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Abstract

Following recent analyses of iterative voting and its effects on plurality vote outcomes,

we provide a general characterisation of the set of equilibria attainable by iterative

plurality voting. We show that deciding whether a given profile is an iteratively

reachable equilibrium is NP-complete; however, if truth bias is added, we show that

it is possible to determine all equilibria in polynomial time. Furthermore, we fully

characterise the set of iterative truth-biased equilibria. We then examine the model

of lazy voters, in which a voter may choose to abstain from the election, showing

that the iterative voting process in this case converges to a stable state. As in the

case with truth bias, we show that it takes at most polynomial time to find stable

states that are Nash equilibria.

1 Introduction

There are many aspects to coordination in multiagent systems that have engaged researchers
in recent years, including questions related to the aggregation of multiple agents’ preferences
into a single system-wide choice. Researchers looking at group decision-making have ex-
plored the properties of voting schemes, which provide well-founded preference aggregation
techniques that lend themselves to formal analysis; at times, voting can also provide intuitive
and efficient prescriptive algorithms for resolving disagreements among participants.

Unfortunately, as the Gibbard-Satterthwaite theorem [10, 20] famously states, voting
rules are susceptible to manipulation; under minor assumptions, for every voting rule there
exists a set of voter preferences, in which at least one of the voters will be better off mis-
reporting its preference. Given this negative result, there has been a solid body of research
over the last two decades that has focused on the complexity of manipulation, as a potential
barrier to the Gibbard-Satterthwaite theorem. In a different direction, and in lieu of having
strategyproof voting rules (which is unattainable), another body of research has emerged on
game-theoretic analysis of voting, initiated by Farquharson [7]. Viewing voters as strategic
agents, it is then natural to examine the Nash equilibria of the underlying voting games, as
a potential solution concept for preference aggregation scenarios.

However, Nash equilibria in this context, and without any further refinement, end up
being a poor tool to predict voting behavior. For example, even if all voters rank the
same candidate last, it is still a Nash equilibrium (in most reasonable voting rules) that all
voters vote for this disliked candidate. More generally, there can be a very large number of
equilibria in most voting games, and many of them are irrelevant to the effective analysis of
the voting rule. Several methods have been proposed to handle this multitude of equilibria,
and in this work, we focus on the following three:

• Iterative voting: Instead of examining all Nash equilibria, one can consider those
equilibria that are “reachable” from certain initial voting profiles; that is, we can study
sequences of moves, where during each move one of the players who is dissatisfied with
the current result can change its vote, and achieve a better outcome for itself. This
process is reminiscent of a group of friends trying to find a movie that they would all
like to see, or a restaurant where they would all want to go to; dissatisfied with the



current result, they change their declared preference seeking to modify the outcome
(see e.g., [16]). Several online services, such as Doodle, enable this kind of iterative
preference aggregation.

• Truth bias: Another way to handle the large number of Nash equilibria is to add a
small utility gain for voters who vote truthfully. This extra “bonus” should be small
enough so that agents would still prefer to manipulate the election in cases where
they can affect the outcome for their own benefit. Introducing this bias in the model
dramatically reduces the number of equilibria by several orders of magnitude [21].

• Voting with abstentions: A different way to simulate real-world incentives is to
add a small utility gain to voters who do not participate in the election, i.e., who
abstain. The rationale is that coming to the election may incur a cost in time, effort,
etc. Hence the abstention avoids this cost, but just as in truth bias, the agents would
still have an incentive to manipulate if they can affect the outcome. Such voters are
also referred to as lazy voters [4].

Contribution: We consider the above three techniques and their relationship, separately
and combined, to Nash equilibria. We first examine iterative voting in a simple form,
namely plurality voting with agents playing a best-response strategy. We find that even in
this straightforward model (which is known to eventually converge [16]), checking whether
a given profile is a reachable Nash equilibrium is NP-hard.

We then turn to the truth-bias approach, and combine it with iterative voting: the voting
process stops only when it reaches a truth-biased Nash equilibrium. In this model, iterative
voting converges to equilibria that are arguably more natural; truth bias reflects intuitive
voter leanings, and eliminates many undesirable equilibria. We give a characterisation of
the equilibrium profiles reachable under this model, and detail a polynomial-time algorithm
for finding all such equilibria of a game.

Following that, we examine the lazy-voter approach, combined with iterative voting. We
study the iterative process under the assumption that if a voter decides to abstain at some
step, then he does not come back to the election at a later step. While convergence to a
stable state is guaranteed under this model, the final state may not necessarily be a Nash
equilibrium. However, we are still able to fully characterize the Nash equilibria that can be
reached by this process.

1.1 Related Work

The iterative voting model we utilise is based on the one introduced in [16] and later ex-
panded by additional researchers [15, 2, 12]. That model followed previous research into iter-
ative and dynamic mechanisms, much of it summarised in [13], which also touched (lightly)
on single-peaked preferences (as did [9], albeit not in a dynamic process). More recently, [1]
examined another iterative process, using a type of plurality voting rule; however, it is quite
different from our general iterative model. Furthermore, [5] used an iterative process that
eliminates weakly dominated strategies (a requirement also used in the definition of equilib-
rium in [8]), and showed criteria for an election to result in a single winner via this process.
While we do not deal with it in this paper, we note that there is also a line of research that
discusses iterative processes in the context of limited information games, and studies the
effects of lack of knowledge on the players’ strategies [3, 17]; and yet another line of work
studies restricted dynamics in iterative processes, i.e., limitations on the allowed moves by
the voters, e.g., [19, 11].

The notion of adding a truth bias to games was introduced (for a specific case) by [14],
and was proposed for a specific voting rule (with limited results) by [6]. A more robust



model was suggested by [21], which introduced the general framework of the truth-bias
equilibrium, and contained various empirical results when using plurality in truth-biased
games. The theoretical side of that work was recently enhanced by [18].

The notion of lazy voting was studied in [4], as another way of eliminating some of the
undesirable NE (Nash equilibria). The twist is that the utility function is changed so that
voters have a slight preference for abstaining if they are not pivotal. However, they can still
have an incentive to manipulate the election if they can affect the outcome. See [4] for more
details.

Apart from iterative voting and truth bias, there have been many other attempts to
escape the multitude of Nash equilibria in voting games. Some of these include a) introducing
uncertainty, e.g., about how many voters support each candidate, as in [17]; b) changing
the temporal structure of the game itself. [22] and [4] consider the case where agents vote
publicly and one-at-a-time, and study subgame-perfect equilibria of these extensive-form
games; In this paper, we do not address any of these approaches.

The rest of the paper is organised as follows. We start with definitions and notation in
Section 2. Section 3 presents our first results, on equilibrium characterisation of iterative
plurality voting, including our NP-completeness proof for a profile reachability decision.
This is contrasted by the results of Section 4, which describe the properties of truth-biased
iterative plurality voting, leading to a polynomial-time algorithm for equilibrium computa-
tion. We conclude in Section 6 with some final remarks, and a discussion of future work.
While omitting many of this paper’s proofs due to space limitations, we provide key proofs
and proof elements.

2 Definitions and Notation

We consider a set of m candidates C = {c1, . . . , cm} and a set of n voters V = {1, . . . , n}.
Each voter i has a preference order (i.e., a ranking) over C, which we denote by ai. For
notational convenience in comparing candidates, we will sometimes use ≻i instead of ai.
When ck ≻i cj for some ci, cj ∈ C, we say that voter i prefers ck to cj .

At an election, each voter submits a preference order bi, which does not necessarily
coincide with ai. We refer to bi as the vote or ballot of voter i. The vector of submitted
ballots b = (b1, ..., bn) is called a preference profile. At a profile b, voter i has voted
truthfully if bi = ai. Any other vote from i will be referred to as a non-truthful vote.
Similarly the vector a = (a1, . . . , an) is the truthful preference profile, whereas any other
profile is a non-truthful one.

Given a voter i ∈ V , and its vote bi under a profile b, we denote by top(bi) the top choice
of the vote. A voting rule F is a mapping that, given a preference profile b over C, outputs
a candidate c ∈ C; we write c = F(b). In this paper we will consider only Plurality under
lexicographic tie-breaking. This is one of the most well-studied and widely-used voting rules.
Under Plurality, each candidate is assigned a score equal to the number of ballots where
it has appeared as the top choice. The winner of the election is then the candidate with
the maximum score. I.e. the winner of the election under Plurality is the candidate who
appears as the top choice in the maximum number of votes. In case of ties, we assume that
tie-breaking is resolved by the linear order c1 ≻ c2 ≻ ... ≻ cm.

Given b, let s be the maximum score achieved by a candidate. We denote by W (b) the
set of tied candidates with score equal to s, i.e., all the potential winners before tie-breaking
is applied. Also, let H(b) be the set of candidates that receive s− 1 votes in b, but would
win a tie-break against any candidate in W (b) (these are candidates who would need one
extra vote to become a winner). These two sets play an important role in our analysis, as



they, together, define the “runner-ups” — the candidates that can win with an additional
point. Finally, we denote by F(b) the winning candidate of a profile b, and by sc(c,b) the
score of candidate c in b.

2.1 Game theoretic considerations

In this work, we view elections as non-cooperative games. The standard way to do this is to
associate a utility function ui with every voter i, which is consistent with its true preference
order. That is, we require that ui(ck) 6= ui(cj) for every i ∈ V , cj , ck ∈ C, and also that
ui(ck) > ui(cj), if and only if ck ≻i cj .

We study and compare three game-theoretic models. We refer to the first one as the
basic model (following [16]) since it is the most standard approach. Under the basic model,
we suppose that the payoff function of voter i when its real preference is ai is:

pi(ai,b,F) = ui(cj), if cj = F(b),
where b is the submitted profile.

The second model we consider is a variation of the first one, and we refer to it as the truth-
biased model, following [21]. In this model, we suppose that voters have a slight preference
for voting truthfully when they cannot unilaterally affect the outcome of the election. This
bias is captured by inserting a small extra payoff, when the voter votes truthfully. This
extra gain is small enough so that voters may still prefer to be non-truthful in cases where
they can affect the outcome. If a is the real profile and b is the submitted one, then the
payoff function of voter i is given by:

pi(ai,b,F) =

{
ui(cj), if cj = F(b) ∧ ai 6= bi,

ui(cj) + ǫ, if cj = F(b) ∧ ai = bi.
(1)

The third model in this paper is also a variation of the first one. We refer to it as the
model with lazy voters, following [4]. In this model, it is assumed that voters have a slight
preference for not coming to the election if they are not pivotal. This bias is captured
similarly to the truth bias in the previously described model variation. Let ⊥ denote the
abstention ballot. If a is the real profile and b is the submitted one, then the payoff function
of the voter i is given by:

pi(ai,b,F) =

{
ui(cj), if cj = F(b) ∧ bi 6= ⊥,
ui(cj) + ǫ, if cj = F(b) ∧ bi = ⊥.

(2)

In the pathological case that the submitted profile is the vector (⊥, ...,⊥), we assume that
no candidate is elected and each voter has a payoff of ǫ. This clearly cannot be realized as
a stable state.

A Nash equilibrium in these games is a profile b, where no voter can unilaterally improve
its payoff, i.e., for every i and everyvote b′i, we have pi(ai,b,F) ≥ pi(ai, (b

′
i,b−i),F) (b−i

being the vecor b without player i’s vote).

2.1.1 Best Response Dynamics

Consider an election game, either in the basic or in the truth-biased model. We focus on
an iterative process, where, starting from the truthful preference profile, voters can change
their strategy by making improvement steps. An improvement step for a voter i at a profile
b is a switch to another strategy (i.e., vote) b′i, leading to the profile (b′i,b−i), in which the
payoff for i is strictly higher than before. A best response improvement step is one in which
the voter changing its strategy achieves its currently best possible payoff.

We will focus only on best response steps, and we will refer to an improvement path
as any sequence of submitted profiles such that each move from one to the next is a best



response step. We do not assume any fixed order by which voters update their strategies; we
only assume that the voters start from the truthful profile (a natural starting point for such
a process, as also argued in [2]) and then make their best response updates in an arbitrary
order. The process in general can lead to different outcomes, or may not even converge. We
are interested in studying the Nash equilibria of election games, that can be reached by best
response improvement paths.

3 Basic model analysis

We begin by analysing the properties of Nash equilibria that are reachable under iterative
voting in the basic model of plurality aggregation. First, recall the following property of
best response improvement paths.

Lemma 1. [Quoted from Lemma 4 in [2]] An improvement step can only take a vote for a
non-winning candidate and transfer it to the winner of the newly formed voting profile.

We can now consider the implications of voting iterations on Nash equilibrium profiles.

Definition 1. Given a profile b, we denote by CS(b) (and refer to it as the chasing set
of b), the set: CS(b) = (W (b) ∪H(b)) \ {F(b)}, i.e., the candidates who could become a
winner if they were to receive one additional vote.

The following fact which we use repeatedly in the sequel follows from the analysis in [2].

Fact 1. Let b be an equilibrium profile obtained by a sequence of improvement steps from
the truthful profile a. Then F(b) ∈W (a) ∪H(a).

Lemma 2. Consider an equilibrium profile b obtained by a sequence of improvement steps
from the truthful profile a. Then CS(b) ⊆W (a) ∪H(a), and if b 6= a, then CS(b) 6= ∅.

The properties identified in the previous lemmas help us formulate the following neces-
sary conditions for reachable equilibria.

Theorem 1. Let b be an equilibrium profile obtained by a sequence of improvement steps
from the truthful profile a. Then the following holds.

1. For every voter i, F(b) ≻i c, ∀c ∈ CS(b) \ {top(bi)}.

2. For every voter i such that top(bi) ∈ CS(b), top(bi) ≻i c, ∀c ∈ CS(b) \ {top(bi)}.

Theorem 2. Given a truthful profile a and a profile b, distinct from a, it is NP-complete
to decide if b is reachable by iterative best-response updates, starting from a.

Proof Theorem 2: To show that the problem is in NP, it is enough to provide as a certifi-
cate the sequence of best-response updates that leads from profile a to profile b. One could
then check that this is a valid sequence. It is important to note here that this is indeed
a certificate of polynomial length. For this, it suffices to bound the number of possible
best-response moves until we reach b. The crucial observation here is that after any such
move, the score of the currently winning candidate either increases or remains the same as
the score of the previously winning candidate—it never decreases. This means that if b is
reachable, then it can be done in at most mn steps.

To prove NP-hardness, we provide a reduction from the Hitting Set (HS) problem, which
is the following: we are given a set of ground elements G = {g1, ..., gn}, and a family of
subsets of G, W = {w1, ..., wm}, wi ⊆ G, |wi| = li. We are also given a number k ≤ n. The



Block 1 Block 2 Block 3 Block 4 Block 5

g1... g1 ... gn gn d1... d1... dm... dm g1... g1 ... gn... gn d1... dm
u1... uk ... u1... uk g11 ... g1l1 ... gm1

... gmlm
u1... uk ... uk... u1 t... t

...
. . .

...
...

. . .
... w1... w1... wm... wm

...
. . .

...
...

. . .
... arbitrary

uk... u1 ... u1... uk G \ g11 ... G \ g1l1 ... G \ gm1
... G \ gmlm

uk... u1 ... uk... u1 order stand-ins
G \ g1 ... G \ gn t... t... t... t G \ g1 ... G \ gn over

t... t ... t... t w1... w1 ... w1... w1 all
D ∪W ... D ∪W arbitrary order over all others arbitrary order over all others others

Table 1: NP-Completeness proof profiles: Truthful profile. Recall, |wi| = li.

Block 1 Block 2 Block 3 Block 4 Block 5

t... t ... t... t w1... w1... wm... wm w1... w1 ... w1... w1 t... t d|w1|... dm
g1... g1 ... gn gn d1... d1... dm... dm g1... g1 ... gn... gn d1... d|w1|−1 t... t

u1... uk ... u1... uk g11 ... g1l1 ... gm1
... gmlm

u1... uk ... uk... u1

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
... as was

uk... u1 ... u1... uk as was uk... u1 ... uk... u1 as was
G \ g1 ... G \ gn G \ g1 ... G \ gn
D ∪W ... D ∪W as was

Table 2: NP-Completeness proof profiles: Target profile. Recall, |wi| = li.

decision problem is to ascertain that there is a hitting set U ⊂ G, so that |U | ≤ k, and
∀i ∈ [m], U ∩ wi 6= ∅. This is a well-known NP-complete problem.

We assume that we are given an instance that satisfies: 1) |w1| ≥ |wi|, ∀i ∈ [m], 2)
|w1| ≥ 3, and 3) m ≥ n (we can always pad an instance by replicating a set to satisfy this).
These three assumptions do not impact the complexity of the HS problem.

Given such an instance of the HS problem, we proceed by constructing an instance of
our problem, i.e., a truthful profile a, and a matching (non-truthful) profile b, so that a
sequence of iterative best-response updates going from a to b exists if and only if the HS
instance has a solution.

Given an HS instance as above, we associate one candidate with each element of G and
one candidate with each element of W . In addition, we introduce k candidates u1, ..., uk,
corresponding to the (up to) k elements of U . Finally, we also add a set D of m dummy
candidates, D = {d1, ..., dm}, and a special target candidate t. Overall, there are n+ 2m+
k+1 candidates in our voting problem with the following lexicographic order for tie breaking:
d1 ≺ . . . ≺ dm ≺ u1 . . . ≺ uk ≺ w1 ≺ . . . ≺ wm ≺ g1 ≺ . . . ≺ gn ≺ t. We slightly abuse the
notation so that each wj refers both to the set from the HS instance and the corresponding
candidate in our instance—and similarly for the element candidates gi.

We will now introduce five blocks of voters with preferences as depicted in Tables 1, 2.
Notice that Block-1 and Block-3 contain nk voters each, Block-2 has

∑
|wi| ≤ mn voters,

and Block-4 has exactly m voters. These cardinalities will be used in the later stages of
the proof. Block-5 (the stand-ins in our Tables 1, 2) is incidental and its voters are only
necessary to create an initial balance among the candidates in the truthful profile. These
voters all have the order of preference U ≻ G ≻ t ≻ W ≻ D, broken for each voter only by
shifting one particular candidate to be the top choice. We have as many votes in Block-5
as required to ensure that after counting all truthful votes in all the Blocks, each candidate
receives exactly 2k+n in the truthful profile a. This also means that given the tie-breaking
rule, t is the winner in a.



We will show that ascertaining reachability of the reported profile depicted in Figure 2,
is equivalent to solving the original HS problem. First, observe that no voter in Block-2 can
change its vote in a to one that appears in b (i.e., vote for some wi) in a single deviation
step, while following the best-response strategy. This is because initially the candidates in
G have the same number of votes as those in W , but win in tie-breaking, hence the best
response in the beginning is to vote for someone in G. To make b reachable from a, those
candidates from G that lock the votes in Block-2 need to be eliminated from becoming
winners, thus making the vote for wi the best choice.

We show that the issue described above can be resolved so that the target profile b is
reachable from a if and only if there is a solution to the HS problem. To see this, assume
first that there is a solution U , with |U | ≤ k, to the HS instance. Then, we can associate
(possibly with replications in case that |U | < k) to each candidate ui an element in G, say

g(ui), so that for Û =
⋃

i∈[k] {g(ui)}, it holds that ∀j ∈ [m], Û ∩ wj 6= ∅.

Let each voter in Block-1, that has ui 1 ≤ i ≤ k, as his second choice and g(ui) as his
first choice (there is exactly one such voter for each i), change his vote in sequence starting
in the order from 1 to k. As a result of the best-response updates, each candidate ui will in
turn receive an additional vote, while g(ui) will lose at least one vote. In this new profile,
the winner will be uk, due to tie-breaking, with all candidates from U having 2k + n + 1
votes, while those in the set Û ⊆ G will have at most 2k + n − 1 votes. Denote this new
profile by c.

Now, in the profile c, consider those voters in Block-2 that have g(ui) as their second

choice, for each element g(ui) ∈ Û . Note that because U is a solution to the HS instance,
this implies that for each sub-block of Block-2, having wj as a third choice, with 1 ≤ j ≤ m,
there is a value of i and a voter from this sub-block where g(ui) is a second choice for
this voter. For all these voters, it is not a best response to vote for their second choice
g(ui), since in the previous round of updates all elements from Û lost a vote and due to
tie-breaking they cannot become a winner with a single step. Instead, the best response for
these voters is to vote for wj , thus “unlocking” the candidates of W . Let us choose one such
voter for each wj and let them change their vote in sequence. This changes profile c to a
profile d, where all candidates in D can no longer become a winner with a single deviation,
all candidates in U and in W have 2k+n+1 votes, and candidates in G have at most 2k+n

votes each (some of them have 2k + n− 1).
In the next round of updates, we will prevent all candidates in U and G from ever again

becoming a possible winner by essentially “running” a competition between the candidates
in W and the target candidate t. That is, we choose a voter sequence that will grant W ∪{t},
an ever increasing number of votes, eliminating any other candidate from becoming a best-
response. The effect of this voting sequence will eventually be the emergence of the profile
b.

Let us first allow one voter from Block-4 to change his vote. The voter will naturally
shift t to be his top-choice. This will give the target candidate t 2k + n + 1 votes as well,
completely preventing all candidates from G from ever becoming a winner, since all of them
have less than 2k + n+ 1 votes and lose in tie-breaking to t. We can now cycle, repeatedly
through all candidates from W selecting for each wj a voter from Block-2 with wj as his
third (truthful) choice, which now is the best-response for that voter. At the end of each
cycle iteration we will grant one more voter from Block-4 the possibility to change his vote.
There will be at most |w1| such cycles. Notice that some cycles will be shorter in the
sense that there will be some sub-blocks where all voters will have already voted for their
corresponding candidate from W (since w1 may have a strictly higher cardinality from the
rest of the sets). Finishing this process we will have the voters from Block-2 and Block-4
vote as they are intended in the target profile b. The voters from Block-1 and Block-3 will
still be voting either for a candidate from U or a candidate from G, and the voters from



Block-5 remain as they are. In this intermediate voting profile, e, candidates from W will
have at most 2k + n+

∑
|wj | votes, and so will the target candidate t.

We can now reach profile b from e, if we alternate between allowing a voter from Block-1
and a voter from Block-3 (that still do not vote for w1 or t) to change their votes. Notice
that the best-response top-choice for these voters is indeed either w1 or t. This will result
in Block-1 and Block-3 transforming their votes into those prescribed by b, completing the
vote modification sequence from a. Notice, additionally, that in b the winning candidate
is the target candidate t, with 2k + n + nk +

∑
|wj | votes and no voter can change the

outcome, i.e., b is an equilibrium.
Finally, for the other direction, assume that there is no solution to the underlying HS

instance. It is then easy to check that there is no possible sequence of votes that can
“unlock” at least one voter in Block-2 for each wj . Hence, this makes the targeted profile b

unreachable.

4 Truth-Biased Iterative Voting Under Plurality

Having fully characterised the Nash equilibria in the iterative voting scheme under plurality,
and in light of the negative result of Theorem 2, we now introduce the assumption of truth
bias as described in Section 2. For the remainder of this section we will consider only truth-
biased agents and investigate how this property affects the outcome of iterative voting. Once
again, we begin our analysis by recalling some basic and already established properties of
equilibrium profiles under truth bias, namely, the following lemma, which is proved in [18].

Lemma 3. Suppose that b 6= a is a non-truthful profile, which is a Nash equilibrium. Let
c = F(b). Then all non-truthful votes in b have c as the top candidate.

Recall, s = sc(F(a),a). The following lemma is an easy corollary of Lemma 2 in [18].

Lemma 4. Suppose that b 6= a is a non-truthful profile, which is a Nash equilibrium. Let
c = F(b). Then sc(c,b) ≤ s+ 1.

We let W≻c denote the set of all candidates cj ∈W (a) such that cj ≻ c. H≻c is defined
similarly. It is easy to see that Fact 1 continues to hold in this model too. Hence, again the
winner at an equilibrium b 6= a, belongs to the set W (a) ∪ H(a). The next lemmas shed
more light on each of the two possible cases (that F(b) ∈W (a) or F(b) ∈ H(a)) and they
also highlight some important differences between the basic model and the truth-biased one.

Lemma 5. Suppose that b 6= a is an equilibrium profile, and that c ∈ W (a) ∪H(a) is the
winner in b. Then

• there is only one voter (say i) who submits a non-truthful vote in b;

• for every cj ∈W (a) ∪H(a) \ {top(ai)}, c ≻i cj;

• If c ∈ W (a), for every voter k and every cj ∈ W≻c \ {top(ak)}, c ≻k cj. If c ∈ H(a),
for every voter k and every cj ∈W (a) ∪H≻c \ {top(ak)}, c ≻k cj.

These properties yield as direct corollaries the following:

Corollary 1. If there exists a chain of iterative improvement steps that leads to the Nash
equilibrium b 6= a with winner c, then there exists such a chain consisting of only 1 step.

As a consequence of the Corollary 1 we can obtain Algorithm 1 which finds all Nash
equilibria achievable by the sequence of improvement steps with complexity of O(m2n2).
Using the following more accurate description of iteratively achievable Nash equilibria we
can construct an algorithm with even better running time.



Corollary 2. There exists a chain of iterative improvement steps that leads to the Nash
equilibrium b 6= a with winner c ∈W (a) if and only if the following conditions hold.

1. There is at most one candidate cj 6= F(a) ∈ W≻c for which there exists at least one
voter i, with cj ≻i c and cj 6= top(ai).

2. If no such candidate cj, as described above exists, then there exists a voter i such that
c ≻i ck for every ck ∈ W (a) ∪H(a) \ {top(ai)} and top(ai) = F(a). Otherwise, there
exists a voter i with top(ai) = cj and c ≻i ck for every ck ∈W (a) ∪H(a) \ {cj}.

Corollary 3. There exists a chain of iterative improvement steps that leads to the Nash
equilibrium b 6= a with winner c ∈ H(a) if and only if the following conditions hold.

1. There exists at most one candidate cj 6= F(a) ∈W (a) ∪H≻c such that there exists at
least one voter i with cj ≻i c and cj 6= top(ai).

2. if no such candidate cj, as described above exists, then there exists a voter i such that
c ≻i ck for every ck ∈ W (a) ∪H(a) \ {top(ai)} and top(ai) = F(a). Otherwise, there
exists a voter i with top(ai) = cj and c ≻i ck for every ck ∈W (a) ∪H(a) \ {cj}.

Finally, we end this section with an algorithm for producing reachable equilibrium pro-
files.

Theorem 3. Algorithm 1 finds all Nash equilibria with truth-bias, with complexity of
O(mn).

Proof. We shall first show why the algorithm only outputs equilibrium profiles, and then
that there are no equilibria that it misses.

Exploiting Lemma 5, every equilibrium the algorithm finds is made of a voter that can
change its vote to c, making it the winner, and, if all other voters remain the same, has no
incentive to deviate to a different candidate. Furthermore, no other voters will deviate in
retaliation — if there are, it means they can deviate to a candidate c′ which can win over c
and which they prefer over c, and these deviations are found by lines 11 and 25.

Now, suppose there is an equilibrium resulting in candidate c winning. According to the
previously proven lemmas, c ∈ W (a) ∪H(a), and there is only one voter that will deviate.
Therefore, that voter must be found with the algorithm’s line 6 or 20. Since that equilibrium
will only be eliminated due to finding a voter in lines 11 or 25, and such a voter will indeed
destroy an equilibrium (as it will have an incentive to deviate), the algorithm will find all
equilibria.

Since there are two nested loops, each counting through a subset of candidates and
voters, complexity is O(mn),

5 Lazy voters

We now turn to consider the lazy model, under iterative voting. In defining the iterative
process, we feel that it is more natural to the spirit of lazy voting to make the following as-
sumption: if at some point in the sequence of best responses a voter decides to abstain, then
he never comes back to the election1. Given this restriction, we can establish convergence,
albeit not necessarily to a NE of the game.

1If we allow voters who abstain to return to the election and vote for some candidate later on in the
process, we run into the problem of not having convergence. This follows from the fact that Nash equilibria
do not always exist under the lazy model [4].



Algorithm 1 Finding all truth-biased Nash equilibria

1: ∀c ∈W (a) ∪H(a), eq[c]← 0 ⊲ An array holding number of equilibria for every
potential winning candidate

2: V, V ′ sets of all voters
3: for all c ∈W (a) do
4: for all v ∈ V do

5: if v ∈ V ′, top(v) 6= F(a) and top(v) 6= c then

6: if c is the highest ranked candidate in W (a) ∪H(a) excluding top(v) then
7: eq[c]← eq[c] + 1 ⊲ This voter will deviate to make c win
8: V ′ ← V ′ \ v ⊲ If this voter deviates for c, it will not deviate for any other
9: end if

10: end if

11: if there is c′ ∈W≻c
(a), c′ 6= top(v) c′ ≻v c then

12: eq[c]← 0 ⊲ This is a blocking voter
13: break ⊲ No point in examining this candidate further
14: end if

15: end for

16: end for

17: for all c ∈ H(a) do
18: for all v ∈ V do

19: if v ∈ V ′, top(v) 6= F(a) and top(v) 6= c then

20: if c is the highest ranked candidate in W (a) ∪H(a) excluding top(v) then
21: eq[c]← eq[c] + 1 ⊲ This voter will deviate to make c win
22: V ′ ← V ′ \ v ⊲ If this voter deviates for c, it will not deviate for any other
23: end if

24: end if

25: if there is c′ ∈W (a) ∪H≻c
(a), c′ 6= top(v) and c′ ≻v c then

26: eq[c]← 0 ⊲ This is a blocking voter
27: break ⊲ No point in examining this candidate further
28: end if

29: end for

30: end for

Definition 2. After t steps of the iterative process, we let At be the set of active voters,
i.e., the set of voters who have not chosen to abstain. Obviously At ⊆ At−1, for every t.
We define a profile b to be a stable state at time t, if no voter from At has an incentive to
change his current vote.

Lemma 6. Every sequence of improvement steps converges, and the final state is a stable
state.

Proof. Clearly if we have convergence, then it has to be to a stable state. To prove conver-
gence, [16] showed that in the basic model, every sequence of best-response steps, beginning
from any profile, always converges to a Nash equilibrium. In our model, every time there is
an abstention, we can restrict ourselves to the profile of the remaining active voters as a non-
truthful profile, from which we know convergence is guaranteed, if no further abstentions
are made. Since there are at most n− 1 abstentions, this process is finite.

Observation 1. Since we have guaranteed convergence to stable states, obviously not all
stable states are Nash equilibria, since Nash equilibria do not always exist in the lazy model



[4]. Furthermore, as in the truth-biased model, there are Nash equilibria which are not
reachable using a sequence of improvement steps.

The following example demonstrates Observation 1.

Example 1. Figure 1 shows a game where no improvement path can lead to a Nash equi-
librium. Since the tie-breaking rule is c1 ≻ c2 ≻ c3, we can see that the profile where voter
1 votes his true preference, and the other two voters abstain is the only Nash equilibrium.
Yet, from the truthful profile of Figure 1, the only available improvement move is for voter
1 to deviate to ⊥ and leave the election. Afterwards, voter 2 or 3 will also leave the election
and the process converges to electing c2. Hence, we cannot converge to a Nash equlibrium.

1 2 3
c1 c2 c2
c3 c3 c3
c2 c1 c1

Figure 1: A game without convergence to a NE.

We now proceed to characterize the reachable stable states.

Lemma 7. If a profile b is a stable state reachable by a sequence of improvement steps,
then it consists of the truthful vote of exactly 1 voter, and an abstention by all other voters.

Proof. The state described is obviously stable, as the absent voters cannot return to the
election, and the result is the voter’s favourite option. Hence the active voter also does not
have an incentive to change his vote or abstain.

Suppose a different state is stable: If there is only one active voter, it will always vote
for its favourite candidate (as voters pursue a best-response strategy). If there is more than
one active voter, and they are all voting for the same candidate, one of those voters would
gain by abstaining, hence it would not be a stable state. And finally, if there are active
voters voting for a losing candidate, then again these voters would gain by abstaining.

Theorem 4. Suppose a profile b is a reachable NE under the lazy model. Then b satisfies
the properties of Lemma 7 and if c is the top choice of the active voter in b, it is ranked
higher in the tie-breaking rule than all other candidates who are ranked above c by any other
voter.

Proof. The first condition is trivially true. As for the second, suppose it did not hold. Then,
given Lemma 7, there is a voter who has abstained and who prefers a candidate other than
c. This voter would have an incentive to return to the election and vote his true preference,
i.e., b cannot be a Nash equilibrium.

Theorem 5. There exists a polynomial algorithm that finds all reachable Nash equilibria
from the truthful state with lazy voters.

Algorithm 2 is given a truthful profile a and a truthful voter v with preferences z ≻ . . .

and returns “yes” if there exists a path of best-response stages to the Nash equilibrium
culminating in this truthful voter voting for z (according to Lemma 7, all others abstain).
The algorithm basically goes over all options of reaching a NE, as long as the requirements
of Theorem 4 are satisfied, first checking whether a, the initial state, is a Nash equilibrium
in the usual sense (without abstentions) or not, and finding the players which would enable
the voter v to have a shot at being the only participant left in the game.



Algorithm 2 Finding all NE reachable under lazy voting

⊲ a is initial state; v is the voter we examine with preferences z ≻ . . .

1: if z cannot be a winning candidate in a NE according to Theorem 4 then

return No
2: end if

3: if a is a Nash equilibrium in the basic case (without abstentions) then
4: if z is a winner of a then

return Yes
5: end if

6: if there exists a vote c̃ . . . ≻ z ≻ . . . ≻ F(a) ≻ . . . (for c̃ 6= z) then
return Yes

7: end if ⊲ At this point, every voter whose top choice is not z, prefers F(a) to z.
8: C′ ← All candidates (except z and F(a)) such that sc(c,a) ≥ 2, or sc(c,a) ≥ 1 and

c beats F(a) by tie-breaking
9: if there is a voter z ≻ . . . ≻ c ≻ . . . ≻ F(a) ≻ . . . for c ∈ C′ then

return Yes
10: end if

11: if there is c ∈ C′ such that there exist a vote c̃ ≻ . . . ≻ c ≻ . . . ≻ F(a) ≻ . . . for
c̃ 6= z then

return Yes
12: end if

return No
13: end if

⊲ From now we can assume a is not a NE
14: if z is not the winner nor a runner-up in a then

return Yes
15: end if

16: if z is a runner-up in a then

17: if Some voter 6= v has preference . . . b ≻ . . . ≻ F(a) for some runner-up b 6= z then

return Yes
18: end if

19: if |V | ≥ 4 then

Goto Line 6
20: else return No
21: end if

22: end if

⊲ We can now assume z = F(a)
23: b ← Profile of votes of a run of iterative plurality (without abstentions) on all voters

but v does not deviate ⊲ from [16] this is polynomial
24: if z = F(b) then

return Yes
25: end if

26: if z in not a runner-up in b then

return Yes
27: else Goto Line 19 using b instead of a. ⊲ z a runner-up in b

28: end if

Proof Theorem 5. As the algorithm covers all possible cases, we simply explain every
”yes” and ”no” response: for ”yes” we detail the sequence of best-response moves that



achieves them, for ”no” we explain why.
We begin with the case where the starting state (a) is a NE in the basic model, i.e.,

without abstentions. Note that in this case, as in all NEs of the basic case, all voters’
best-response (potentially, excepting a voter for the winner) is to abstain.

Line 4 indicates the stage sequence where all other voters abstain (as this is a NE, they
do not deviate to a different candidate) and then all but v abstain as well, until it’s the only
one left.

Line 6 indicates the stage sequence where all voters not voting for F(a) except v and
the noted c̃ voter abstain, and then all but 2 voters for F(a) abstain as well. Then the c̃

supporter deviates to support z, and all other voters except v will now abstain.
Line 9 indicates the stage sequence where all voters not supporting F(a) or c except v

and the voter supporting c over F(a)) abstain, then F(a) supporters abstain until |sc(c,a)|
of them remain (or |sc(c,a)|+1, depending on tie breaking rule). Then the z voter prefering
c deviates to make c the winner, and then all voters abstain except v, and 2 c supporting
voters (which include a z supporting one which deviated). This voter now reverts to z,
making it the winner, and the voters except v abstain.

Line 11 indicates the stage sequence where all voters not supporting F(a) or c except
v and the noted c̃ voter abstain, then F(a) supporters abstain until |sc(c,a)| remain (or
|sc(c,a)|+1, depending on tie breaking rules). Then the c̃ voter deviates to c, making it the
winner, and then our voter deviates to return F(a) to its victorious position (at this point,
we know our voter prefers F(a) to others). Then all voters except ours abstain, and then
our voter deviates back to z.

If the algorithm return no, this means all voters find that anyone they support over
F(a) (that isn’t their first preference) has only one point and loses to F(a) according to
tie-breaking rule. This means no voter has any move except abstention, and hence, z can
never become the winner.

We now turn to the case where the starting position is not a Nash equilibrium in the
basic sense.

Line 14 indicates the stage sequence where we can simply have regular run of iterative
plurality (without abstentions), when not allowing v to participate. We call the resulting
state c. z cannot become a winner (as it wasn’t even a runner-up). If v prefers F(c) over
any runner-ups, then we look at the run of iterative plurality, and replace the last deviation
of a voter to F(c) with a deviation of v. Now, all voters except v can abstain. If v prefers a
runner-up b, we let all voters for candidates that are not b,F(c) or voter v to abstain, and
then let v deviate. Since v has deviated to the winner, all except v can abstain.

Line 17 indicates the stage sequence where if there is such a voter which voted for z,
it deviates to b, and we can now follow the same sequence as for line 14 in the paragraph
above, as z is no longer a runner-up. If there isn’t (all of them prefer F(a), the noted voter
deviates, making b the winner, and now one of the z voters deviates to F(a), making z no
longer a runner-up, and again, we can now follow the same sequence as for line 14 in the
paragraph above.

In line 19 we revert to the NE part, as the only voter wishing to deviate is v — without
v this is a Nash equlibrium. However, in the case of 3 voters we can answer directly (line 20)
— since v is the runner-up, the 2 other voters have voted for the winner and will not deviate.

Line 24 indicates the stage sequence where after reaching b, all voters except v abstain.
Line 26 indicates the stage sequence where we pursue, after reaching b a similar strategy

to line 14. If v prefers F(b) over any runner-ups, then we look at the run of iterative
plurality, and replace the last deviation of a voter to F(b) with a deviation of v. Now, all
voters except v can abstain. If v prefers a runner-up b, we let all voters for candidates that
are not b,F(b) or voter v to abstain, and then let v deviate. Since v has deviated to the
winner, all except v can abstain.



Finaly, in line 27 we are at a situation where, at most, only v wants to deviate, as in
line 19.

6 Conclusions and Future Work

The study of voting schemes has been challenged by the issue of manipulability, though some
manipulations have been shown to be NP-hard. As an alternative game-theoretic approach
to evaluating aggregation, it is possible to consider Nash equilibria as a solution concept for
preference aggregation over strategic agents. This leads to the need for characterising and
computing the resulting set of equilibria.

In this paper, we investigated characteristics of the recently proposed scheme of iterative
voting. Though it has been previously shown that iterative plurality voting converges to an
equilibrium, the set of equilibria has not been described. Here we complete this description.

This allows us, in turn, to consider the range of computational problems associated with
NE reachability, from finding an arbitrary NE without any limitations on its properties
to the problem of determining the iterative reachability of a specific NE profile. While
the former is trivially polynomial (one simply has to let the iteration converge, as has been
shown in [16]), we show that deciding on the reachability of a specific NE profile is NP-hard.

A multitude of NE property limitations may be considered between the two aforemen-
tioned extremes. For instance, one may seek an NE with a specific winner while remaining
within the basic iterative plurality voting model. However, we find that more interesting
NE features come from modifying the basic model by introducing voter bias. These modifi-
cations of the iterative voting model, in fact, have not been studied before, and we address
this gap in our paper. Specifically, we consider the two most popular voter biases: truth-
biased voters and lazy voters. Besides modifying the set of possible NE outcomes, voter
bias also affects the complexity of finding a representative of the set. In particular, we show
that the complete set of all iterative truth-biased plurality voting equilibria is computable
in polynomial time.

Similarly, in the case of lazy voters (the most real-world voter model we have that
incorporates abstention), it is also possible to find, in polynomial time, all the stable states
of the iterative process that are Nash equilibria. In fact, we characterise the complete set of
all stable states of the iterative process, though deciding on the reachability of an arbitrary
a priori chosen stable state by the iterative process remains an open question.

7 Acknowledgments

This research has been co-financed by the European Union (European Social Fund — ESF)
and Greek national funds through the Operational Program “Education and Lifelong Learn-
ing” of the National Strategic Reference Framework (NSRF) — Research Funding Program:
THALES; and by ESRC grant RES- 000-22-2731; and by Microsoft Research through its
PhD Scholarship Programme, Israel Science Foundation grant #1227/12, the Israel Min-
istry of Science and Technology — Knowledge Center in Machine Learning and Artificial
Intelligence grant #3-9243, the Google Inter-University Center for Electronic Markets and
Auctions, and the Intel Collaborative Research Institute for Computational Intelligence
(ICRI-CI).



References

[1] S. Airiau and U. Endriss. Iterated majority voting. In Algorithmic Decision Theory,
volume 5783 of LNCS, pages 38–49. Springer, 2009.

[2] S. Branzei, I. Caragiannis, J. Morgenstern, and A. D. Procaccia. How bad is selfish
voting? In AAAI, 2013.

[3] S. Chopra, E. Pacuit, and R. Parikh. Knowledge-theoretic properties of strategic voting.
In Logics in Artificial Intelligence, volume 3229 of LNCS, pages 18–30. Springer, 2004.

[4] Y. Desmedt and E. Elkind. Equilibria of plurality voting with abstentions. In ACM
EC, pages 347–356, 2010.

[5] A. Dhillon and B. Lockwood. When are plurality rule voting games dominance-solvable?
Games and Economic Behavior, 46(1):55–75, 2004.

[6] B. Dutta and J.-F. Laslier. Costless honesty in voting. in 10th International Meeting
of the Society for Social Choice and Welfare, Moscow, 2010.

[7] R. Farquharson. Theory of Voting. Yale University Press, 1969.

[8] T. Feddersen and W. Pesendorfer. Voting behavior and information aggregation in
elections with private information. Econometrica, 65(5):1029–1058, 1997.

[9] T. J. Feddersen, I. Sened, and S. G. Wright. Rational voting and candidate entry under
plurality rule. American Journal of Political Science, 34(4):1005–1016, 1990.

[10] A. Gibbard. Manipulation of voting schemes. Econometrica, 41(4):587–602, 1973.

[11] U. Grandi, A. Loreggia, F. Rossi, K. B. Venable, and T. Walsh. Restricted manipu-
lation in iterative voting: Condorcet efficiency and borda score. In 3rd International
Conference on Algorithmic Decision Theory, ADT-2013, pages 181–192, 2013.

[12] N. S. Kukushkin. Acyclicity of improvements in finite game forms. International
Journal of Game Theory, 40(1):147–177, 2011.

[13] J.-J. Laffont. Incentives and the allocation of public goods. In Handbook of Public
Economics, volume 2, chapter 10, pages 537–569. Elsevier, 1987.

[14] J.-F. Laslier and J. W. Weibull. A strategy-proof condorcet jury theorem. Scandinavian
Journal of Economics, 2012.

[15] O. Lev and J. S. Rosenschein. Convergence of iterative voting. In AAMAS, volume 2,
pages 611–618, 2012.

[16] R. Meir, M. Polukarov, J. S. Rosenschein, and N. R. Jennings. Convergence to equilibria
of plurality voting. In AAAI, pages 823–828, 2010.

[17] R. B. Myerson and R. J. Weber. A theory of voting equilibria. The American Political
Science Review, 87(1):102–114, 1993.

[18] S. Obraztsova, E. Markakis, and D. R. M. Thompson. Plurality voting with truth-biased
agents. In SAGT, 2013.

[19] A. Reijngoud and U. Endriss. Voter response to iterated poll information. In AAMAS,
2012.



[20] M. A. Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and cor-
respondence theorems for voting procedures and social welfare functions. Journal of
Economic Theory, 10(2):187–217, 1975.

[21] D. R. M. Thompson, O. Lev, K. Leyton-Brown, and J. S. Rosenschein. Empirical
aspects of plurality election equilibria. In AAMAS, 2013.

[22] L. Xia and V. Conitzer. Stackelberg voting games: Computational aspects and para-
doxes. In AAAI, pages 805–810, 2010.

Zinovi Rabinovich
Mobileye Vision Technologies Ltd.
Jerusalem, Israel
Email: zr@zinovi.net

Svetlana Obraztsova
National Technical University of Athens
Athens, Greece
Email: svetlana.obraztsova@gmail.com

Omer Lev
Hebrew University of Jerusalem
Jerusalem, Israel
Email: omerl@cs.huji.ac.il

Evangelos Markakis
Athens University of Economics and Business
Athens, Greece
Email: markakis@gmail.com

Jeffrey S. Rosenschein
Hebrew University of Jerusalem
Jerusalem, Israel
Email: jeff@cs.huji.ac.il


