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Abstract

We introduceTransformation Games(TGs), a form of coali-
tional game in which players are endowed with sets of initial
resources, and have capabilities allowing them to derive cer-
tain output resources, given certain input resources. The aim
of a transformation game is to generate a particular target re-
source; players achieve this by forming a coalition capable of
performing a sequence of transformations from its combined
set of initial resources to the target resource. Transforma-
tion games can model a number of natural settings, including,
for example, cooperative proof systems, where a collection of
agents have different expertise and different problem solving
capabilities, and work together to try to derive some target
theorem. After presenting the basic model of transformation
games, and discussing their interpretation, we consider vari-
ous possible restrictions on the transformation chain, result-
ing in different coalitional games. After presenting the basic
model, we consider the computational complexity of several
problems in TGs, such as testing whether a coalition wins,
checking if a player is a dummy or a veto player, computing
the core of the game, computing power indices, and checking
the effects of possible restrictions on the coalition. Finally,
we consider extensions to the model in which transformations
have associated costs.

Introduction
Many computational aspects of game theory have been stud-
ied in recent years, and game theoretic techniques have been
applied in computational domains such as electronic com-
merce, auctions, voting, supply chains and resource allo-
cation (Shoham and Leyton-Brown 2008). Many such do-
mains are inherentlycooperative, in the sense that players
are able to form binding agreements that enable them to
work together. Cooperative game theory provides a math-
ematical framework through which to study interactions
in such domains, and considers questions such as which
coalitions will form, and how the benefits of cooperation
should be distributed. These notions are formalized asso-
lution conceptssuch as the core, the Shapley value, and
the nucleolus (Osborne and Rubinstein 1994). An impor-
tant question is the extent to which these solutions can
be effectively computed; thus, solutions from cooperative
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game theory have also been studied by computer scien-
tists (Conitzer and Sandholm 2003; Elkind et al. 2007;
Bachrach and Rosenschein 2008).

In this paper, we consider a new model of cooperative
activity among self-interested players. In aTransformation
Game(TG), players must cooperate to generate a certain tar-
get resource.1 In order to generate the resource, each player
is endowed with a certain set of initial resources, and in ad-
dition, each player is assumed to be capable oftransforma-
tions, allowing it to generate a certain resource, given the
availability of a certain input set of resources required for
the transformation. Coalitions may thus formtransforma-
tion chainsto generate various resources. A coalition of
players is successful if it manages to form a transformation
chain that eventually generates the target resource. Form-
ing such chains can be complicated, as there are limitations
on the structure of the chain. One common example is time
restrictions, in the form of deadlines. Even when there is
no deadline, short chains are typically preferred, since we
might expect that the more transformations a chain has, the
higher the probability of some transformation failing.

In this work, we model various restrictions on these
chains, and consider various game theoretic notions and
the complexity of computing them under these different
restrictions. We consider three types of domains: unre-
stricted domains, where there is no restriction on the chain;
makespan domains, where each transformation requires a
certain amount of time and the coalition must generate the
target resource before a certain deadline; and limited trans-
formation domains, where the coalition must generate the
target resource without performing more than a certain num-
ber of transformations. We also consider two types of trans-
formations:simpletransformations, where a transformation
simply allows building an output resource fromone input
resource, andcomplextransformations, where a transforma-
tion may require asetof input resources to generate a certain
output resource.

Transformation games can be understood as a strategic,

1We use the terms “product” and “resource” interchangeably.
Both of these simply refer to items in the set of all items. We usu-
ally refer to an item as a product if it is generated as a result of
some transformation, and a resource if it is the input to a transfor-
mation. Of course, a product of one transformation can be one of
the resources used to derive a subsequent product.



game-theoretic formulation ofproof systems. In a for-
mal proof system, the goal is to derive some logical state-
ment from some logical premises through the application
of logical inference rules. When modelled as a trans-
formation game, premises and proof rules are distributed
across a collection of agents, and proof becomes a co-
operative process, with different agents contributing their
domain expertise (premises) and capabilities (proof rules).
Game theoretic solution concepts such as the Banzhaf in-
dex provide a measure of the relevant significance of agents
(and hence premises and proof rules) in the proof process.
Viewed in this way, transformation games provide a for-
mal foundation for cooperative theorem proving systems
such as those described in (Denzinger and Kronenburg 1996;
Fisher and Wooldridge 1997), as well as cooperative prob-
lem solving systems in general (Lenat 1975).

We also believe that Transformation Games can provide a
first step towards eventually providing a cooperative game-
theoretic treatment of supply chains. We emphasize, how-
ever, that this is not the aim of the present paper: TGs
do not capture many of the aspects examined by supply
chain theory, such as quantities of resources and products,
and consumption of resources during transformations. This
work, however, does shed some light on the behavior of self-
interested agents in related domains. Also, the simplicity
of this framework makes it possible to compute some so-
lutions in polynomial time. Despite these positive results,
we show that even this simplified domain is combinatorially
rich enough that some interesting problems are computation-
ally hard.

The model is also related to work in planning within
artificial intelligence (Ghallab, Nau, and Traverso 2004;
Ephrati, Pollack, and Rosenschein 1995; Ephrati and Rosen-
schein 1997). In planning, the goal is to obtain a plan of
action that will transform some initial world state into a tar-
get world state. The components in a plan are actions from
some defined action repertoire. The main differences with
our work are that, in classical planning, there is no multi-
agent strategic component: typically there is assumed to be
a single goal to be achieved, even if there are multiple actors.
Thus the questions to be addressed are rather different in our
domain, and more closely related to solutions from cooper-
ative game theory. One paper that is closer to ours in spirit,
and studies questions of self-interested actions in planning
domains, is (Engel et al. 2009). However, that paper stud-
ies quite a different setting, and the game theoretic analysis
focuses on different solution concepts.

The remainder of the paper is structured as follows. In
Sections and we present basic definitions and formally de-
fine the TG model. Section presents the main algorithms
and complexity results of the paper. We conclude in Section
.

Preliminaries
We first very briefly recall the basic game theoretic concepts
that are later applied in the context of TGs (see, e.g., (Os-
borne and Rubinstein 1994) for a detailed introduction). A
transferable utility coalitional gameis composed of a setI

of n players and a characteristic function mapping any sub-
set (coalition) of the players to a real valuev : 2I → R,
indicating the total utility these players can obtain together.
The coalitionI of all the players is called thegrand coali-
tion. Often such games areincreasing, i.e., for all coalitions
C′ ⊆ C we havev(C′) ≤ v(C). In simplecoalitional games,
v only gets values of0 or 1 (i.e., v : 2I → {0, 1}), and in
this case we sayC ⊆ I wins if v(C) = 1 and losesother-
wise. We say playeri is acritical in a winning coalitionC if
the removal ofi from that coalition would make it a losing
coalition: v(C) = 1 andv(C \ {i}) = 0.

The characteristic function defines the value a coalition
can obtain, but does not indicate how to distribute these
gains to the players within the coalition. Animputation
(p1, . . . , pn) is a division of the gains of the grand coalition
among all players, wherepi ∈ R, such that

∑n
i=1 pi = v(I).

We callpi the payoff of playerai , and denote the payoff of a
coalitionC asp(C) =

∑
i∈{i|ai∈C} pi .

Game theory offers several solution concepts, which de-
fine the imputations that are likely to occur in a coali-
tional game. A minimal requirement of an imputation is
individual-rationality(IR): for every playerai ∈ C, we have
pi ≥ v({ai}). Extending IR to coalitions, we say a coali-
tion B blocksthe imputation(p1, . . . , pn) if p(B) < v(B). If
a blocked imputation is chosen, the grand coalition is said
to be unstable, since the blocking coalition can do better
by working without the other players. The most promi-
nent solution concept focusing on such stability is the core:
the core of a coalitional game is the set of all imputations
(p1, . . . , pn) that are not blocked by any coalition, so for any
coalitionC we havep(C) ≥ v(C).

In general, the core can contain multiple imputations
(raising the question of which one should be implemented),
and can also be empty. Another cooperative game theory
solution, which defines aunique imputation, is the Shap-
ley value, which focuses onfairnessrather than on stabil-
ity. The Shapley value of a player depends on his marginal
contribution over all possible coalition permutations. We
denote byπ a permutation (ordering) of the players, so
π : {1, . . . , n} → {1, . . . , n} andπ is reversible, and by
Π the set of all possible such permutations. Denote bySπ(i)
the predecessors ofi in π, so Sπ(i) = {j | π(j) < π(i)}.
The Shapley value is given by the imputationsh(v) =
(sh1(v), . . . , shn(v)) where

shi(v) =
1
n!

∑

π∈Π

[v(Sπ(i) ∪ {i})− v(Sπ(i))].

An important application of the Shapley value is that of
power indices, which try to measure a player’s ability to
change the outcome of a game, and are used for exam-
ple to measure political power. Another game theoretic
concept that is also used to measure power is the Banzhaf
power index. The Banzhaf index depends on the number
of coalitions in which a player is critical, out of all the
possible coalitions. The Banzhaf power index is given by
β(v) = (β1(v), . . . , βn(v)) where

βi(v) =
1

2n−1

∑

S⊆I |ai∈S

[v(S)− v(S\ {i})].



Transformation Games
Transformation games involve a set of players,I =
{a1, . . . , an}, a set of resourcesR = {r1, . . . , rk}, and a cer-
tain goal resourcerg ∈ R. In these domains, each playerai
is endowed with a set of resourcesRi ⊆ R. Players have ca-
pabilities that allow them to generate a target resource when
they have certain input resources. We model these abilities
via transformations. A transformation is a pair〈B, r〉 where
B is a subsetB⊆ R, indicating the resources required for the
transformation, andr ∈ R is the resource generated by the
transformation. The set of all such possible transformations
(overR) is D. The capabilities of each playerai are given by
a setDi ⊆ D. We say a transformationd = 〈B, r〉 is simple
if |B| = 1 (i.e., it generates a target resource given asingle
input resource), andcomplexif |B| > 1. Three caveats are
worth highlighting:

• First, our model of TGs hasno notion of resourcequan-
tity. For example, the TG framework cannot explicitly
express constraints such as 4 nails and 5 pieces of wood
are required to build a table.

• Second, we do not model resourceconsumption: thus
when a player generates a resource from base resources,
the player ends up withboth the base resourcesand the
generated resource. This may at first sight seem a strange
modelling choice, but it is very natural in many settings.
For example, consider that derivations as corresponding
to logical proofs. In classical logic proofs, when we de-
rive a lemmaϕ from premises∆, we do not “consume”
∆: bothϕ and premises∆ that were used to derive it can
be used as often as required in the subsequent proof.2 We
expand on the interpretation of transformation games as
cooperative proofs in Section .

• Third, nocostis associated with a transformation, so per-
forming a transformation does not reduce the utility ob-
tained by the coalition, and players do not incur costs for
performing a transformation. (In Section , we drop this
assumption, and present a model which allows for such
costs.)

Formally, then, atransformation game, Γ is a structure

Γ = 〈I , R, R1, . . . , Rn, D1, . . . , Dn, rg〉
where:

• I is a set of players;

• R is a set of resources;

• for eachai ∈ I , Ri is the set of resources with which that
playeri is initially endowed;

• for eachai ∈ I , Di ⊆ D is the set of transformations that
playeri can carry out; and

• rg ∈ R is a resource representing the goal of the game.

We sometimes consider transformations that require a cer-
tain amount of time. In such settings, letai be a player with
capabilityd ∈ Di . We denote the time playerai needs in
order to perform the transformation asti(d) ∈ N.

2In linear logic, this is of course not the case (Girard 1987).

Transformations
Given a transformation game, we can define the set of re-
sources a coalitionC ⊆ I can derive. We say a coalitionC
is endowed with a resourcer, and denote this ashas(C, r),
if there exists a playerai ∈ C such thatr ∈ Ri . We de-
note the set of resources a coalition is endowed with as
RC = {r ∈ R | has(C, r)}.

We now define an infix relation⇒ ⊆ 2I × R, with the
intended interpretation thatC ⇒ r means that coalitionC
can produce resourcer. We inductively define the relation
⇒ as follows. We haveC⇒ r iff either:
• has(C, r) (i.e., the coalitionC is directly endowed with

resourcer); or else

• for some{rb1 , rb2 , . . . , rbm} ⊆ R we have

C⇒ rb1 , C⇒ rb2 , . . . , C⇒ rbm

and for some playerai ∈ C we have

〈{rb1 , rb2 , . . . , rbm}, r〉 ∈ Di .

Unrestricted TGs
We can now define the unrestricted form of TGs.
Definition 1. Unrestricted-TG: An unrestricted TG (UTG)
with the goal resource rg is the coalitional game where a
coalition C wins if it can derive rg and loses otherwise:

v(C) =
{

1 if C ⇒ rg

0 otherwise

Derivation Restricted TGs
We now take into account the total number of transforma-
tions used to generate resources, and the time required to
generate a resource. We denote the fact that a coalition
C can generate a resourcer, using at mostk transforma-
tions, byC ⇒k r. Consider a sequence of resource subsets
S = 〈R1, R2, . . . Rk〉, such that eachRi contains one addi-
tional resource over the previousRi−1 (soRi = Ri−1∪{r ′i}).
We sayC allows the sequenceS if for any index i, C can
generater ′i (the additional item for the next resource subset
in the sequence) given base resources inRi−1 (so C is ca-
pable of a transformationd = 〈A, r ′i 〉, whereA ⊆ Ri−1). A
sequenceS= 〈R1, R2, . . . Rk〉 (with k subsets) thatC allows
is called ak− 1-transformation sequence for resource r by
coalition C if r ∈ Rk and the first subset in the sequence
is the subset of resources the coalitionC is endowed with,
R1 = RC (sinceC requiresk− 1 transformations to obtainr
this way). If there exists such a sequence, we denote this by
C ⇒k r. We denote the minimal number of transformations
thatC needs to deriver asd(C, r) = min{b | C ⇒b r}, and
if C cannot deriver we denoted(C, r) = ∞.

We now define derivation restricted TGs:
Definition 2. DTG: A transformation restricted TG (DTG)
with the goal resource rg and with the transformation bound
k is the coalitional game where a coalition C wins if it can
derive rg using at mostk transformationsand loses other-
wise:

v(C) =
{

1 if C ⇒ rg and d(C, rg) ≤ k
0 otherwise.



Makespan Limited TGs
In much the same way, we consider the makespan domain,
where each transformation requires a certain amount of time.
The main difference between the makespan domain and the
DTG domain is that transformations may be donesimulta-
neously.3 We denote the fact that a coalitionC can generate
a resourcer in time of at mostt by C ⇒t r. We define the
notion recursively. If a coalition is endowed with a resource,
it can generate this resource instantaneously (with time limit
of 0), i.e., if has(C, r) thenC ⇒0 r. Now consider a coali-
tion C such thatC ⇒t1 rb1 , C ⇒t2 rb2 , . . . , C ⇒tm rbm,
and playerai ∈ C who is capable of the transformation
d = 〈{rb1 , rb2 , . . . , rbm}, r〉 (sod ∈ Di), requiring a transfor-
mation timet, so ti(d) = t. Given a coalitionC, we denote
the time in which a coalition can perform a transformation
as tC(d) = minai∈C ti(d), the minimal time in which the
transformation can be performed, across all players in the
coalition. We denote the time in which the coalition can ob-
tainall of the base resourcesrb1 , . . . , rbm ass = max ti . The
final transformation (which generatesr) requires a time oft,
soC ⇒s+t r. Again, different ways of obtaining the target
resource result in different time bounds, and we consider the
optimal way of obtaining the target resource (theminimal
time a coalitionC requires to deriver). If C ⇒ r we denote
the minimal transformation time thatC needs to deriver as
t(C, r) = min{b | C ⇒b r}, and if C cannot deriver we
denotet(C, r) = ∞.

Similarly to DTGs, we define makespan (time limited)
TGs:

Definition 3. TTG: A makespan/time limited TG (TTG) with
the goal resource rg and with time limit t is the coalitional
game where a coalition C wins if it can derive rg with time
of at mostt and loses otherwise:

v(C) =
{

1 if C ⇒ rg and t(C, rg) ≤ t
0 otherwise.

Transformation Games and Logical Proofs
Structurally, the definition of transformation games that we
presented above is very much like the notion of logical proof
(see, e.g., (Genesereth and Nilsson 1987, p.48)). In a proof
system in formal logic, we have a set of formulae of some
logic, known as thepremises, and a collection ofinference
rules, the role of which is to allow us to derive new formulae
from existing formulae. Formally, ifL is the set of formulae
of the logic, then an inference ruleρ can be understood as a
relationρ ⊆ 2L × L. Given a set of premises∆ ⊆ L and a
set of inference rulesρ1 . . . , ρk, aproof is a finite sequence
of formulaeϕ1, . . . , ϕl , such that for alli, 1 ≤ i ≤ l, either:

1. ϕi ∈ ∆ (i.e.,ϕi is a premise); or else

2. there exists some subset∆′ ⊆ {ϕ1, . . . , ϕi−1} and some
ρj ∈ {ρ1, . . . , ρk} such that(∆′, ϕi) ∈ ρj (i.e., ϕi can be
derived from the formulae precedingϕi by some inference
rule).
3For example, if it takes 5 hours to convert oil into gasoline and

4 hours to convert oil into plastic, if we have oil we can obtain both
gasoline and plastic in 5 hours, by performing the transformations
in parallel.

Typical notation is that∆ `ρ1,...,ρk ϕ means thatϕ can be
derived from premises∆ using rulesρ1, . . . , ρk. Such proofs
can be modeled in our framework as follows. ResourcesR
are logical formulaeL, and the initial allocation of resources
R1, . . . , Rn equates to the premises; capabilitiesD1, . . . , Dn
equate to inference rules. Notice that the assumption that re-
sources are not “consumed” during the transformation pro-
cess is very natural when considered in this setting: in clas-
sical logic proofs, premises and lemmas can be reused as
often as required (although this is not the case in “resource
aware” logics such as linear logic (Girard 1987)).

Clearly the relationship between transformation games
and proofs is very natural, and very close: such formal
proof systems can be directly modeled within our frame-
work. There are two main differences, however, as follows.

The first is that in proof systems, inference rules are
usually given a succinct specification, as a “pattern” to be
matched against premises. The classic proof rule modus po-
nens, for example, is usually specified as the following pat-
tern:

ϕ; ϕ → ψ

ψ

which says that if we have derivedϕ, and we have derived
thatϕ → ψ, then we can deriveψ. Here,ϕ andψ are vari-
ables, which can be instantiated with any formula.

The second is that we take astrategic view: a proof
modeled within our system is obtained through a coop-
erative process. In this sense, transformation games can
be understood as a formulation both of cooperative the-
orem proving systems (Denzinger and Kronenburg 1996;
Fisher and Wooldridge 1997), as well as cooperative prob-
lem solving systems in general (Lenat 1975). In such sys-
tems, agents have different areas of expertise (= resources)
as well as different capabilities (= transformations). Game
theoretic concepts such as the Banzhaf index provide a mea-
sure, for example, of how important different premises and
inference rules are with respect to being able to prove a the-
orem.

Problems and Algorithms
Given a TGΓ = 〈I , R, R1, . . . , Rn, D1, . . . , Dn, rg〉, the fol-
lowing are several natural game theoretic problems regard-
ing the game:

Definition 4. COALITION-VALUE (CV): Given a coalition
C ⊆ I, compute vΓ(C) (i.e., test whether a coalition is suc-
cessful or not).

Definition 5. VETO (VET): Given a player ai , check if it is a
veto player, so for any winning coalition C, we have ai ∈ C.

Definition 6. DUMMY (DUM): Given a player ai , check if
it is a dummy player, so for any coalition C, we have vΓ(C∪
{ai}) = vΓ(C).

Definition 7. CORE: Compute the set of payoff vectors that
are in the core, and return a representation of all payoff vec-
tors in it.

Definition 8. SHAPLEY (SH): Compute ai ’s Shapley value
shi(vΓ).



Definition 9. BANZHAF (BZ): Compute ai ’s Banzhaf power
indexβi(vΓ).

We now summarize the results of the present paper, and
prove them in the remainder of the paper. We provide poly-
nomial algorithms for testing whether a coalition wins or
loses (CV) for UTGs, DTGs, and TTGs with simple trans-
formations, and for UTGs and TTGs with complex trans-
formations, but show that the problem is NP-hard for DTGs
with complex transformations. We provide polynomial al-
gorithms for testing for veto players and computing the core
in all domains where CV is computable in polynomial time,
but show the problem is co-NP-hard in DTGs with complex
transformations. We show that testing for dummy players
and computing the Shapley value are co-NP-hard in all the
TG domains defined, and provide a stronger result for the
Banzhaf power index, showing that it is #P-hard in all these
domains.4 The following table summarizes our results re-
garding TGs withsimpletransformations.

UTG DTG TTG
CV P P (NPH) P

VETO P P (co-NPH) P
DUMMY co-NPC co-NPC (co-NPH) co-NPC

CORE P P (co-NPH) P
SH co-NPH co-NPH co-NPH
BZ #P-Hard #P-Hard #P-Hard

Table 1: Complexity of TG problems. If the results differ for
simple and complex transformations, the results for complex trans-
formations are given in parentheses.
(Key: P = polynomial algorithm; co-NPC = co-NP-complete; co-
NPH = co-NP-hard.)

Theorem 1. CV is in P, for all the following types of TGs
with simple transformations: UTG, DTG, TTG. CV is in P
for UTGs and TTGs with complex transformations.

Proof. First consider UTG. We first hold the setS of re-
sources with whichC is endowed,S = {r | has(C, r)}.
We denote the set of transformations of the players inC as
DC = ∪ai∈CDi . We say that a set of resourcesS matches a
transformationd = 〈B, r〉 ∈ D if B ⊆ S. If S matchesd
then using the resources inS the coalitionC can also pro-
ducer through the transformationd. We consider a basic
step of iterating through all the transformations inD. When
we find a transformationd = 〈B, r〉 thatSmatches, we add
r to S. A test to see whether a transformationd matchesS
can be done in time of at most|R|2 (whereR is the set of all
resources), so the basic step of passing through all the trans-
formations takes at most|DC| · |R|2 time. If after performing
a basic step no transformation inDC matchesS, Sholds all

4The complexity class #P expresses the hardness of problems
that “count the number of solutions”. Informally NP deals with
whether a solution to a combinatorial problem exists, while #P
deals with calculating thenumberof such solutions. Since the abil-
ity to count solutions generalizes the ability to check whether one
exists, we usually regard #P-hardness as a more negative result than
NP-hardness.

the resources thatC can generate, and we stop performing
basic steps. IfS has changed during a basic step, at least
one resource is added to it. Thus, we perform at most|R|
basic steps to compute the set of all resourcesC can gener-
ate, soScan be computed in polynomial time. We can then
check whetherS containsrg. We note that the suggested
algorithm works for simple as well as complex transforma-
tions. Now consider TTGs with simple transformations. We
build a directed graph representing the possible transforma-
tions as follows. For each resourcer the graph has a ver-
tex vr , and for each possible transformationd = 〈rx, ry〉 the
graph has an edgeed from vrx to vry. Given a coalitionC
we considerGC, the subgraph induced byC. GC = 〈V, EC〉
contains only the edges of the transformations available to
the coalitionC, so EC = {〈vrx, vry

〉 | 〈rx, ry〉 ∈ DC}.
The graphGC is weighted, and the weight of each edge
e = 〈rx, ry〉 is w(e) = minai∈C ti(〈rx, ry〉), the minimal time
to derivery from rx across all players in the coalition. We
denote the weight of the minimal path fromra to rg in GC
aswC(ra, rg). The coalitionC is endowed with all the re-
sources inRC and can generate all of them instantly. We
note that the minimal time in which a coalitionC can gen-
eraterg is minra∈RC wC(ra, rg). For each resourcera ∈ RC,
we can computewC(ra, rg) in polynomial time (using any
shortest path algorithm, such as Dijkstra’s algorithm), so we
can compute in polynomial time the minimal time in which
C can generaterg, and test whether this time exceeds the
required deadline or not.

We note that for simple transformations, we can simulate
a DTG domain as a TTG domain, by simply stating that each
transformation requires 1 time unit (and setting the threshold
time to be the threshold number of transformations5).

Finally, we show how to adapt the algorithm used for
UTGs (with either simple or complex transformations) to be
used for TTGs with complex transformations. For the TTG
CV algorithm for a coalitionC, for each resourcer we main-
tainm(r), a bound from above on the minimal time required
to producer. All the m(r) of resources endowed by some
player in the coalitionC are initialized to0, and the rest are
initialized to∞. Our basic step remains iterating through
all the transformations inD. When we find a transforma-
tion d = 〈B, r〉 which Smatches, where the transformation
requirest(d), we compute the time in which the transforma-
tion can be completed,c(d) = maxb∈Bm(b) + tC(d) (if S
does not match a transformationd, we denotec(d) = ∞).
During each basic step, we compute the possible comple-
tion times for all the matching transformations, and apply
the smallest one,argmind∈Dc(d). To apply a transformation
d = 〈B, r〉, we simply addr to S, and updatem(r) to bec(d).
During each basic step we only applyonetransformation (al-
though we scan all the possible transformations). A simple
induction shows that after each basic step, for any resource
r such thatm(r) 6= ∞ the valuem(r) is indeed the minimal
time required to generater. Again, the algorithm ends if no
transformations were applied during a basic step. As before,

5When we allow complex transformations, this is no longer
possible, since if a certain transformation requires several base re-
sources, the shortest time to produce each of them may be different.



a basic step requires time of|DC| · |R|2 time, and we perform
at most|R| basic steps, so the algorithm requires polynomial
time. We can then check whetherScontainsrg, and whether
m(rg) is smaller than the required time threshold.

We immediately obtain the following:

Corollary 1. VETO is in P, for all the following types of
TGs with simple transformations: UTG, DTG, TTG, and for
UTGs and TTGs with complex transformations.

Proof. A veto playerai is present in all winning coalitions:
TGs are trivially seen to be increasing, so simply check
whetherv(I−ai ) = 0.

Now consider the problem of computing the core in TGs
with simple transformations. In simple (0,1-valued) games,
a well-known folk theorem tells us that the core of a game
is non-empty iff the game has a veto player. Thus, in sim-
ple games, the core can be represented as a list of the veto
players in the game. This gives the following:

Corollary 2. CORE is in P, for all the following types of
TGs with simple transformations: UTG, DTG, TTG, and for
UTGs and TTGs with complex transformations.

We now show that testing whether a player is a dummy in
TGs is co-NP-complete.

Theorem 2. DUMMY is co-NP-complete, for all the follow-
ing types of TGs with simple transformations: UTGs, DTGs,
TTGs, and for UTGs and TTGs with complex transforma-
tions. For DTGs with complex transformations, DUMMY is
co-NP-hard.

Proof. Due to Theorem 1, we can verify in polynomial
time whether a playerai is beneficial toC by testing if
v(C ∪ {ai}) − v(C) > 0. Thus DUMMY is in co-NP for
UTGs, DTGs, TTGs with simple transformations, and for
UTGs and TTGs with complex transformations. We show
that DUMMY is co-NP-hard by reducing an instance of SAT
to testing whether a player in a UTG with simple transforma-
tions is not a dummy (TG-NON-DUMMY). Showing that
DUMMY is co-NP-hard in UTGs is enough to show it is
also co-NP-hard for DTGs and TTGs, since it is possible
to set the threshold (of either the maximal allowed trans-
formations or the maximal allowed time) so high that the
TG is effectively unrestricted. Hardness results also apply
to complex transformations as well, since the restricted case
of simple transformations is hard. Let the SAT instance be
ϕ = c1 ∧ c2 ∧ · · · ∧ cm over propositionsx1, . . . , xn, where
ci = l i1 ∨ · · · ∨ l ik, where each suchl j is a positive or neg-
ative literal, eitherxk or ¬xk for some propositionxk. The
TG-NON-DUMMY query is regarding the playeray. For
each literal (eitherxi or ¬xi) we construct a player (axi and
a¬xi ). These players are called the literal players. The gen-
erated TG game has a resourcery, and onlyay is endowed
with that resource. The game also has the resourcerz, with
which all the literal players are endowed. For each proposi-
tion xi we also have a resourcerxi . For each clausecj in the
formulaϕ we have a resourcercj . The goal resource is the
resourcerg. For each positive literalxi we have the transfor-
mationdxi = 〈rz, rxi 〉. For each negative literal we have the

transformationd¬xi = 〈rxi , rg〉. For each clausecj we have
a transformationdcj =

〈
rcj , rcj+1

〉
, where for the last clause

cm we have a transformationdcm = 〈rcm, rg〉. Playeray is
capable of a single transformationd0 = 〈ry, rc1〉. The player
axi is capable of transformationdxi , and the playera¬xi is
capable of transformationd¬xi . If xi occurs in its positive
form in cj (i.e.,cj = xi ∨ l i2 ∨ · · · ) thenaxi is capable of the
transformationdcj . If xi occurs in its negative form incj (i.e.,
cj = ¬xi∨l i2∨· · · ) thena¬xi is capable of the transformation
dcj .

We identify an assignment with a coalition of players, and
identify a coalition of players with an assignment candidate
(which possibly contains both a positive and a negative as-
signment to a variable, or which possibly does not assign
anything to a variable). LetA be an assignment to the vari-
ables inϕ. We denote the coalition thatA represents as
CA = {axi | A(xi) = T} ∪ {a¬xi | A(xi) = F}. There
are only two resources with which players are endowed:ry
and rz. It is possible to generaterg either through a trans-
formation chain starting withrz, going throughrxi (for some
variablexi) and ending withrg, or through a transformation
chain starting withry, going throughrc1 , throughrc2 , and so
on, until rcm, and finally derivingrg from rcm (and there are
no other possible chains that generaterg).

We note that given a valid assignmentA, CA does not al-
low convertingrz to rg, since to do soCA needs to be able
to generaterxi from rz (for some variablexi) and needs to be
able to generaterg from rxi . However, the only player who
can generaterxi from rz is axi , and the only player who can
generaterg from rxi is a¬xi , andCA can never contain both
axi anda¬xi (for any xi) by the definition ofCA (asA is a
valid assignment). SupposeA is a satisfying assignment for
ϕ. Let cj be some clause inϕ. A satisfiesϕ, so it satisfies
cj through at least one variablexi . If xi occurs positively in
ϕ, A(xi) = T soaxi ∈ CA, and if xi occurs negatively inϕ,
A(xi) = F soa¬xi ∈ CA, so we have a playera ∈ C capable
of the transformationdcj . Thus,CA can convertrc1 to rc2 ,
can convertrc2 to rc3 , and so on. Thus, given the resource
rc1 , CA can generaterg. Playeray is endowed withry, and is
capable of generatingrc1 from ry, soCA ∪ {ay} is a winning
coalition. However,ay /∈ CA, andCA cannot generaterc1 .
Also, sinceA is a valid assignment,CA cannot generaterg
through a chain starting withrz, soCA is a losing coalition.
Thus,ay is not a dummy, asv(CA ∪ {ay})− v(CA) = 1.

On the other hand, supposeay is not a dummy, and is
beneficial to a coalitionC, so C is losing butC ∪ {ay} is
winning. SinceC is losing, it cannot contain bothaxi and
a¬xi (for anyxi), as this would allow it to generaterxi from
rz and to generaterg from rxi (andC would win withoutay).
We now consider the assignmentA: if C containsaxi we
set A(xi) = T, and if C containsa¬xi we setA(xi) = F
(if C contains neitheraxi nor a¬xi we can setA(xi) = T).
SinceC∪{ay} wins, and since it cannot generaterg through
a chain starting withrz, we know it generatesrg through
the chain starting withry and going through thercj ’s. Thus,
for any clausecj , C contains a player who is capable of the
transformationdcj =

〈
rcj , rcj+1

〉
. That player can only be

axi or a¬xi for some propositionxi . If that player isaxi ∈ C



thencj has the literalxj (in positive form) andA(xi) = T,
so A satisfiescj , and if that player isa¬xi ∈ C thencj has
the literal¬xj (negative form) andA(xi) = F, so againA
satisfiescj . ThusA satisfies all the clauses inϕ. Thusϕ is
satisfiable iffay is not a dummy.

We now show that when we allow complex transforma-
tions, even testing whether a coalition wins or loses becomes
an NP-Complete problem.

Theorem 3. For DTGs with complex transformations, CV
is NP-hard even for TGs with a single player, and VETO is
co-NP-hard.

Proof. We reduce VERTEX COVER to a DTG CV problem.
We are given a graphG = 〈V, E〉 with V = {v1, . . . , vn},
E = {e1, . . . , em} such thatei is from vi,a to vi,b and a tar-
get cover size ofk. We construct the following DTG. We
have a resourcert and goal resourcerg, a resourcerei for
each edgeei , and a resourcervi for each vertex. We have
a transformation fromrt to each vertex resourcervi . If ei is
from vi,a to vi,b we have two transformations: fromrvi,a to rei ,
and fromrvi,b to rei . We also have a complex transformation
from {re1 , . . . , rem} to rg. A single player is endowed with
rt, and has all the above transformations. The target maxi-
mal number of transformations for the DTG isk + m + 1.
Now, G = 〈V, E〉 has a vertex cover of sizek iff the player
wins in the game so defined.

We now consider the problems of computing power in-
dices for TGs. We show that computing either power index
is NP-hard, and give an even stronger result for the Banzhaf
power index, showing it is #P-hard to compute.

Corollary 3. Testing whether the Shapley value or Banzhaf
index of a player in TGs exceeds a certain threshold is co-
NP-hard for all the following types of TGs: UTG, DTG,
TTG, with simple or complex transformations.

Proof. Theorem 2 shows DUMMY is co-NP-hard in these
domains. However, the Shapley value or Banzhaf index of a
player can only be 0 if the player is a dummy player. Thus,
computing these indices in these domains (or the decision
problem of testing whether they are greater than some value)
is co-NP-hard.

We show a stronger result for the Banzhaf index, through
#SC.

Definition 10. #SET-COVER (#SC): We are given a collec-
tion C = {S1, . . . , Sn} of subsets. We denote∪Si∈CSi = S. A
set cover is a subset C′ ⊆ C such that∪Si∈C′ = S. We are
asked to compute the number of covers of S.

#SC is a #P-hard problem. Counting the number of vertex
covers, #VERTEX-COVER, is a restricted form of #SC.6

Theorem 4. Computing the Banzhaf index in UTGs, DTGs,
and TTGs (with simple or complex transformations) is #P-
hard.

6(Bachrach and Rosenschein 2008) considers a related domain
called Coalitional Skill Games, and also uses #SC to show that
computing the Banzhaf index in that domain is #P-complete.

Proof. We reduce a #SC instance to checking the Banzhaf
index in a UTG. Consider the #SC instance withC =
{S1, . . . , Sn}, so that∪Si∈CSi = S. Denote the items in
S as S = {t1, t2, . . . , tk}. Denote the items inSi as Si =
{t(Si ,1), t(Si ,2), . . . , t(Si ,ki)}. For each subsetSi of the #SC in-
stance, the reduced UTG has a playeraSi . For each item
ti ∈ S the UTG instance has a resourcerti . The reduced
instance also has a playerapow, the resourcesr0, rpow and
the goal resourcerg. For each itemti ∈ S there is a trans-
formation di =

〈{rti−1}, rti

〉
. Another transformation is

dpow = 〈{rtn}, rg〉, of which onlyapow is capable. All play-
ers are endowed with resourcer0. Each player is capable
of the transformation in her subset—for the subsetSi =
{ti1 , ti2 , . . . , tik}, the playerai is capable ofdi1 , di2 , . . . , dik.
The query regarding the power index is for playerapow. We
note that a coalitionC = {ai1 , ai2 , . . . , aik} is winning iff
it contains bothapow and players who are capable of all
d1, d2, . . . , dn. However, to be capable ofdi the coalition
must contain someaj such thatti ∈ Sj . Consider a win-
ning coalition C = {apow} ∪ {ai1 , ai2 , . . . , aik}, and de-
noteSC = {Si1 , Si2 , . . . , Sik}. A coalition C is winning iff
apow ∈ C andSC is a set cover ofS.

The Banzhaf index in the reduced game isq2n−1 , wheren is
the number of players andq is the number of winning coali-
tions that containapow that lose whenapow is removed from
the coalition. However, no coalition can win withoutapow,
so q is simply the number of all winning coalitions, which
is the number of set covers of the #SC instance. Thus we
reduced a #SC instance to computing the Banzhaf index in a
UTG with simple transformations. We can do the same with
DTGs and TTGs with a high enough threshold. Also, simple
transformations are a restricted case of complex transforma-
tions. Thus computing the Banzhaf index is #P-hard in all
the TG domains we have considered.

TGs with Costs
An important assumption in the work presented above is that
transformation can be carried out at no cost. In many real-
istic scenarios, this is not the case. For example, suppose
we wish to derive a resourcerg from base resourcesR, and
that we have two ways of achieving this (i.e., two possible
derivations); the first involves the use of a fast, powerful,
but expensive computer; the second involves a slower but
cheaper computer. The tradeoffs involved in this kind of set-
ting are ubiquitous in real-world problem-solving.

We model TGs with costs in the following way. Every
transformationt has costc(t) ∈ R+. Given a coalitionC and
a resourcer, we denote byh(C, r) the minimum cost needed
to obtainr from RC, which is the sum of transformation costs
in the minimal sequence of transformations fromRC to r. If
r cannot be obtained fromRC, we seth(C, r) = ∞. The goal
resourcerg has the valuev(rg) ∈ R+. We are now ready to
define TG with costs.

Definition 11. CTG: A TG with costs (CTG) with the goal
resource rg and the cost function c: D → R+ is the coali-
tional game where the value of a coalition C is the value of
the goal resource rg minus the minimum cost needed to ob-
tain rg from RC—if this latter difference is positive, and0



otherwise. Thus, v(C) = max(0, v(rg)− h(C, rg)).
We now present the algorithm to calculate the coalitional

value of a coalition in a CTG. In our algorithm, we define
for every resourcer ∈ R a vertex in hyper-graph,vr . Then
we identify with every transformationt = 〈{r1, . . . , r l}, r〉
an edge of the hyper-graphet = 〈{vr1 , . . . , vr l}, vr〉.

Algorithm 1 Compute Coalitional Value
1: procedure COMPUTE-COALITIONAL -

VALUE(R, C, rg, DC) . R is the set of all the resources,
C is the coalition,rg is the target resource,DC is the set
of all the transformations thatC has

2: for all r ∈ RC do . Initialization
3: λ(vr) ← 0
4: end for
5: for all r ∈ R\ RC do
6: λ(vr) ←∞
7: end for
8: for all r ∈ R do
9: S(vr) ← ∅

10: end for
11: T ← DC . T initially contains all the

transformations that the coalitionC has
12: while T 6= ∅ do
13: t = 〈{r1, . . . , r l}, r〉 ← argmint∈T(TOTAL-

COST(t).first)
14: tc← TOTAL-COST(t).first
15: S← TOTAL-COST(t).second
16: if tc == ∞ then . All the remaining

transformations are unreachable fromRC
17: return max(0, v(rg)− λ(vrg))
18: else iftc < λ(vr) then
19: λ(vr) ← tc
20: S(vr) ← S
21: end if
22: T ← T \ {t}
23: end while
24: return max(0, v(rg)− λ(vrg))
25: end procedure
26:
27: procedure TOTAL-COST(t = 〈{r1, . . . , r l}, r〉) .

calculates the transformations in the path fromRC to r,
and sums their costs to get the total cost of this path

28: if
∑l

i=1 λ(vr i ) == ∞ then
29: return pair(∞, ∅)
30: end if
31: S← ∪l

i=1S(vr i ) ∪ {t}
32: tc← ∑

ti∈Sc(ti)
33: return pair(tc, S)
34: end procedure

Theorem 5. Algorithm 1 calculates the coalitional value of
a coalition C in a CTG.

We first state the following lemma:

Lemma 1. During the execution of Algorithm 1, for every
vertex vr , if λ(vr) < ∞ then S(vr) containssomepath from
V′ = {vr′ | r ′ ∈ RC} to vr , andλ(vr) is equal to its length.

Proof. The proof is by easy induction on the order of re-
moval of transformations fromT.

Proof of Theorem 5.We must prove that in the end of the
execution of the algorithm,λ(vrg) is equal to the minimum
cost of obtainingrg from RC. We prove by induction on
the order of removal of the transformations fromT, that
when t = 〈r1, . . . , r l , r〉 is removed fromT, λ(vr) is equal
to the minimum distance fromV′ = {vr′ | r ′ ∈ RC} to
vr , andS(vr) contains the corresponding shortest path (or
S(vr) = ∅ if λ(vr) = ∞). The base case of the induction:
before removing any transformation fromT, λ(vr) = 0, and
S(vr) = ∅ for all the verticesvr ∈ V′. Now let us assume
that the claim is correct for all the transformations removed
before the transformationt = 〈{r1, . . . , r l}, r〉, andt was re-
moved in then-th stage. Ifλ(vr) was not updated byt then in
that stageλ(vr) < ∞, and so it was updated in earlier stage
by another transformation, and by the inductive assumption,
λ(vr) is equal to the minimum distance fromV′ to vr , and
S(vr) contains the corresponding shortest path. Now sup-
pose thatλ(vr) was updated byt. It means that for alli,
1 ≤ i ≤ l: λ(vr i ) < ∞ (in the stage of removal oft), and
so by the inductive assumption for alli, 1 ≤ i ≤ l: λ(vr i )
is equal to the minimum distance fromV′ to vr i , andS(vr i )
contains the appropriate shortest path. Suppose for the con-
tradiction that the shortest pathT′ = {t′1, . . . , t′m} ⊆ DC
from V′ to vr does not pass throughS(vr i ) andt. Denote by
X the verticesv which haveλ(v) < ∞ in stage of removal
of t (stagen). Assume first that all the transformations in
T′ contain only vertices fromX. For eachi, 1 ≤ i ≤ l, if
T′ passes through vertexvr i , then the sub-path ofT′ to vr i is
minimal, and then by the inductive assumption it is of length
λ(vr i ). Since

∑l
i=1 c(t′i ) < λ(vr), t′m = 〈{r ′1, . . . , r ′w}, r〉

should have been chosen in line 13 of Algorithm 1 before
t, and this is a contradiction to the fact thatλ(vr) was up-
dated byt. Now suppose that there are transformations in
T′ that contain vertices outsideX. Let t′i = 〈{r ′1, . . . r ′p}, r ′′〉
be the first transformation inT′ with vr′′ /∈ X. Since in
the firstn stagest′i was not chosen in line 13 of Algorithm
1 (because in the stagen λ(vr′′) = ∞), it follows that∑i

j=1 c(t′j ) ≥
∑

tj∈S(vr)
c(tj) = λ(vr). On the other hand,∑m

j=1 c(t′j ) ≥
∑i

j=1 c(t′j ). And so, combining these two in-
equalities, we get that

∑m
j=1 c(t′j ) ≥ λ(vr), and this is a con-

tradiction to the fact thatT′ is shorter path thanS(vr).

Proposition 1. The DUMMY problem is co-NP-Complete
for CTG. SH is co-NP-Hard, and BZ is #P-Hard for CTG.

Proof. DUMMY ∈ co-NP for CTG, since given a coalition
C and a playerai , due to Theorem 5, it is easy to test whether
v(C) < v(C∪{ai}) (i.e., thatai is not a dummy player). Also
UTG is a private case of CTG (just set for all the transforma-
tionst, c(t) = 0, and setv(rg) = 1). And so all the hardness
results for UTG hold for CTG as well.

Related Work and Conclusions
Our work in the present paper is somewhat reminiscent of
previous work on multi-agent supply chains. Although some



attention was given to auctions in such domains, (for exam-
ple for forming supply chains (Babaioff and Walsh 2005))
or procurement tasks (Chen, Roundy, and R. Zhang 2005),
previous work devoted less attention to coalitional aspects.
One exception is (Ostrovsky 2008), which studies stability
in supply chains. However, this latter paper mostly consid-
ers pair coalitions and situations without side payments.

With respect to work on resource bounds in multi-agent
systems, previous research considered weighted threshold
games, in which a coalition wins if the sum of their com-
bined resources exceeds a stated threshold (Deng and Pa-
padimitriou 1994; Elkind et al. 2007). In one sense such
games are simpler in structure than TGs, in that they con-
sider a single resource; but in another sense they are richer,
in that different quantities of resource are considered. Coali-
tional Resource Games (CRGs) are also related to the work
of the present paper (Wooldridge and Dunne 2006). In
CRGs, players seek to achieve individual goals, and cooper-
ate in order to pool scarce resources in order to achieve mu-
tually satisfying sets of goals. The main differences are that
in CRGs, players haveindividualgoals to achieve, which re-
quire different quantities of resources; in addition, CRGs do
not consider anything like transformation chains to achieve
goals. It would be interesting to combine the models pre-
sented in this paper with those of (Wooldridge and Dunne
2006).

TGs can also be considered as descended from Coalitional
Skill Games (Bachrach and Rosenschein 2008); the main
difference is that this previous work does not consider trans-
formation chains.

Future work might consider variations where richer mod-
els are permitted (e.g., consumablevs non-consumable re-
sources). One interesting direction is taken in (Chakrabarti
et al. 2003), which presents the notion of resource inter-
faces. The idea is to model processes that have different re-
source consumption profiles at different stages of execution;
one might then ask, for example, whether two different pro-
cesses can be executed in parallel without exceeding some
stated resource bound. Similar ideas might be applied to the
model in the present paper.
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