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Abstract. Cooperation among automated agents is becoming increasingly im-
portant in various artificial intelligence applications. Coalitional (i.e., coopera-
tive) game theory supplies conceptual and mathematical tools useful in the anal-
ysis of such interactions, and in particular in the achievement of stable outcomes
among self-interested agents. Here, we study the minimal external subsidy re-
quired to stabilize the core of a coalitional game. Following theCost of Stability
(CoS) model introduced by Bachrach et al. [3], we give tight boundson the re-
quired subsidy under various restrictions on the social structure of the game. We
then compare the extended core induced by subsidies with the least core of the
game, proving tight bounds on the ratio between the minimal subsidy and the
minimal demand relaxation that each lead to stability.

1 Introduction

Transferable utility (TU) coalitional games are commonly used to model interactions
where groups of agents differ in the profits that they can guarantee to themselves. Given
that a particular coalition is formed (and specifically, thegrand coalitionof all agents),
a key question that arises is how to allocate payments.

Various solution concepts have been suggested in recent decades, specifying desired
allocations according to criteria of stability and fairness. Due to the increasing ubiquity
of automated agents, and in pursuit of cooperative behavioramong self-interested enti-
ties, such solutions are being studied and applied in multiple areas of AI research (for
several recent papers, see [6, 12, 7, 14]).

As a motivating example, consider three companies,A, B, andC, interested in a
cooperative advertising campaign. Expected profit increases as more companies coop-
erate (e.g., due to exposure in multiple media). A joint effort by all three companies
will result in a total profit of$12 Million (the valueof the coalition{A,B,C}). Al-
ternatively, the campaign can be carried out by justA andB (with profit of $10M), or
each company can choose to advertise alone (with profit of$4M). If companies are to
cooperate, they must decide how to share the resulting profits.

Thecore is one of the earliest and most attractive solution concepts, and it directly
addresses the issue of stability. The core contains all payment allocations (called im-
putations) that are stable, in the sense that no subgroup of agents could gain more by



“breaking away” from the grand coalition; that is, the payment allocated to the agents
of every coalition is at least that coalition’s value.

Unfortunately, in many TU games (including our example above) the core is empty,
and the game is inherently unstable, as there is always a sub-coalition that is better off
apart. Several relaxations of the core have been proposed inorder to maintain stability
in games with empty cores. One prominent approach is to assume that departing from
the grand coalition incurs some cost to the deviating agents, i.e., that coalitions will be
satisfied with a payoff that is slightly lower than their value. Theleast coreaims to cap-
ture the minimal relaxation in coalitions’ demands that will enable a stable imputation.

An alternative assumption is that certain coalitions are unlikely to form due to social
reasons or other practical limitations (e.g., it may be difficult for a large coalition to
coordinate its deviation). Such restrictions can take manyforms, and generally make the
game more stable, as fewer coalitions are likely to deviate from a proposed allocation. If
companiesA andB cannot cooperate withoutC, then the core in our previous example
becomes non-empty (by allocating $4M to each of the companies).

Whereas the two previous relaxations depend on the environment or on the behavior
of the agents themselves, a different approach is to stabilize the game with an external
monetary intervention. By subsidizing particular outcomes of the game, for example the
formation of the grand coalition, an external authority caninduce stability. While the
injection of sufficiently large subsidies can always guarantee a non-empty core (e.g.,
if every agent gets more than the highest value in the game), one would naturally like
to minimize the intervention. The minimal subsidy that stabilizes the coalitional game
is known as itsCost of Stability(CoS) [3]. In our advertising example, a subsidy of
$2M allows us to allocate $5M to A, $5M to B, and $4M to C, thereby achieving full
cooperation with a stable allocation.

Our contribution. The value of the least core (i.e., the minimal demand relaxation)
and the cost of stability can both serve asmeasuresof the (in)stability of a given game.
This paper answers certain natural questions regarding theconceptual and quantitative
relationship between these measures. We prove tight boundson the ratio between the
minimal subsidy (the CoS) and the minimal demand relaxationthat each stabilizes the
game. In addition, we measure the amount by which several natural restrictions on
coalitions reduce the cost of stability.

1.1 Related work

Subsidies have been proposed by several researchers, usingdifferent models and names.
The reader is referred to the papers mentioned below for additional useful references
and motivating examples.

Our work follows the model suggested by Bachrach et al. [3], which studied bounds
and computational aspects of the CoS, focusing on the familyof weighted voting games.
That initial work has been extended by several other researchers [20, 15, 2], who ad-
dressed the computation of the CoS in various families of TU games, including Network
Flow games, Graph games, Connectivity games, Anonymous games, and others.

A model for subsidies was independently suggested by Bejan and Gómez [5], who
focused (as we do) on the relationship between subsidies andother solution concepts.



We adopt some of their notation, which is useful in our case aswell. However, in their
work the additional payment required to stabilize a game is gathered from the partici-
pating agents by means of a specifictaxationsystem, rather than injected into the game
by an external authority. We do not assume any form of taxation.

Particular attention has been devoted in Economics toexpense sharinggames, where
agents share thecostof a project, rather than its profits (see, for example, [17, 13, 9]). In
some of these papers there are additional requirements in addition to stability, whereas
we impose none.

Restrictions on the cooperation structure have also been studied extensively, where
the specific restriction may depend on the particular application (see [16, 10, 1, 19]).
While the interaction with many solution concepts has been explicitly addressed, we
are unaware of previous work that aims to quantify the affectof such restrictions on
stability.

1.2 Paper structure

Section 2 provides some notation, and gives the formal definition of the Cost of Stabil-
ity. In Section 3 we compute worst-case bounds on the CoS of TUgames with restricted
interactions. Our main results are in Section 4, where we study the relationship between
the extended core and the least core. We prove tight bounds onthe ratio between the
minimal subsidy and the minimal relaxation that are each sufficient to stabilize the
game, thereby improving on the results of Bachrach et al. [3]. In the final section, we
discuss the relationship to some other solution concepts, and propose future directions
for research.

This paper is currently under review for IJCAI-11.

2 Preliminaries

We briefly present the definitions required for our model. Formore background, see
for example [18]. Atransferable utility (TU) coalitional gameis defined by specifying
the collective utility that can be achieved by every coalition of agents. Formally,G =
〈N, v〉, whereN is a finite set of agentsN = {1, . . . , n}, andv is a functionv : 2N →
R. For a singletoni ∈ N , we writev(i) instead ofv({i}). The functionv is called the
characteristic functionof the game. We assume by convention thatv(∅) = 0. Also, we
restrict our attention in this paper to positive, monotone games unless explicitly stated
otherwise. That isv(S) ≥ 0 for all S, andv(S) ≥ v(S′) for all S′ ⊂ S.

A TU game is calledsimple if v(S) always equals either0 or 1. Coalitions with
v(S) = 1 are calledwinningcoalitions. A TU game issuperadditiveif for all S, T ∈ 2N

s.t.S ∩ T = ∅, v(S ∪ T ) ≥ v(S) + v(T ).
A payoff vectorx = (x1, . . . , xn) (also called a preimputation) divides the gains of

the grand coalition among its members, where
∑

i∈N xi = v(N). We callxi the payoff
of agenti, and denote the payoff of a coalitionS asx(S) =

∑

i∈S xi. We denote the
set of all preimputations inG by X(G).

A preimputationx ∈ X(G) is individually rational if no agenti can gain more than
xi by itself, i.e., ifxi ≥ v(i) for all i ∈ N . Individually rational preimputations are



called imputations. Similarly, a coalitionS ∈ 2N blocksx ∈ X(G), if x(S) < v(S).
Thecoreof G, denoted C(G), consists of all imputations that are not blocked by any
coalition.

2.1 The least core

Consider a gameG with an empty core, and a valueǫ > 0. We define theweakǫ-core
of G as

WCǫ(G) = {x ∈ X(G) : ∀S ∈ 2N , x(S) ≥ v(S)− ǫ|S|}.
Clearly for a large enoughǫ, WCǫ(G) in not empty. We denote byǫW(G) the smallest
ǫ s.t. WCǫ(G) 6= ∅. TheǫW-core ofG is referred to as theweak least core, and denoted
by WLC(G).

Thestrongǫ-core is defined as

SCǫ(G) = {x ∈ X(G) : ∀S ∈ 2N , x(S) ≥ v(S)− ǫ},

and we defineǫS(G) and thestrong least core(SLC) accordingly.

2.2 The cost of stability

Let∆ ≥ 0 be a payment that an external authority is willing to pay the grand coalition,
in case such is formed. This induces a new gameG(∆) = 〈N, v∆〉, s.t. v∆(N) =
v(N) + ∆. The value of all other coalitions remains unchanged. Clearly if ∆ is large
enough, thenG(∆) has a non-empty core (e.g., if∆ = n · v(N)). TheCost of Stability
is defined as

CoS(G) = min{∆ ≥ 0 s.t. C(G(∆)) 6= ∅}.
The game induced by the minimal extra payment is denoted byG = G(CoS(G))

(which has a non-empty core).
A preimputation inG(∆) is called asuperimputationof G. A superimputationx′

is anextensionof the preimputationx (denotedx′ ≥ x), if x′
i ≥ xi for all i ∈ N .

Theextended coreconsists of all preimputations that can be extended to stable payoff
vectors with minimal subsidy. Formally,

EC(G) = {x ∈ X(G) s.t.∃x′ ≥ x,x′ ∈ C(G)}.

In general, we define for anyx ∈ X(G) its cost of stability, as the smallest payment
required to extendx to a stable payoff vector, i.e.,

CoS(x, G) = min{∆ ≥ 0 s.t.∃x′ ≥ x,x′ ∈ C(G(∆))}.
Clearly CoS(x, G)≥CoS(G), with equality iffx∈EC(G). The extended core in our

initial example containsp = (5, 5, 2), which can be extended to the (minimal) stable
superimputation(5, 5, 4). In contrast,p′ = (3, 4, 5) /∈ EC(G), as CoS(p′, G) = 3 >
2 = CoS(G).



2.3 Balanced collections and linear programs

The CoS can also be formulated in a closed form, using the Bondareva-Shapley charac-
terization of the core. We use a variant of the theorem that will be used later in Section 4.

Definition 1. LetD be a collection of coalitions, and denote byδS ∈ R+ the coefficient
of coalitionS. We say thatD is a balanced collectionif there are{δS}S∈D, such that
for every agenti,

∑

S∈D:i∈S δS = 1.
A balanced collectionD is calledminimal, if there is noD′ ( D s.t.D′ is balanced.

Theorem 1 (Bondareva-Shapley Theorem).The core ofG is non-empty iff all [min-
imal]3 balanced collections hold

∑

S∈D δSv(S) ≤ v(N).

By a simple continuity argument, it follows that inG there is at least one [minimal] col-
lection, for which the above holds with an equality. Such collections are calledsolutions
of G. It is easy to verify that for any gameG with empty core,

CoS(G) = max
balancedD

∑

S∈D

δSv(S)− v(N). (1)

Another way to define the gameG is by a linear program, where
∑

i∈N xi should be
minimized, and every constraint corresponds to a coalition(see [3]). The solutions of the
dual linear program (whose variables correspond to coefficients of coalitions), coincide
with the solutions ofG. See [11] for a detailed discussion on balanced collections, and
a proof of Theorem 1.

2.4 The relative CoS

It is sometimes convenient to treat the external payment as arelative fraction ofv(N)
(as we do in Section 3). We therefore define theRelative Cost of Stabilityas

RCoS(G) = min

{

v(N) +∆

v(N)
≥ 0 s.t. C(G(∆)) 6= ∅

}

.

Note that the transformation is straightforward, as RCoS(G) = v(N)+CoS(G)
v(N) . Trivial

bounds on the RCoS are1 ≤ RCoS(G) ≤ n, and these are tight.

3 Games with Restricted Coalitions

Suppose that there is some given subset of coalitionsT ⊆ 2N that can deviate (we
assumeT contains all singletons). Given a gameG = 〈N, v〉 and a restrictionT , we
define the restricted gameG|T = 〈N, v|T 〉, wherev|T (S) = v(S) if S ∈ T , and 0
otherwise. We emphasize that the restrictions are given exogenously to the game, and
do not depend on the value function or the structure of the game.

Clearly, the more we restrict allowed coalitions, the fewerthe constraints on allowed
imputations, and therefore the core can only expand. This means that such restrictions
can only decrease the CoS of the game. We now consider how somenatural restrictions
affect the (relative) CoS of the game.

3 There are versions with and without the minimality requirement.



1. Only coalitions of size at mostk are allowed, i.e.,T = {S ∈ 2N : |S| ≤ k}.
2. N is divided according to some fixed partitionP = {C1, C2, . . . , Ck}, andT =
{S ∈ 2N : S ⊆ Cj}.

3. Relations between agents are described by a (non-directed) communication graph
(N,E). A coalitionS is allowed only if the subgraph(S,E|S) is connected.

The third restriction was proposed by Myerson [16], motivated by the approach that
members of a coalition in a society are not allowed to communicate through non-
members. Note that the second restriction is a special case of the third, where the graph
is a block graph.

Without further assumptions on the game, restricting the coalition structure does
not give a better bound on the CoS (in the worst case): consider a simple gameG =
〈N, v〉where all nonempty coalitions win; then RCoS(G|T ) = n even if only singletons
are allowed inT . We therefore consider only superadditive games (i.e., theoriginal
value functionv is superadditive). Superadditivity is known to induce morestability.
For example, it has been shown by Demange that if a game is superadditiveand its
set of coalitionsT is restricted to an uncyclic communication graph, then its core is
non-empty [8] (i.e., it has RCoS of 1). Further, the following is known.

Theorem 2 (Bachrach et al., full version [4]).Let G be a superadditive TU game
(even without restrictions); then CoS(G) ≤ (

√
n− 1) v(N). Equivalently,

RCoS(G) ≤ √n, (2)

and this bound is tight (up to a small additive constant).

Proposition 1. For any superadditive TU gameG:

1. If T = {S∈ 2N : |S|≤k}, then RCoS(G|T )≤min{k,√n}. Also, fork=2 a stable
superimputation with cost 2 can be found using a greedy algorithm.

2. If T is restricted to subsets of a partitionP , then RCoS(G|T ) ≤ maxC∈P

√

|C|.
3. If T is restricted to a communication graph which has a single cycle, then

RCoS(G|T ) ≤ 2.

Moreover, all bounds are tight (up to a small additive constant in 1. and 2.).

Proof.We prove each case separately.

Bounded coalition size,k = 2. We construct a superimputationp using the following
algorithm.

Let S1={a1, a2} be the most expensive coalition inT .
Setp(a1) = v(S1).
for t = 2, 3, . . . , n do

find the most expensive coalition inT containingxt, i.e.,St = {at, b}
Setp(at) = v(St).
Setat+1 ← b.

end for



First observe thatp is a stable superimputation. LetS = {a, b} be any coalition. IfS
was selected in some iteration, then eithera or b gets the value ofS and would therefore
not participate. IfS was not selected, then there is someSt with v(St) ≥ v(S), andSt

contains one ofa, b. Thus one of them is paidv(St) and would not participate inS.
It is left to prove thatp(N) ≤ 2v(N). Clearlyp(N) =

∑

i∈N p(i) =
∑n

t=1 v(St).
Think of {St}nt=1 as nodes in a graph, where an edge connects two coalitions if they
intersect. SinceSt is only connected toSt−1 andSt+1 (when they exist) we get a
bipartite graph(L,R), whereL contains all coalitionsSt with oddt, andR with even
t. Coalitions insideL andR are pairwise disjoint. From superadditivity we have that
p(N) holds

n
∑

t=1

v(St) =
∑

A

v(St) +
∑

B

v(St) ≤ v

(

⋃

A

St

)

+ v

(

⋃

B

St

)

,

i.e., at most2v(N).
While the greedy algorithm supplies us with a stable superimputation whose value

is at most2v(N), it is possible to do better (see next paragraph).

Bounded coalition size,k > 2. If k ≥ √n then by Theorem 2 we are done. Assume
thereforek <

√
n. Consider a balanced collectionD which is a solution ofG.

Lemma 1 (Bachrach et al. [3]).If G is superadditive, then there is a solutionD in
which any two setsS, S′ ∈ D with nonzero coefficients intersect.

Thus take any coalitionS ∈ D of size at mostk with a nonzero coefficientδS . There
must be such a set, otherwise all coefficients are 0 (which means we can find a better
solution to the dual program).

p(N) =
∑

j∈N

pj =
∑

S∈D

δSv(S) (by duality)

≤
∑

i∈S

∑

S:i∈S

δSv(S) ≤ v(N)
∑

i∈S

∑

S:i∈S

δS (Lemma 1)

= v(N)
∑

i∈S

1 = v(N)|S| ≤ kv(N).

For tightness, letq = k−1 andnq = k2−1 = q2+ q+1. Take a gameGq = 〈Nq, vq〉
s.t.|Nq| = nq, and CoS(Gq) >

√
nq−1 (such a game exists by the tightness example in

Theorem 2). We now embedGq in a gameG = 〈N, v〉, whereN = Nq ∪ {k2, . . . , n}.
Setv(N) = vq(Nq), v(S) = vq(S) if S ⊆ Nq, andv(S) = 0 otherwise. We thus have
CoS(G) = CoS(Gq) >

√
nq − 1 > k − 1.

Using Lemma 1, it can be shown that whenk = 2, CoS(G|T ) ≤ 1.5 (which is
tight).

Partitions. Take anyC ∈ P , and the linear constraints induced by its subcoalitions.
From Theorem 2 we can satisfy these constraints by paying at mostp(C) ≤

√

|C|v(C).



We set the payoffs of each setC independently in the same manner. As there are no
further constraints,p is stable. Also

p(N) =
∑

C∈P

p(C) ≤
∑

C∈P

√

|C|v(C) ≤ max
C∈P

√

|C|v(N),

where the last inequality is due to superadditivity ofv.

A single cycle. We construct a stable superimputationp′, by payingv(N) to an ar-
bitrary node in the circle, and solve the remaining game as a tree (using Demange’s
algorithm [8]). While this solution is quite simple, for the worst case it is asymptoti-
cally tight:

Consider a simple anonymous game where a coalition wins iff its size is at least
⌈(n+ 1)/2⌉, and a communication graph withn nodes connected in a circle. Since
the game is symmetric, we havepi = pj = p, and for smallest winning coalitionsS,
v(N) = v(S) ≤ p(S) = |S|p = ⌈(n+ 1)/2⌉ p.
that is,p(N) = np, which equals either(2− 2

n+2 )v(N) (for oddn), or (2− 1
n+1 )v(N)

(for evenn). �

The lower bound example not only has coalitions of sizek, but can also be embed-
ded in a communication graph of degreek. We conjecture that this always holds, i.e.,
that RCoS(G|T ) ≤ d(T ), whered is the degree of the communication graph ofT .

4 CoS and the Least Core

We use the following lemma (for a proof, see Gilles [11]).

Lemma 2. Any minimal balanced collection has a size of at mostn, and a unique set
of balancing coefficients.

As an immediate corollary we get the following result, whichhas been indepen-
dently shown by Malizia et al. [14] using the geometric properties of the game.

Corollary 1. If the core ofG is empty, then there is a set of coalitions of size at mostn
that are sufficient to determine the emptiness of the core.

4.1 The strong least core

It trivially holds (see Bachrach et al. [3]) that

ǫS(G) ≤ CoS(G) ≤ n · ǫS(G). (3)

While the upper bound is tight (consider a game wherev(S) = 1 for all S 6= ∅), it can
be improved when the game is superadditive, as we will see next.

For the results in this section, we use the following construction. Given a game with
an empty coreG andǫ = ǫS(G), define a new gameGǫ = 〈N, vǫ〉, wherevǫ(S) =
v(S)− ǫ for all S ( N , andvǫ(N) = v(N). Clearly C(Gǫ) = SCǫ(G) = SLC(G).



Theorem 3. For any superadditive gameG, CoS(G) ≤ √n · ǫS(G), and this is tight.

Our proof uses techniques similar to those used in [3]. Moreover, we can derive the
√
n

bound that appears in Theorem 2 (with a small additive factor), sinceǫS(G) ≤ v(N).

Proof of Theorem 3.From Lemma 1, there is a balanced collection〈D, {δS}S∈D〉 in
which any two setsS andS′ with δS 6= 0 andδS′ 6= 0 intersect, andv(N)+CoS(G) =
∑

S∈D δSv(S).
SinceD is balanced, it must hold by Theorem 1 that

∑

S∈D

δS(v(S)− ǫ) =
∑

S∈D

δSvǫ(S) ≤ v(N),

and by combining the last equation and (1),

CoS(G) =
∑

S∈D

δSv(S)− v(N) ≤ ǫ
∑

S∈D

δS . (4)

Lemma 3.
∑

S∈D δS ≤
√
n.

Proof.Suppose first that there is a setT ∈ D with |T | ≤ √n, δT > 0. Any setS ∈ D
with δS > 0 contains one of the elements inT . Thus, we have

∑

S∈D

δS ≤
∑

i∈T

∑

S∈D:i∈S

δS =
∑

i∈T

1 = |T | ≤ √n.

On the other hand, if for anyS ∈ D with δS > 0 it holds that|S| > √n, we have

√
n
∑

S∈D

δS <
∑

S∈D

|S|δS ≤
∑

S∈D

∑

i∈S

δS

=
∑

i∈N

∑

S∈D:i∈S

δS =
∑

i∈N

1 = n,

which also means
∑

S∈D δS ≤
√
n. �

From (4) and the lemma,

CoS(G) ≤
∑

S∈D

δSǫ ≤
√
nǫ =

√
nǫS(G).

The tightness follows from the tightness of Theorem 2. I.e.,there is a gameG in
which CoS(G) ≥ (

√
n−O(1)) v(N) ≥ (

√
n−O(1)) ǫS(G). �

Our main result is showing that the lower bound can be improved in the general
case. We begin with a simple example. Consider the case ofn = 2, and suppose there
is an empty core. This simply meansv(1) + v(2) > v(1, 2). If we definez = v(1, 2)−
(v(1) + v(2)), then we can easily see that CoS(G) = z = 2ǫW(G) = 2ǫS(G). With
more agents, this ratio is generalized as follows.

Theorem 4. Let G be a game with an empty core. CoS(G) ≥ n
n−1ǫS(G), and this

bound is tight.



Proof. For tightness, it is sufficient to consider a simple game where all coalitions of
size at leastn− 1 win.

Let G be a game with an empty core. Consider the strong least core ofG, i.e.,
SLC(G). Let ǫ = ǫS(G).

Recall the gameGǫ. Similarly to the argument used in Section 2.3, there is a solution
of Gǫ (a minimal balanced collection)〈K, {δS}S∈K〉 s.t.

∑

S∈K

δSvǫ(S) = v(N). (5)

W.l.o.g.N /∈ K. Assume otherwise; then eitherK = {N} or {N} = K ′ ( K in
contradiction to the minimality ofK. However, ifK = {N} is the only balanced col-
lection with equality, thenG can be stabilized withǫ′ = 0 < ǫ, which is a contradiction
to the minimality ofǫ = ǫS(G).

For all i ∈ N , 1 =
∑

S∈K:i∈S δS . Summing overi ∈ N ,

n =
∑

i∈N

∑

S∈K:i∈S

δS =
∑

S∈K

∑

i∈S

δS =
∑

S∈K

|S|δS ≤(n− 1)
∑

S∈K

δS ,

thus
∑

S∈K

δS ≥
n

n− 1
. (6)

By definition,vǫ(S) = v(S)− ǫ, thus

v(N) =
∑

S∈K

δSvǫ(S) =
∑

S∈K

δS(v(S)− ǫ)

=
∑

S∈K

δSv(S)− ǫ
∑

S∈K

δS ≤
∑

S∈K

δSv(S)− ǫ
n

n− 1
.

By Equations (1) and (6),

CoS(G) ≥
∑

S∈K

δSv(S)− v(N) ≥ ǫ
n

n− 1
.

�

Theorem 4 establish a quantitative relationship between the CoS and the strong least
core. However, the relationship could be deeper.

Conjecture 1.For any gameG, SLC(G) ⊆ EC(G).

In other words, we conjecture that preimputations in the least core are the easiest to
stabilize: for anyx ∈ SLC(G), CoS(x, G) = CoS(G).

For small games, the conjecture indeed holds.

Proposition 2. If n ≤ 3, then SLC(G) ⊆ EC(G).

We have already seen that whenn = 2, SLC(G),WLC(G) coincide, and are contained
in EC(G). Forn = 3 there is only a small number of minimal balanced collections, and
we can simply go over all the possibilities. We omit the full proof.



4.2 The weak least core

In the weakǫ-core, every agent in every coalition agrees to lower her demand byǫ.
Instead, we can increase the payoff of each agent by the same amount (see Bejan and
Gómez [5]); thus CoS(G) = n · ǫW(G).

Clearly, this means that WLC(G) ⊆ EC(G), as any preimputationz ∈ WLC(G)
can be extended to a stable superimputation by addingǫ to every coordinate.

Moreover, this tight relation allows us to conclude the following bounds from The-
orems 3 and 4.

Corollary 2. (n− 1)ǫW(G) ≥ ǫS(G).

Corollary 3. For any superadditive game,ǫS(G) ≥ √n · ǫW(G).

5 Discussion

We showed that various restrictions on the interaction of agents can significantly reduce
the cost of stability in (superadditive) TU games. While we focused on profit games,
we note that similar results hold when we impose restrictions onexpense sharinggames
(as in Meir et al. [15]).

We established a tight lower bound for the CoS, in terms of theminimal relaxation
that defines the least core. The upper bound is also improved,but only under conditions
of superadditivity. Indeed, superadditive games have manyattractive properties related
to stability and to its computational aspects (see [6, 3, 8]).

5.1 The nucleolus

One difficulty with solution concepts such as the core and itsvariations is that even
when they exist, they usually do not specify a unique imputation.

A unique solution that is highly motivated by the notion of stability is thenucleolus
(Schmeidler [21]) and its variations. Informally, the (pre)nucleolus is the preimputa-
tion that minimizes the dissatisfaction of all coalitions,sorted according to a certain
lexicographic order (see [5] for definitions of some variations). Like any other preim-
putation, we can always stabilize the nucleolus by extending it with sufficient subsidies
to a stable superimputation. Aziz et al. [2] offered an alternative way to achieve a stable
nucleolus: first extend the core, then compute the nucleolusin the extended game. For
the per-capita nucleolus, both solutions coincide, i.e., the per-capita nucleolus of the
extended gameG is an extension of the per-capita nucleolus ofG. This arises simply
by addingǫW(G) to every coordinate of the per-capita nucleolus, which is contained in
the WLC.

It is an open problem whether the (standard) nucleolus N(G) has similar properties.
Indeed, since it is contained in the SLC, we have that CoS(N(G), G) = CoS(G) in
every game for which Conjecture 1 holds. We further conjecture that N(G) is a minimal
extension of N(G), which is not entailed by the previous conjecture.



5.2 Future directions

While our results indicate that there is a tight connection between the extended core
and other solution concepts, there are many open questions for future research. Beyond
the conjectures that we explicitly stated, it would be interesting to explore these rela-
tionships in specific families of TU games, such as those thatwere mentioned in the
introduction.

While in the general case (non-superadditive) restricted cooperation cannot guaran-
tee improved stability, it may dramatically reduce required subsidies in certain limited
families of TU games. Such combinations are worth studying.

Finally, the relation between the CoS and similar solution concepts in non-TU
games (such as the strong price of anarchy) should be studied.
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17. M. Ṕal and E. Tardos. Group strategy proof mechanisms via primal-dual algorithms. In
FOCS-03, pages 584–593, 2003.

18. B. Peleg and P. Sudhölter. Introduction to the Theory of Cooperative Games. Kluwer Pub-
lishers, 2003.

19. M. A. Pulido and J. Sanchez-Soriano. Characterization of the corein games with restricted
cooperation.European Journal of Operational Research, 175(2):860–869, 2006.

20. E. Resnick, Y. Bachrach, R. Meir, and J. Rosenschein. The cost of stability in network flow
games. InMFCS-09, pages 636–650. Springer, 2009.

21. D. Schmeidler. The nucleolus of a characteristic function game.SIAM Journal on Applied
Mathematics, 17(6):1163–1170, 1969.


