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Abstract

We introduceTransformation Gamegl'Gs), a form of coali-
tional game in which players are endowed with sets of initial
resources, and have capabilities allowing them to derive cer-
tain output resources, given certain input resources. The aim
of a transformation game is to generate a particular target re-
source; players achieve this by forming a coalition capable of
performing a sequence of transformations from its combined
set of initial resources to the target resource. Transforma-
tion games can model a number of natural settings, including,
for example, cooperative proof systems, where a collection of
agents have different expertise and different problem solving
capabilities, and work together to try to derive some target
theorem. After presenting the basic model of transformation
games, and discussing their interpretation, we consider vari-
ous possible restrictions on the transformation chain, result-
ing in different coalitional games. After presenting the basic
model, we consider the computational complexity of several
problems in TGs, such as testing whether a coalition wins,
checking if a player is a dummy or a veto player, computing
the core of the game, computing power indices, and checking
the effects of possible restrictions on the coalition. Finally,
we consider extensions to the model in which transformations
have associated costs.

Introduction

game theory have also been studied by computer scien-
tists (Conitzer and Sandholm 2003; Elkind et al. 2007;
Bachrach and Rosenschein 2008).

In this paper, we consider a new model of cooperative
activity among self-interested players. Imeansformation
Game(TG), players must cooperate to generate a certain tar-
get resource.In order to generate the resource, each player
is endowed with a certain set of initial resources, and in ad-
dition, each player is assumed to be capableaisforma-
tions allowing it to generate a certain resource, given the
availability of a certain input set of resources required for
the transformation. Coalitions may thus fotransforma-
tion chainsto generate various resources. A coalition of
players is successful if it manages to form a transformation
chain that eventually generates the target resource. Form-
ing such chains can be complicated, as there are limitations
on the structure of the chain. One common example is time
restrictions, in the form of deadlines. Even when there is
no deadline, short chains are typically preferred, since we
might expect that the more transformations a chain has, the
higher the probability of some transformation failing.

In this work, we model various restrictions on these
chains, and consider various game theoretic notions and
the complexity of computing them under these different
restrictions. We consider three types of domains: unre-
stricted domains, where there is no restriction on the chain;

Many computational aspects of game theory have been stud- makespan domains, where each transformation requires a
ied in recent years, and game theoretic techniques have beercertain amount of time and the coalition must generate the

applied in computational domains such as electronic com-
merce, auctions, voting, supply chains and resource allo-

cation (Shoham and Leyton-Brown 2008). Many such do-
mains are inherentlgooperative in the sense that players

target resource before a certain deadline; and limited trans-
formation domains, where the coalition must generate the
target resource without performing more than a certain num-
ber of transformations. We also consider two types of trans-

are able to form binding agreements that enable them to formations:simpletransformations, where a transformation
work together. Cooperative game theory provides a math- simply allows building an output resource froome input

ematical framework through which to study interactions

in such domains, and considers questions such as which

coalitions will form, and how the benefits of cooperation
should be distributed. These notions are formalizedas

lution conceptssuch as the core, the Shapley value, and
the nucleolus (Osborne and Rubinstein 1994). An impor-

resource, andomplexransformations, where a transforma-
tion may require a@etof input resources to generate a certain
output resource.

Transformation games can be understood as a strategic,

lWe use the terms “product” and “resource” interchangeably.

tant question is the extent to which these solutions can Both of these simply refer to items in the set of all items. We usu-

be effectively computed; thus, solutions from cooperative
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ally refer to an item as a product if it is generated as a result of
some transformation, and a resource if it is the input to a transfor-
mation. Of course, a product of one transformation can be one of
the resources used to derive a subsequent product.



game-theoretic formulation oproof systems In a for-

mal proof system, the goal is to derive some logical state-
ment from some logical premises through the application
of logical inference rules. When modelled as a trans-
formation game, premises and proof rules are distributed
across a collection of agents, and proof becomes a co-
operative process, with different agents contributing their
domain expertise (premises) and capabilities (proof rules).
Game theoretic solution concepts such as the Banzhaf in-

of n players and a characteristic function mapping any sub-
set (coalition) of the players to a real value: 2! — R,
indicating the total utility these players can obtain together.
The coalitionl of all the players is called thgrand coali-
tion. Often such games aiecreasingi.e., for all coalitions

C’ C Cwe havev(C') < v(C). In simplecoalitional games,

v only gets values of or 1 (i.e.,,v : 2' — {0,1}), and in
this case we sag C | winsif v(C) = 1 andlosesother-
wise. We say playairis acritical in a winning coalitionC if

dex provide a measure of the relevant significance of agents the removal ofl from that coalition would make it a losing

(and hence premises and proof rules) in the proof process.
Viewed in this way, transformation games provide a for-
mal foundation for cooperative theorem proving systems

such as those described in (Denzinger and Kronenburg 1996;

Fisher and Wooldridge 1997), as well as cooperative prob-
lem solving systems in general (Lenat 1975).

We also believe that Transformation Games can provide a
first step towards eventually providing a cooperative game-
theoretic treatment of supply chains. We emphasize, how-
ever, that this is not the aim of the present paper: TGs
do not capture many of the aspects examined by supply

chain theory, such as quantities of resources and products,

and consumption of resources during transformations. This
work, however, does shed some light on the behavior of self-
interested agents in related domains. Also, the simplicity
of this framework makes it possible to compute some so-
lutions in polynomial time. Despite these positive results,
we show that even this simplified domain is combinatorially
rich enough that some interesting problems are computation-
ally hard.
The model is also related to work in planning within

artificial intelligence (Ghallab, Nau, and Traverso 2004;

Ephrati, Pollack, and Rosenschein 1995; Ephrati and Rosen-

schein 1997). In planning, the goal is to obtain a plan of
action that will transform some initial world state into a tar-
get world state. The components in a plan are actions from
some defined action repertoire. The main differences with
our work are that, in classical planning, there is no multi-

coalition: v(C) = 1 andv(C\ {i}) = 0.

The characteristic function defines the value a coalition
can obtain, but does not indicate how to distribute these
gains to the players within the coalition. Amputation
(p1, - .-, pn) is a division of the gains of the grand coalition
among all players, wheng € R, such thalzi”:1 pi = v(I).

We callp; the payoff of player;, and denote the payoff of a
coalitionC asp(C) = Zie{uaec:} pi.

Game theory offers several solution concepts, which de-
fine the imputations that are likely to occur in a coali-
tional game. A minimal requirement of an imputation is
individual-rationality (IR): for every playei; € C, we have
pi > v({a}). Extending IR to coalitions, we say a coali-
tion B blocksthe imputation(py, . .., pn) if p(B) < v(B). If
a blocked imputation is chosen, the grand coalition is said
to be unstable since the blocking coalition can do better
by working without the other players. The most promi-
nent solution concept focusing on such stability is the core:
the core of a coalitional game is the set of all imputations
(p1,- - ., pn) that are not blocked by any coalition, so for any
coalitionC we havep(C) > v(C).

In general, the core can contain multiple imputations
(raising the question of which one should be implemented),
and can also be empty. Another cooperative game theory
solution, which defines aniqueimputation, is the Shap-
ley value, which focuses ofairnessrather than on stabil-
ity. The Shapley value of a player depends on his marginal
contribution over all possible coalition permutations. We

agent strategic component: typically there is assumed to be denote byr a permutation (ordering) of the players, so

a single goal to be achieved, even if there are multiple actors.

m:{1,...,n} — {1,...,n} and~ is reversible, and by

Thus the questions to be addressed are rather different in ourII the set of all possible such permutations. Denot&y)

domain, and more closely related to solutions from cooper-
ative game theory. One paper that is closer to ours in spirit,
and studies questions of self-interested actions in planning
domains, is (Engel et al. 2009). However, that paper stud-
ies quite a different setting, and the game theoretic analysis
focuses on different solution concepts.

The remainder of the paper is structured as follows. In
Sections and we present basic definitions and formally de-
fine the TG model. Section presents the main algorithms
and complexity results of the paper. We conclude in Section

Preliminaries

We first very briefly recall the basic game theoretic concepts
that are later applied in the context of TGs (see, e.g., (Os-
borne and Rubinstein 1994) for a detailed introduction). A
transferable utility coalitional gamés composed of a sét

the predecessors ofin 7, so S, (i) = {j | #(j) < =(i)}.
The Shapley value is given by the imputatish(v)
(shy(v),...,sh(v)) where

1 . . .
sh(v) = D WSH () U {i}) = v(S:0))].
mell

An important application of the Shapley value is that of
power indices, which try to measure a player’s ability to
change the outcome of a game, and are used for exam-
ple to measure political power. Another game theoretic
concept that is also used to measure power is the Banzhaf
power index. The Banzhaf index depends on the number
of coalitions in which a player is critical, out of all the
possible coalitions. The Banzhaf power index is given by

5) = (51(V).- . 6n(¥)) where
GV =gy D0 S~ v(S\ D]

SCllaeS




Transformation Games

Transformation games involve a set of playets, =
{a1,...,a}, asetof resource®= {ry,...,r¢}, and a cer-

tain goal resourcey € R. In these domains, each playar

is endowed with a set of resourd&sC R. Players have ca-
pabilities that allow them to generate a target resource when
they have certain input resources. We model these abilities
via transformations A transformation is a pai(B, r) where

Bis asubseB C R, indicating the resources required for the
transformation, and € R s the resource generated by the
transformation. The set of all such possible transformations
(overR) is D. The capabilities of each playarare given by

a setD; C D. We say a transformatioth = (B, r) is simple

if |B] =1 (i.e., it generates a target resource givesirgle
input resource), andomplexif |B| > 1. Three caveats are
worth highlighting:

o First, our model of TGs haso notion of resourcguan-
tity. For example, the TG framework cannot explicitly

express constraints such as 4 nails and 5 pieces of wood

are required to build a table.
e Second, we do not model resourcensumption thus

Transformations
Given a transformation game, we can define the set of re-
sources a coalitio@ C | can derive. We say a coalitidd
is endowed with a resourge and denote this dsagC,r),
if there exists a playea; € C such thatr € R. We de-
note the set of resources a coalition is endowed with as
Rc ={r e R|haqC,r)}.
We now define an infix relation= C 2' x R, with the
intended interpretation th& = r means that coalitiol
can produce resourage We inductively define the relation
= as follows. We hav€ = r iff either:
e hagC,r) (i.e., the coalitionC is directly endowed with
resource); or else

e for some{ry,,rp,,...,rM,+ € Rwe have
C=r1p,C=rp,...,C=>Tp,
and for some playes € C we have
({rp,, oy -+, Tp, )5 1) € Dy.
Unrestricted TGs
We can now define the unrestricted form of TGs.

when a player generates a resource from base resourcesDefinition 1. Unrestricted-TG: An unrestricted TG (UTG)

the player ends up witboth the base resourcemd the

with the goal resourcegyris the coalitional game where a

generated resource. This may at first sight seem a strangecoalition C wins if it can derivegand loses otherwise:

modelling choice, but it is very natural in many settings.
For example, consider that derivations as corresponding
to logical proofs In classical logic proofs, when we de-
rive a lemmayp from premisesA, we do not “consume”

A: bothy and premised\ that were used to derive it can
be used as often as required in the subsequent prof.
expand on the interpretation of transformation games as
cooperative proofs in Section .

Third, nocostis associated with a transformation, so per-

forming a transformation does not reduce the utility ob-

tained by the coalition, and players do not incur costs for
performing a transformation. (In Section , we drop this

assumption, and present a model which allows for such
costs.)

Formally, then, dransformation gamd’ is a structure
I'=(,RRy,...,Ry,D1,...,Dn,rg)

where:

| is a set of players;
Ris a set of resources;

for eachg € |, R is the set of resources with which that
playeri is initially endowed;

for eacha; € I, D; C D is the set of transformations that
playeri can carry out; and

e g € Ris aresource representing the goal of the game.

We sometimes consider transformations that require a cer-
tain amount of time. In such settings, &tbe a player with
capabilityd € D;. We denote the time playe; needs in
order to perform the transformation a&l) € N.

2In linear logic, this is of course not the case (Girard 1987).

1 ifC=ryg
0 otherwise

v(C) = {

Derivation Restricted TGs

We now take into account the total number of transforma-
tions used to generate resources, and the time required to
generate a resource. We denote the fact that a coalition
C can generate a resourceusing at mosk transforma-
tions, byC = r. Consider a sequence of resource subsets
S = (R, Ry, ... R), such that eacl® contains one addi-
tional resource over the previoBs_; (SOR = R_; U{r/}).
We sayC allowsthe sequencé& if for any indexi, C can
generate{ (the additional item for the next resource subset
in the sequence) given base resourceRiin (soC is ca-
pable of a transformatiod = (A, r{), whereA C R_;). A
sequenc& = (R, Ry, ... R) (with k subsets) that allows
is called ak — 1-transformation sequence for resource r by
coalition Cif r € R¢ and the first subset in the sequence
is the subset of resources the coalitioris endowed with,
R; = Rc (sinceC requiresk — 1 transformations to obtain
this way). If there exists such a sequence, we denote this by
C = r. We denote the minimal number of transformations
thatC needs to derive asd(C,r) = min{b | C =, r}, and
if C cannot derive we denoted(C, r) = occ.

We now define derivation restricted TGs:
Definition 2. DTG: A transformation restricted TG (DTG)
with the goal resourcegrand with the transformation bound
k is the coalitional game where a coalition C wins if it can
derive y using at mosk transformationsand loses other-

0 otherwise.



Makespan Limited TGs

In much the same way, we consider the makespan domain,
where each transformation requires a certain amount of time.
The main difference between the makespan domain and the
DTG domain is that transformations may be daimulta-
neously’ We denote the fact that a coaliti@can generate
a resource in time of at most by C =! r. We define the
notion recursively. If a coalition is endowed with a resource,
it can generate this resource instantaneously (with time limit
of 0), i.e., ifhagC,r) thenC = r. Now consider a coali-
tion C such thatC =4 r, ,C =2 ry,,...,C =y,
and playera; € C who is capable of the transformation
d= ({ro,,os,---,lon}, ) (s0d € Dj), requiring a transfor-
mation timet, sotj(d) = t. Given a coalitionC, we denote
the time in which a coalition can perform a transformation
astc(d) = mingecti(d), the minimal time in which the
transformation can be performed, across all players in the
coalition. We denote the time in which the coalition can ob-
tainall of the base resources,, . .., r,, ass = maxt;. The
final transformation (which generatgsrequires a time of,
soC =Stt r. Again, different ways of obtaining the target
resource result in different time bounds, and we consider the
optimal way of obtaining the target resource (theimal
time a coalitionC requires to derive). If C = r we denote
the minimal transformation time th& needs to derive as
t(C,r) = min{b | C =P r}, and if C cannot deriva’ we
denotet(C, r) = oo.

Similarly to DTGs, we define makespan (time limited)
TGs:

Definition 3. TTG: A makespan/time limited TG (TTG) with
the goal resourceg and with time limit t is the coalitional
game where a coalition C wins if it can derivgwith time

of at mostt and loses otherwise:

v(C) = {1 ifC=rgand{C,rq) <t

0 otherwise.
Transformation Games and Logical Proofs

Structurally, the definition of transformation games that we
presented above is very much like the notion of logical proof
(see, e.g., (Genesereth and Nilsson 1987, p.48)). In a proof
system in formal logic, we have a set of formulae of some
logic, known as theremisesand a collection ofnference
rules the role of which is to allow us to derive new formulae
from existing formulae. Formally, if is the set of formulae

of the logic, then an inference rutecan be understood as a
relationp C 2% x L. Given a set of premised C £ and a
set of inference ruleg; . . ., px, aproof is a finite sequence
of formulaey, ..., ¢, such that for all, 1 <i <, either:

1. ¢ € A(i.e., pj is a premise); or else

2. there exists some subskt C {¢;,...,pi_1} and some
pi € {p1,...,p} such thatlA’, i) € pj (i.e., i can be
derived from the formulae precedipgby some inference
rule).

3For example, if it takes 5 hours to convert oil into gasoline and
4 hours to convert oil into plastic, if we have oil we can obtain both
gasoline and plastic in 5 hours, by performing the transformations
in parallel.

Typical notation is tha\ +, ., ¢ means thatp can be
derived from premiseA using rules, . . ., px. Such proofs

can be modeled in our framework as follows. Resouftes
are logical formula&, and the initial allocation of resources
Ry, ..., R, equates to the premises; capabilitis . .., Dy
equate to inference rules. Notice that the assumption that re-
sources are not “consumed” during the transformation pro-
cess is very natural when considered in this setting: in clas-
sical logic proofs, premises and lemmas can be reused as
often as required (although this is not the case in “resource
aware” logics such as linear logic (Girard 1987)).

Clearly the relationship between transformation games
and proofs is very natural, and very close: such formal
proof systems can be directly modeled within our frame-
work. There are two main differences, however, as follows.

The first is that in proof systems, inference rules are
usually given a succinct specification, as a “pattern” to be
matched against premises. The classic proof rule modus po-
nens, for example, is usually specified as the following pat-
tern:

©; oY
(U
which says that if we have derived and we have derived
thaty — ¢, then we can derive. Here,p and+) are vari-
ables, which can be instantiated with any formula.

The second is that we take sirategic view: a proof
modeled within our system is obtained through a coop-
erative process. In this sense, transformation games can
be understood as a formulation both of cooperative the-
orem proving systems (Denzinger and Kronenburg 1996;
Fisher and Wooldridge 1997), as well as cooperative prob-
lem solving systems in general (Lenat 1975). In such sys-
tems, agents have different areas of expertisegsources)
as well as different capabilities=(transformations). Game
theoretic concepts such as the Banzhaf index provide a mea-
sure, for example, of how important different premises and
inference rules are with respect to being able to prove a the-
orem.

Problems and Algorithms
Given a TGI' = (I,R Ry,...,Ry,D1,...,Dn,rg), the fol-
lowing are several natural game theoretic problems regard-
ing the game:
Definition 4. COALITION-VALUE (CV): Given a coalition
C C I, compute ¥(C) (i.e., test whether a coalition is suc-
cessful or not).
Definition 5. VETO (VET): Given a player;acheck if itis a
veto player, so for any winning coalition C, we haye=aC.

Definition 6. DUMMY (DUM): Given a player g check if
it is a dummy player, so for any coalition C, we hayé®U

{ai}) = wvr(C).

Definition 7. CORE: Compute the set of payoff vectors that
are in the core, and return a representation of all payoff vec-
tors in it.

Definition 8. SHAPLEY (SH): Computg’'s. Shapley value
Sh (V[‘).



Definition 9. BANZHAF (BZ): Compute; @ Banzhaf power
index ;i (vr).

We now summarize the results of the present paper, and
prove them in the remainder of the paper. We provide poly-
nomial algorithms for testing whether a coalition wins or
loses (CV) for UTGs, DTGs, and TTGs with simple trans-
formations, and for UTGs and TTGs with complex trans-
formations, but show that the problem is NP-hard for DTGs
with complex transformations. We provide polynomial al-
gorithms for testing for veto players and computing the core
in all domains where CV is computable in polynomial time,
but show the problem is co-NP-hard in DTGs with complex
transformations. We show that testing for dummy players
and computing the Shapley value are co-NP-hard in all the
TG domains defined, and provide a stronger result for the
Banzhaf power index, showing that it is #P-hard in all these
domains' The following table summarizes our results re-
garding TGs withsimpletransformations.

| | UTG | DTG | TIG |
CV P P (NPH) P
VETO P P (co-NPH) P
DUMMY | co-NPC | co-NPC (co-NPH)| co-NPC
CORE P P (co-NPH) P
SH co-NPH co-NPH co-NPH
BZ #P-Hard #P-Hard #P-Hard

Table 1. Complexity of TG problems. |If the results differ for
simple and complex transformations, the results for complex trans-
formations are given in parentheses.

(Key: P = polynomial algorithm; co-NPC = co-NP-complete; co-
NPH = co-NP-hard.)

Theorem 1. CV is in P, for all the following types of TGs
with simple transformations: UTG, DTG, TTG. CVisin P
for UTGs and TTGs with complex transformations.

Proof. First consider UTG. We first hold the s8tof re-
sources with whichC is endowed,S = {r | hagC,r)}.
We denote the set of transformations of the playerS s
Dc = UaecDi. We say that a set of resourc8snatches a
transformationrd = (B,r) € Dif B C S If Smatchexd
then using the resources 8ithe coalitionC can also pro-
ducer through the transformatiod. We consider a basic
step of iterating through all the transformationdnWhen
we find a transformatiod = (B, r) thatSmatches, we add
r to S. A test to see whether a transformati@matchesS
can be done in time of at mog}|? (whereR is the set of all

resources), so the basic step of passing through all the trans-

formations takes at mofdc| - |R|? time. If after performing
a basic step no transformationx matchesS, Sholds all

“The complexity class #P expresses the hardness of problems

that “count the number of solutions”. Informally NP deals with
whether a solution to a combinatorial problem exists, while #P
deals with calculating theumberof such solutions. Since the abil-
ity to count solutions generalizes the ability to check whether one

the resources th& can generate, and we stop performing
basic steps. Is has changed during a basic step, at least
one resource is added to it. Thus, we perform at nigist
basic steps to compute the set of all resou@esn gener-
ate, saScan be computed in polynomial time. We can then
check whethelS containsrg. We note that the suggested
algorithm works for simple as well as complex transforma-
tions. Now consider TTGs with simple transformations. We
build a directed graph representing the possible transforma-
tions as follows. For each resourcghe graph has a ver-
texv;, and for each possible transformatior= (ry, ry) the
graph has an edge from v, to v,. Given a coalitionC
we consideiG¢, the subgraph induced ly. Gc = (V, Ec)
contains only the edges of the transformations available to
the coalitionC, so Ec = {(v,,V,) | (rxfy) € Dc}.
The graphGc is weighted, and the weight of each edge
e = (Ix, y) Isw(e) = mingecti((rx, ry)), the minimal time
to derivery from ry across all players in the coalition. We
denote the weight of the minimal path fromto rg in G¢
aswc(ra,rg). The coalitionC is endowed with all the re-
sources inRc and can generate all of them instantly. We
note that the minimal time in which a coaliti€h can gen-
eraterg is miny,cr. We(ra, fg). FoOr each resource € Rc,
we can computevc(ra, rg) In polynomial time (using any
shortest path algorithm, such as Dijkstra’s algorithm), so we
can compute in polynomial time the minimal time in which
C can generateg, and test whether this time exceeds the
required deadline or not.

We note that for simple transformations, we can simulate
a DTG domain as a TTG domain, by simply stating that each
transformation requires 1 time unit (and setting the threshold
time to be the threshold number of transformatins

Finally, we show how to adapt the algorithm used for
UTGs (with either simple or complex transformations) to be
used for TTGs with complex transformations. For the TTG
CV algorithm for a coalitiorC, for each resourcewe main-
tainm(r), a bound from above on the minimal time required
to producer. All the m(r) of resources endowed by some
player in the coalitiorC are initialized to0, and the rest are
initialized to co. Our basic step remains iterating through
all the transformations . When we find a transforma-
tiond = (B,r) which Smatches, where the transformation
requirest(d), we compute the time in which the transforma-
tion can be completed;(d) = maxesm(b) + tc(d) (if S
does not match a transformatidnwe denotec(d) = o).
During each basic step, we compute the possible comple-
tion times for all the matching transformations, and apply
the smallest onegrgminycpc(d). To apply a transformation
d = (B, r), we simply add to S, and updaten(r) to bec(d).
During each basic step we only applyetransformation (al-
though we scan all the possible transformations). A simple
induction shows that after each basic step, for any resource
r such thaim(r) # oo the valuem(r) is indeed the minimal
time required to generate Again, the algorithm ends if no
transformations were applied during a basic step. As before,

SWhen we allow complex transformations, this is no longer

exists, we usually regard #P-hardness as a more negative result thanpossible, since if a certain transformation requires several base re-

NP-hardness.

sources, the shortest time to produce each of them may be different.



a basic step requires time [@c| - |R|? time, and we perform

at most|R| basic steps, so the algorithm requires polynomial
time. We can then check wheth®&containg 4, and whether
m(ry) is smaller than the required time threshold. O

We immediately obtain the following:

Corollary 1. VETO is in P, for all the following types of
TGs with simple transformations: UTG, DTG, TTG, and for
UTGs and TTGs with complex transformations.

Proof. A veto playerg; is present in all winning coalitions:
TGs are trivially seen to be increasing, so simply check
whetherv(I_5) = 0. O

Now consider the problem of computing the core in TGs
with simple transformations. In simple (0,1-valued) games,
a well-known folk theorem tells us that the core of a game
is non-empty iff the game has a veto player. Thus, in sim-

transformatiord-,, = (ry,rg). For each clausg we have
a transformatioml;, = (rg,rc., ), where for the last clause
cm We have a transformatiod,, = (rc,,rg). Playeray is
capable of a single transformatidn = (ry, ¢, ). The player
ay is capable of transformatiody,, and the playee_ is
capable of transformatiod.,. If X, occurs in its positive
forming; (i.e.,¢; = x Vi, vV ---) thena, is capable of the
transformatiord,. If X occurs in its negative formiq (i.e.,

¢ = % Vl;, V- --) thena, is capable of the transformation
d -

We identify an assignment with a coalition of players, and
identify a coalition of players with an assignment candidate
(which possibly contains both a positive and a negative as-
signment to a variable, or which possibly does not assign
anything to a variable). LeA be an assignment to the vari-
ables inp. We denote the coalition tha represents as
Ca = {ax | Ax) = T} U{ax | Ax) = F}. There

ple games, the core can be represented as a list of the vetoare only two resources with which players are endowed:

players in the game. This gives the following:

Corollary 2. CORE is in P, for all the following types of
TGs with simple transformations: UTG, DTG, TTG, and for
UTGs and TTGs with complex transformations.

We now show that testing whether a player is a dummy in
TGs is co-NP-complete.

Theorem 2. DUMMY is co-NP-complete, for all the follow-
ing types of TGs with simple transformations: UTGs, DTGs,
TTGs, and for UTGs and TTGs with complex transforma-
tions. For DTGs with complex transformations, DUMMY is
co-NP-hard.

Proof. Due to Theorem 1, we can verify in polynomial
time whether a playeg; is beneficial toC by testing if
v(CU {&a}) — v(C) > 0. Thus DUMMY is in co-NP for
UTGs, DTGs, TTGs with simple transformations, and for
UTGs and TTGs with complex transformations. We show
that DUMMY is co-NP-hard by reducing an instance of SAT
to testing whether a player in a UTG with simple transforma-
tions is not a dummy (TG-NON-DUMMY). Showing that
DUMMY is co-NP-hard in UTGs is enough to show it is
also co-NP-hard for DTGs and TTGs, since it is possible
to set the threshold (of either the maximal allowed trans-
formations or the maximal allowed time) so high that the
TG is effectively unrestricted. Hardness results also apply
to complex transformations as well, since the restricted case
of simple transformations is hard. Let the SAT instance be
@ =C1 ACa A -+ A Cp OVer proposition, . . . , X5, where

¢ =, v--- VI, where each such is a positive or neg-
ative literal, eitherxs or —x¢ for some propositiorx. The
TG-NON-DUMMY query is regarding the playes,. For
each literal (eithex; or —x;) we construct a playeig and
a-y). These players are called the literal players. The gen-
erated TG game has a resourgeand onlya, is endowed
with that resource. The game also has the resaytceith
which all the literal players are endowed. For each proposi-
tion x; we also have a resourcg. For each clausg in the
formulay we have a resourag,. The goal resource is the
resourcey. For each positive literag we have the transfor-
mationdy, = (r,, ry). For each negative literal we have the

andr,. It is possible to generatg, either through a trans-
formation chain starting with,, going througtry, (for some
variablex) and ending witfry, or through a transformation
chain starting wittry, going througlrc, , throughr,, and so
on, untilre,, and finally derivingrg from r,, (and there are
no other possible chains that genengje

We note that given a valid assignmextC, does not al-
low convertingr, to rg, since to do s&a needs to be able
to generate,, fromr, (for some variable;) and needs to be
able to generatgy from r,,. However, the only player who
can generatey, fromr; is ay, and the only player who can
generatay from ry is a-, andCa can never contain both
ax anda_y (for any x;) by the definition ofCa (asA is a
valid assignment). Suppogeis a satisfying assignment for
p. Letc be some clause ip. A satisfiesp, so it satisfies
¢; through at least one variable If x; occurs positively in
©, A(X) = T soay € Ca, and ifx; occurs negatively irp,
A(x) = F soa.y € Ca, so we have a player € C capable
of the transformatior,. Thus,Ca can convert, torc,,
can convertg, to rc,, and so on. Thus, given the resource
re,, Ca can generatgy. Playera, is endowed wittry, and is
capable of generating, fromry, soCa U {a,} is a winning
coalition. Howevera, ¢ Ca, andCa cannot generate, .
Also, sinceA is a valid assignmentCa cannot generatg,
through a chain starting withy, soCa is a losing coalition.
Thus,ay is not a dummy, ag(Ca U {ay}) — v(Ca) = 1.

On the other hand, supposg is not a dummy, and is
beneficial to a coalitiorC, soC is losing butC U {a,} is
winning. SinceC is losing, it cannot contain bota, and
a_y (for anyx;), as this would allow it to generatg from
r, and to generatg, from ry, (andC would win withoutay).
We now consider the assignmest if C containsay, we
setA(x) = T, and if C containsa-, we setA(x) = F
(if C contains neithesy, nor a_y, we can sefA(x) = T).
SinceCU {ay} wins, and since it cannot generagethrough
a chain starting wittr,, we know it generatesy through
the chain starting withy and going through the;’s. Thus,
for any clauseg;, C contains a player who is capable of the
transformationd, = (rg,re.,). That player can only be
ay or a_x for some proposition;. If that player isa, € C



theng; has the literak; (in positive form) andA(x) = T,
so A satisfiesg;, and if that player isa—y, € C theng has
the literal ~x; (negative form) and\(x;) = F, so againA
satisfiest;. ThusA satisfies all the clauses in Thusy is
satisfiable iffa, is not a dummy. O

We now show that when we allow complex transforma-
tions, even testing whether a coalition wins or loses becomes
an NP-Complete problem.

Theorem 3. For DTGs with complex transformations, CV
is NP-hard even for TGs with a single player, and VETO is
co-NP-hard.

Proof. We reduce VERTEX COVERto a DTG CV problem.
We are given a graps = (V,E) with V = {vq,..., W},

E = {ey,...,en} such thatg is fromv 5 to v, and a tar-
get cover size ok. We construct the following DTG. We
have a resource and goal resource,, a resourceg for
each edges, and a resource, for each vertex. We have
a transformation from; to each vertex resourag. If  is
fromy; 5 tov; , we have two transformations: from , tore,
and fromr,, , torg. We also have a complex transformation
from {re,,...,re,} torg. Asingle player is endowed with
ri, and has all the above transformations. The target maxi-
mal number of transformations for the DTGkst+ m + 1.
Now, G = (V, E) has a vertex cover of sideiff the player
wins in the game so defined. O

We now consider the problems of computing power in-
dices for TGs. We show that computing either power index
is NP-hard, and give an even stronger result for the Banzhaf
power index, showing it is #P-hard to compute.

Corollary 3. Testing whether the Shapley value or Banzhaf
index of a player in TGs exceeds a certain threshold is co-
NP-hard for all the following types of TGs: UTG, DTG,
TTG, with simple or complex transformations.

Proof. Theorem 2 shows DUMMY is co-NP-hard in these
domains. However, the Shapley value or Banzhaf index of a
player can only be 0 if the player is a dummy player. Thus,
computing these indices in these domains (or the decision
problem of testing whether they are greater than some value)
is co-NP-hard. O

We show a stronger result for the Banzhaf index, through
#SC.

Definition 10. #SET-COVER (#SC): We are given a collec-
tionC={S,..., S} of subsets. We denatgccS =S. A
set cover is a subset'CC C such thatUgecr = S. We are
asked to compute the number of covers of S.

#SC is a #P-hard problem. Counting the number of vertex
covers, #/ERTEX-COVER, is a restricted form of #8C.

Theorem 4. Computing the Banzhaf index in UTGs, DTGs,
and TTGs (with simple or complex transformations) is #P-
hard.

Proof. We reduce a #SC instance to checking the Banzhaf
index in a UTG. Consider the #SC instance wih =
{S1,...,S}, so thatusecS = S Denote the items in
SasS = {t,ts,...,t}. Denote the items if§ as§ =
{ts,1),4s5,2)5 - - - (5. }- FOr each subs& of the #SC in-
stance, the reduced UTG has a plaggr For each item
ti € Sthe UTG instance has a resounge The reduced
instance also has a playagow, the resourcesy, rpow and
the goal resourcey. For each itent; € Sthere is a trans-
formationd; = ({r,_,},r;). Another transformation is
dpow = ({rt,},rg), of which onlyay,o is capable. All play-
ers are endowed with resourcg Each player is capable
of the transformation in her subset—for the subSet=
{t, . ti,, ..., t}, the playery is capable ofy;,, di,,...,d,.
The query regarding the power index is for plaggg,. We
note that a coalitiolC = {a,,a,,...,&,} is winning iff
it contains bothay,, and players who are capable of all
di,ds,...,dy. However, to be capable af the coalition
must contain some; such thatt; € §. Consider a win-
ning coalitionC = {apow} U {&;,,a;,,...,&,}, and de-
note&x = {S,,S,,.-.,S,}- A coalition C is winning iff
apow € C and: is a set cover o8,

The Banzhaf index in the reduced gamgm?&, wherenis
the number of players arglis the number of winning coali-
tions that contaira,oy that lose whergyoy is removed from
the coalition. However, no coalition can win withoag,w,
soq is simply the number of all winning coalitions, which
is the number of set covers of the #SC instance. Thus we
reduced a #SC instance to computing the Banzhaf index in a
UTG with simple transformations. We can do the same with
DTGs and TTGs with a high enough threshold. Also, simple
transformations are a restricted case of complex transforma-
tions. Thus computing the Banzhaf index is #P-hard in all
the TG domains we have considered. O

TGs with Costs

An important assumption in the work presented above is that
transformation can be carried out at no cost. In many real-
istic scenarios, this is not the case. For example, suppose
we wish to derive a resourag from base resource?, and

that we have two ways of achieving this (i.e., two possible
derivations); the first involves the use of a fast, powerful,
but expensive computer; the second involves a slower but
cheaper computer. The tradeoffs involved in this kind of set-
ting are ubiquitous in real-world problem-solving.

We model TGs with costs in the following way. Every
transformatiort has cost(t) € R*. Given a coalitiorC and
aresource, we denote by(C, r) the minimum cost needed
to obtainr from R, which is the sum of transformation costs
in the minimal sequence of transformations fr@xtor. If
r cannot be obtained frofRc, we seh(C, r) = co. The goal
resource g has the value(ry) € R*. We are now ready to
define TG with costs.

Definition 11. CTG: A TG with costs (CTG) with the goal
resource § and the cost function €D — R is the coali-

8(Bachrach and Rosenschein 2008) considers a related domain tional game where the value of a coalition C is the value of

called Coalitional Skill Games, and also uses #SC to show that
computing the Banzhaf index in that domain is #P-complete.

the goal resourceg minus the minimum cost needed to ob-
tain rg from Re—if this latter difference is positive, arfil



otherwise. Thus,(€) = max(0, v(rg) — h(C, rg)).

We now present the algorithm to calculate the coalitional
value of a coalition in a CTG. In our algorithm, we define

for every resource € R a vertex in hyper-graphj,. Then

we identify with every transformation= ({ry, ..

an

Lnhr)

edge of the hyper-gragh= ({V,, ...,V }, V).

Algorithm 1 Compute Coalitional Value

1

T e

B e
o g R

17:
18:
19:
20:
21:
22:
23:
24.
25:

RPOOONORWDN

: procedure CoMPUTE-COALITIONAL -

VALUE(R,C,rg,Dc) > Risthe set of all the resources,

C is the coalition is the target resourc®c is the set
of all the transformations th& has
: forall r € Rc do
AV) <0
end for
forall r € R\ Rc do
A(Vp) « o0
end for
forall r € Rdo
S(vr) < 0
end for
T « D¢ > T initially contains all the
transformations that the coalitidhhas
while T # @ do
t = <{r1, ..
CosT(t).first)
tc « ToTAL-CosST(t).first
S« ToTAL-CosT(t).second
if tc == oo then > All the remaining
transformations are unreachable fr&x
return max(0, v(rg) — A(V,))
else iftc < A(v) then
A(Vp) «—tc
S(vi) < S
end if
T—T\{t}
end while
return max(0, V(rg) — A(w,))
end procedure

> Initialization

.,n}r) «— argmin.(TOTAL-

26:

27:

28:
29:
30:
31:
32:
33:

34

procedure TOTAL-COST(t = ({r1,...,n},r)) >
calculates the transformations in the path frBmtorr,
and sums their costs to get the total cost of this path

if S1_, A(Vy,) == oo then

return pair(co, 0)

end if

S U!:ls(vri) U {t}

tc — Zti €s c(ti)

return pair(tc, S
: end procedure

Theorem 5. Algorithm 1 calculates the coalitional value of

a coalition Cina CTG.
We first state the following lemma:

Lemma 1. During the execution of Algorithm 1, for every

ve
V/

rtex v, if A\(vy) < oo then v;) containssomepath from
={v |1 € Rc} to v, and (v ) is equal to its length.

Proof. The proof is by easy induction on the order of re-
moval of transformations fror. O

Proof of Theorem 5We must prove that in the end of the
execution of the algorithm)(v;,) is equal to the minimum
cost of obtainingry from Rc. We prove by induction on
the order of removal of the transformations from that
whent = (ry,...,r,r) is removed fromT, A(v) is equal

to the minimum distance frow’ = {v,, | ' € Rc} to

v;, and S(v;) contains the corresponding shortest path (or
S(vy) = 0 if AM(wy) = o0). The base case of the induction:
before removing any transformation fromA(v,) = 0, and
S(v;) = 0 for all the verticess, € V’. Now let us assume
that the claim is correct for all the transformations removed
before the transformatian= ({ry,...,r},r), andt was re-
moved in ther-th stage. If\(v;) was not updated biythen in
that stage\(v;) < oo, and so it was updated in earlier stage
by another transformation, and by the inductive assumption,
A(vy) is equal to the minimum distance fro¥f{ to v;, and
S(v;) contains the corresponding shortest path. Now sup-
pose that\(v;) was updated by. It means that for all,

1 <i <1l A(v,) < oo (in the stage of removal dj, and

so by the inductive assumption for @ll1 < i < I: A(v,)

is equal to the minimum distance froi to v;,, andS(v,)
contains the appropriate shortest path. Suppose for the con-
tradiction that the shortest patfi = {t{,...,t,} C Dc
from V' to v; does not pass throudh{v;,) andt. Denote by

X the verticess which haveA(v) < oo in stage of removal

of t (stagen). Assume first that all the transformations in
T’ contain only vertices fronX. For each, 1 <i < I, if

T’ passes through vertex, then the sub-path &F to v, is
minimal, and then by the inductive assumption it is of length
AVi). SinceY i cftf) < AW, th = ({rf,...,14}.1)
should have been chosen in line 13 of Algorithm 1 before
t, and this is a contradiction to the fact thelv,) was up-
dated byt. Now suppose that there are transformations in
T’ that contain vertices outside Lett) = ({r},...rp},r")

be the first transformation i’ with v,» ¢ X. Since in
the firstn staged{ was not chosen in line 13 of Algorithm

1 (because in the stage A\(v,») = o), it follows that

Y1 Ct)) > Yoy e (t) = A(w). On the other hand,
ij:1 c(t) > 2}21 c(t'). And so, combining these two in-
equalities, we get th@{ll c(t) > A(w), and this is a con-
tradiction to the fact that’ is shorter path tha8(v,). O

Proposition 1. The DUMMY problem is co-NP-Complete
for CTG. SH is co-NP-Hard, and BZ is #P-Hard for CTG.

Proof. DUMMY € co-NP for CTG, since given a coalition
C and a playeg;, due to Theorem 5, it is easy to test whether
v(C) < v(CU{a}) (i.e., thaty; is not a dummy player). Also
UTG is a private case of CTG (just set for all the transforma-
tionst, ¢(t) = 0, and set/(rg) = 1). And so all the hardness
results for UTG hold for CTG as well. O

Related Work and Conclusions

Our work in the present paper is somewhat reminiscent of
previous work on multi-agent supply chains. Although some



attention was given to auctions in such domains, (for exam-
ple for forming supply chains (Babaioff and Walsh 2005))
or procurement tasks (Chen, Roundy, and R. Zhang 2005),
previous work devoted less attention to coalitional aspects.
One exception is (Ostrovsky 2008), which studies stability
in supply chains. However, this latter paper mostly consid-
ers pair coalitions and situations without side payments.

With respect to work on resource bounds in multi-agent
systems, previous research considered weighted threshold
games, in which a coalition wins if the sum of their com-
bined resources exceeds a stated threshold (Deng and Pa-
padimitriou 1994; Elkind et al. 2007). In one sense such
games are simpler in structure than TGs, in that they con-
sider a single resource; but in another sense they are richer,
in that different quantities of resource are considered. Coali-
tional Resource Games (CRGS) are also related to the work
of the present paper (Wooldridge and Dunne 2006). In
CRGs, players seek to achieve individual goals, and cooper-
ate in order to pool scarce resources in order to achieve mu-
tually satisfying sets of goals. The main differences are that
in CRGs, players haviedividualgoals to achieve, which re-
quire different quantities of resources; in addition, CRGs do
not consider anything like transformation chains to achieve
goals. It would be interesting to combine the models pre-
sented in this paper with those of (Wooldridge and Dunne
2006).

TGs can also be considered as descended from Coalitional
Skill Games (Bachrach and Rosenschein 2008); the main
difference is that this previous work does not consider trans-
formation chains.

Future work might consider variations where richer mod-
els are permitted (e.g., consumabkenon-consumable re-
sources). One interesting direction is taken in (Chakrabarti
et al. 2003), which presents the notion of resource inter-
faces. The idea is to model processes that have different re-
source consumption profiles at different stages of execution;
one might then ask, for example, whether two different pro-
cesses can be executed in parallel without exceeding some
stated resource bound. Similar ideas might be applied to the
model in the present paper.
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