive). Superadditivity is known to induce mstability.
For example, it has been shown by Demange that if a game isaglgiive and its
set of coalitions7 is restricted to an uncyclic communication graph, then aeds
non-empty [8] (i.e., it has RCoS of 1). Further, the follogiis known.

Theorem 2 (Bachrach et al., full version [4]).Let G be a superadditive TU game
(even without restrictions); then C0S) < (y/n — 1) v(N). Equivalently,

RCo0$G) < v/n, )
and this bound is tight (up to a small additive constant).

Proposition 1. For any superadditive TU gam@g:

1. If T={Se2": |S|<k}, then RCo87|7) < min{k,\/n}. Also, fork=2 a stable
superimputation with cost 2 can be found using a greedy #lyor

2. If T is restricted to subsets of a partitid®, then RCo8&7|7) < maxcep /|C].

3. If T is restricted to a communication graph which has a singldegytben
RCo3G|r) < 2.

Moreover, all bounds are tight (up to a small additive comsta 1. and 2.).

Proof. We prove each case separately.

Bounded coalition sizek = 2. We construct a superimputatigpnusing the following
algorithm.
Let S1={a1, a2} be the most expensive coalitionn
Setp(a1) = v(S1).
fort =2,3,...,ndo
find the most expensive coalition i containingz, i.e.,S; = {a:, b}
Setp(ar) = v(St).
SetatH b
end for



First observe thap is a stable superimputation. L8t= {a, b} be any coalition. IfS
was selected in some iteration, then either b gets the value o$ and would therefore
not participate. IfS was not selected, then there is sofevith v(S;) > v(S), and.S;
contains one of, b. Thus one of them is paid(.S;) and would not participate if.

Itis left to prove thap(N) < 2v(N). Clearlyp(N) = 3=, oy (i) = > v(Sh).
Think of {S;}7; as nodes in a graph, where an edge connects two coalitioheyif t
intersect. Sinces; is only connected te&b;_; and S;y; (when they exist) we get a
bipartite graph( L, R), whereL contains all coalitionsS; with odd¢, and R with even
t. Coalitions insidel. and R are pairwise disjoint. From superadditivity we have that
p(N) holds

n

D u(S) = v(S)+ Y v(S) < U<U st> + U<U st>,
B A B

t=1 A

i.e., at mostu(N).
While the greedy algorithm supplies us with a stable supartatipn whose value
is at mosuv(NV), itis possible to do better (see next paragraph).

Bounded coalition sizek > 2. If k > \/n then by Theorem 2 we are done. Assume
thereforek < /n. Consider a balanced collectidhwhich is a solution of5.

Lemma 1 (Bachrach et al. [3]).If G is superadditive, then there is a solutidn in
which any two sets§, S’ € D with nonzero coefficients intersect.

Thus take any coalitio € D of size at mosk with a nonzero coefficienfs. There
must be such a set, otherwise all coefficients are 0 (whicmse& can find a better
solution to the dual program).

p(N) = pj =Y dsu(S) (by duality)
JEN SeD
<N dsu(S) <u(N)Y 0D ds (Lemma 1)
€S S1ues €S S:1es
=v(N)> 1=v(N)|S| < kv(N).
i€S

For tightness, let = k — 1 andn, = k* — 1 = ¢®> + ¢+ 1. Take a gamé&, = (N,, v,)
S.1.[Ng| = ng, and Co$G,) > ,/n,—1 (such a game exists by the tightness example in
Theorem 2). We now embe@l, in a gameG = (N, v), whereN = N, U {k?,...,n}.
Setv(N) = vy(Ny), v(S) = v4(S) if S C Ng, andv(S) = 0 otherwise. We thus have
CoSG) = CoSGy) > /ng—1>k—1.

Using Lemma 1, it can be shown that when= 2, CoSG|r) < 1.5 (which is
tight).

Partitions. Take anyC € P, and the linear constraints induced by its subcoalitions.
From Theorem 2 we can satisfy these constraints by payingstutC') < /|C|v(C).



We set the payoffs of each s€tindependently in the same manner. As there are no
further constraintsp is stable. Also

p(N) =" p(C) < Y VICI(C) < max v/[Clo(N),

CceP
CceP CceP

where the last inequality is due to superadditivityof

A single cycle. We construct a stable superimputatigh by payingv(N) to an ar-
bitrary node in the circle, and solve the remaining game ase (using Demange’s
algorithm [8]). While this solution is quite simple, for theovst case it is asymptoti-
cally tight:

Consider a simple anonymous game where a coalition winssif§ize is at least
[(n+1)/2], and a communication graph with nodes connected in a circle. Since
the game is symmetric, we haye = p; = p, and for smallest winning coalitions,
v(N) = o(S) < p(S) = [Slp = [(n+1)/2] p.
that is,p(N) = np, which equals eithef2 — ﬁ)v(N) (for oddn), or (2 — ﬁ)v(N)
(for evenn). |

The lower bound example not only has coalitions of dizbut can also be embed-
ded in a communication graph of degreeWe conjecture that this always holds, i.e.,
that RCo$G|7) < d(T), whered is the degree of the communication graptvof

4 CoS and the Least Core

We use the following lemma (for a proof, see Gilles [11]).

Lemma 2. Any minimal balanced collection has a size of at mgsand a unique set
of balancing coefficients.

As an immediate corollary we get the following result, whités been indepen-
dently shown by Malizia et al. [14] using the geometric pndies of the game.

Corollary 1. If the core ofG is empty, then there is a set of coalitions of size at most
that are sufficient to determine the emptiness of the core.

4.1 The strong least core

It trivially holds (see Bachrach et al. [3]) that
es(G) < CoSG) < n-eg(G). (3)

While the upper bound is tight (consider a game whei®) = 1 for all S # (), it can
be improved when the game is superadditive, as we will see nex

For the results in this section, we use the following cortgitom. Given a game with
an empty core7 ande = eg(G), define a new gamé&'. = (N, v.), wherev.(S) =
v(S) —eforall S C N, andv.(N) = v(N). Clearly QG,) = SCG.(G) = SLC(G).



Theorem 3. For any superadditive gam@, CoSG) < +/n - es(G), and this is tight.

Our proof uses techniques similar to those used in [3]. Megeave can derive the/n
bound that appears in Theorem 2 (with a small additive fycsimcees (G) < v(N).

Proof of Theorem 3From Lemma 1, there is a balanced collectid {és}scp) in
which any two set$ andS’ with s # 0 anddg: # 0 intersect, and(N) + CoSG) =

ESGD dsv(S).
SinceD is balanced, it must hold by Theorem 1 that

> 0s(0(S) =€) = > dsve(S) < v(N),
SeD SeD
and by combining the last equation and (1),

CoSG) = dsv(S) —v(N) <€y ds. (4)

SeD SeD

Lemma3. Y ¢ s < /n.

Proof. Suppose first that there is a §éte D with |T'| < \/n, 7 > 0. Any setS € D
with §s > 0 contains one of the elementsdh Thus, we have

Y ds<d Y ds=y 1=[TI<Vn

SeD i€T SeD:ieS ieT

On the other hand, if for an§ € D with §s > 0 it holds that|S| > /n, we have

Vi) s < Y ISIds <Y Y s

sSeD SeD SeD ieS
= > ds=) 1=nm,
i€N SeD:iesS iEN
which also mean3 ., o5 < /n. O

From (4) and the lemma,

CoS(G) < Y dse < v/ne = v/nes(G).

SeD

The tightness follows from the tightness of Theorem 2. tleere is a gamé& in
which CoSG) > (v/n— O(1))v(N) > (v/n — O(1)) es(G). |

Our main result is showing that the lower bound can be imptanethe general
case. We begin with a simple example. Consider the case-02, and suppose there
is an empty core. This simply mean§l) + v(2) > v(1,2). If we definez = v(1,2) —
(v(1) + v(2)), then we can easily see that Q65 = z = 2ew (G) = 2eg(G). With
more agents, this ratio is generalized as follows.

Theorem 4. Let G be a game with an empty core. G6§ > -";es(G), and this
bound is tight.



Proof. For tightness, it is sufficient to consider a simple game wladr coalitions of
size at least — 1 win.

Let G be a game with an empty core. Consider the strong least cofé o€.,
SLC(G). Lete = eg(G).

Recall the gamé/... Similarly to the argument used in Section 2.3, there is at&wol
of G. (a minimal balanced collectiod}X, {ds}sck) S.t.

D b5ve(S) = v(N). (5)

SeK

W.lo.g.N ¢ K. Assume otherwise; then eith&f = {N} or {N} = K’ C K in
contradiction to the minimality of{. However, if K = {N} is the only balanced col-
lection with equality, therdz can be stabilized withd = 0 < ¢, which is a contradiction
to the minimality ofe = eg(G).

Foralli € N,1 =3 ¢cx.cq0s. Summing ovei € N,

n=y_ Y 5= ds=» |S[ds <(n—1)> ds,

i€EN SeEK:eS SeK ieS SeK SeK
n
thus og > . 6
Sas > (6)
SeK

By definition,v.(S) = v(S) — ¢, thus

v(N) =Y bsve(S) = D ds(v(S) —e)

SeK SeK
n
=D O5u(S) —e) 05 < Y dsu(S) — e
SeK SeK SeEK

By Equations (1) and (6),

n

CoS(G) > ) dsv(S) —v(N) > e—
SeEK
[ |

Theorem 4 establish a quantitative relationship betwee€t6 and the strong least
core. However, the relationship could be deeper.

Conjecture 1.For any gameZ, SLC(G) C EC(G).

In other words, we conjecture that preimputations in thetleare are the easiest to
stabilize: for anyx € SLC(G), CoSx, G) = CoYG).
For small games, the conjecture indeed holds.

Proposition 2. If n < 3, then SLCG) C EC(G).

We have already seen that whenr= 2, SLC(G), WLC(G) coincide, and are contained
in EC(G). Forn = 3 there is only a small number of minimal balanced collectjamsl
we can simply go over all the possibilities. We omit the fulbpf.



4.2 The weak least core

In the weake-core, every agent in every coalition agrees to lower heratairbye.
Instead, we can increase the payoff of each agent by the samena (see Bejan and
Gomez [5]); thus Co8%) = n - ew (G).
Clearly, this means that WL&) C EC(G), as any preimputation € WLC(G)
can be extended to a stable superimputation by addiogvery coordinate.
Moreover, this tight relation allows us to conclude thedwling bounds from The-
orems 3 and 4.

Corollary 2. (n — 1)ew (G) > es(G).

Corollary 3. For any superadditive gameg(G) > v/n - ew (G).

5 Discussion

We showed that various restrictions on the interaction efiggcan significantly reduce
the cost of stability in (superadditive) TU games. While weused on profit games,
we note that similar results hold when we impose restrictmmexpense sharingames
(as in Meir et al. [15]).

We established a tight lower bound for the CoS, in terms ofitirémal relaxation
that defines the least core. The upper bound is also imprbwednly under conditions
of superadditivity. Indeed, superadditive games have nadingctive properties related
to stability and to its computational aspects (see [6, 3, 8])

5.1 The nucleolus

One difficulty with solution concepts such as the core andatsations is that even
when they exist, they usually do not specify a unique imporat

A unique solution that is highly motivated by the notion aflsitity is thenucleolus
(Schmeidler [21]) and its variations. Informally, the (precleolus is the preimputa-
tion that minimizes the dissatisfaction of all coalitiossrted according to a certain
lexicographic order (see [5] for definitions of some vadas). Like any other preim-
putation, we can always stabilize the nucleolus by exteniiwith sufficient subsidies
to a stable superimputation. Aziz et al. [2] offered an alé¢ive way to achieve a stable
nucleolus: first extend the core, then compute the nuclenltiee extended game. For
the per-capita nucleolus, both solutions coincide, itee, ger-capita nucleolus of the
extended gamé&’ is an extension of the per-capita nucleolugbfThis arises simply
by addingew (G) to every coordinate of the per-capita nucleolus, which ig@iaed in
the WLC.

Itis an open problem whether the (standard) nucleol()Nhas similar properties.
Indeed, since it is contained in the SLC, we have that (@&),G) = CoSG) in
every game for which Conjecture 1 holds. We further conjectinat NG) is a minimal
extension of NG), which is not entailed by the previous conjecture.



5.2 Future directions

While our results indicate that there is a tight connectiotwben the extended core
and other solution concepts, there are many open questiofigdire research. Beyond
the conjectures that we explicitly stated, it would be iaesting to explore these rela-
tionships in specific families of TU games, such as thosewleae mentioned in the
introduction.

While in the general case (non-superadditive) restrict@gpemation cannot guaran-
tee improved stability, it may dramatically reduce reqdiseibsidies in certain limited
families of TU games. Such combinations are worth studying.

Finally, the relation between the CoS and similar solutiemcepts in non-TU
games (such as the strong price of anarchy) should be studied
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