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Abstract

We study stability of cooperative games with restricted interaction, in the model that was in-
troduced by Myerson [18]. We show that the cost of stabilityof such games (i.e., the subsidy
required to stabilize the game) can be bounded in terms of natural parameters of their interac-
tion graphs. Specifically, we prove that if the treewidth of the interaction graph is k, then the
relative cost of stability is at most k + 1, and this bound is tight for all k ≥ 2. Also, we show
that if the pathwidth of the interaction graph is k, then the relative cost of stability is at most k.

1 Introduction
Coalitional game theory models scenarios where groups of agents can work together profitably: the
agents form teams, or coalitions, and each coalition generates a payoff, which then needs to be
shared among the members of that coalition. The agents are assumed to be selfish, so the payoffs
should be divided so that each agent is satisfied with his share. In particular, it is desirable to
allocate the payoffs in such a way that no group of agents can do better by deviating from their
current coalitions and embarking on a project of their own; the set of all payoff division schemes
that have this property is known as the core of the game. However, this requirement turns out to be
very strong: indeed, there are many games that have an empty core.

There are several ways to capture the intuition behind the notion of the core while relaxing the
core constraints. For instance, one can assume that deviation comes at a cost, so players will not
deviate unless the profit from doing so exceeds a certain threshold; formalizing this approach leads to
the notions of ε-core and least core. Alternatively, one can assume that the deviators are non-myopic,
and will not attempt a deviation if it may be followed by a counter-deviation that makes them worse
off; this idea is captured by the notion of bargaining set. Yet another approach, which was pioneered
by Myerson [18], is based on the idea that communication among agents may be limited, and agents
cannot form a deviating coalition unless they can communicate with each other. In more detail, the
communication network among the agents is described by an interaction graph, where agents are
nodes, and an edge denotes the presence of a communication link; allowable coalitions correspond
to connected subgraphs of the interaction graph. Myerson’s model can be seen as a special case of a
restriction scheme known as partition systems (see Chapter 5 in Bilbao [6] for an overview). Finally,
coalitional stability may be achieved via subsidies: an external party may be willing to stabilize the
game by offering a lump sum to the agents as long as they form some desired coalition structure. The
minimal subsidy required in order to guarantee stability is known as the cost of stability (CoS) [4]
(in what follows, it will be convenient to use a modified version of this notion known as relative cost
of stability (RCoS ) [17], which is defined as the ratio between the minimal total payoff needed to
ensure stability and the total value of an optimal coalition structure).

In this paper, we study the interplay between the latter two concepts, namely, restricted interac-
tion and the cost of stability. Our goal is to bound the (relative) cost of stability of a game in terms of
natural parameters of its interaction graph. One such parameter is the treewidth: this is a combina-
torial measure of graph structure that ranges from 1 (a tree or a forest) to n−1 (a complete graph on
n vertices), and, intuitively, says whether the graph is close to being a tree. A closely related notion
is that of pathwidth, which measures how close the graph is to being a path. We are motivated by
the classic result of Demange [9], who showed that if the interaction graph is a tree then the core of
the game is not empty. Given this result, it is natural to ask if games whose interaction graphs have
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small treewidth are close to having a non-empty core.

Our Contribution Our main contribution is a complete characterization of the relationship between
the treewidth of the interaction graph and the cost of stability. We show that if the treewidth of the
interaction graph of a game G is k, then the relative cost of stability of G is at most k+1. Moreover,
we demonstrate that this bound is tight whenever k ≥ 2. We also show that the bound on the relative
cost of stability can be improved to k if the pathwidth of the interaction graph is k, and this is also
tight.

Related Work There is a significant body of work on subsidies in cooperative games. Many of the
earlier papers focused on cost-sharing games, where agents share the cost of a project, rather than
its profits (see, for example, [15, 11]). For profit-sharing games, Bachrach et al. [4] have recently
introduced the notion of cost of stability (CoS), which is defined as the minimal subsidy needed
to stabilize such games. Bachrach et al. gave bounds on the cost of stability for several classes of
coalitional games, and analyzed the complexity of computing the cost of stability in weighted voting
games. Several groups of researchers have extended this analysis to other classes of coalitional
games [19, 16, 2, 17, 12, 13]. In particular, Meir et al. [17] and Greco et al. [13] studied questions
related to the CoS in games with restricted cooperation, providing bounds on the CoS for some
simple graphs.

It is well known that many graph-related problems that are computationally hard in the general
case become tractable once the treewidth of the underlying graph is bounded by a constant (see,
e.g., [8]). There are several graph-based representation languages for cooperative games, and for
many of them the complexity of computational questions that arise in cooperative game theory (such
as finding an outcome in the core or an optimal coalition structure) has been bounded in terms of
the treewidth of the corresponding graph [14, 3, 5, 12]. However, in the general case bounding the
treewidth of the Myerson graph (except for the special case of width 1) does not guarantee a tractable
solution for these computational questions [13]. Moreover, the notion of treewidth was mostly
applied in the context of algorithmic analysis of cooperative games; to the best of our knowledge,
our work is the first to employ treewidth to prove a game-theoretic result that is not computational
in nature.

2 Preliminaries
We will now present the definitions that will be used in this paper. In what follows, we use boldface
lowercase letters to denote vectors, and uppercase letters to denote sets of agents.

A transferable utility (TU) game is a tuple G = 〈N, v〉, where N = {1, . . . , n} is a finite set
of agents and v : 2N → R is the characteristic function of the game. We assume that v(∅) = 0.
Also, unless explicitly stated otherwise, we restrict our attention to games where the characteristic
function takes non-negative values only, i.e., v(S) ≥ 0 for all S ⊆ N .

A TU game G = 〈N, v〉 is superadditive if v(S ∪ T ) ≥ v(S) + v(T ) for every S, T ⊆ N such
that S ∩ T = ∅; it is monotone if v(S) ≤ v(T ) for every S, T ⊆ N such that S ⊆ T . Further, G is
said to be simple if for all S ⊆ N it holds that v(S) ∈ {0, 1}. Note that, unlike, e.g., [20], we do not
require simple games to be monotone; this allows us to use the inductive argument in Section 3.2. A
coalition S in a simple game G = 〈N, v〉 is said to be winning if v(S) = 1 and losing if v(S) = 0.

Following [1], we assume that agents may form coalition structures. A coalition structure over
N is a partition of N into disjoint subsets. The value of a coalition structure CS over N , denoted
by v(CS ), is given by v(CS ) =

∑
S∈CS v(S). We denote the set of all coalition structures over

N by CS(N), and write OPT (G) = max{v(CS ) | CS ∈ CS(N)}. CS is said to be optimal if
v(CS ) = OPT (G). Note that in superadditive games v(N) = OPT (G).

Payoffs and Stability Having split into coalitions and generated profits, agents need to divide the
gains among themselves. A payoff vector is simply a vector x = (x1, . . . , xn) ∈ Rn

+, where the i-th
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coordinate is the payoff to agent i ∈ N . We denote the total payoff to a set S ⊆ N by x(S), i.e., we
write x(S) =

∑
i∈S xi. We say that a payoff vector x is a pre-imputation for a coalition structure

CS if for all S ∈ CS it holds that x(S) = v(S). A pair of the form (CS ,x), where CS ∈ CS(N)
and x is a pre-imputation for CS , is referred to as an outcome of the game G = 〈N, v〉; an outcome
is individually rational if xi ≥ v({i}) for every i ∈ N . If x is a pre-imputation for CS that is
individually rational, it is called an imputation for CS . We say that an outcome (CS ,x) of a game
G = 〈N, v〉 is stable if x(S) ≥ v(S) for all S ⊆ N . The set of all stable outcomes of G is called the
core of G, and is denoted Core(G). We let S(G) denote the set of all payoff vectors (not necessarily
pre-imputations) that satisfy the stability constraints, i.e., we set

S(G) = {x ∈ Rn | x(S) ≥ v(S) for all S ⊆ N}.

We refer to payoff vectors such that x(N) ≥ OPT (G) as super-imputations; note that S(G) consists
of super-imputations only.

The Relative Cost of Stability of a game G is the minimal total payoff that stabilizes the game.
Formally, we set

RCoS (G) = inf

{
x(N)

OPT (G)
| x ∈ S(G)

}
.

Note that RCoS (G) ≥ 1 for every TU game G, and RCoS (G) = 1 implies Core(G) 6= ∅.

Interaction Graphs and Treewidth An interaction network over N is a graph H = 〈N,E〉.
Given a game G = 〈N, v〉 and an interaction network over N , we define a game G|H = 〈N, v|H〉
by setting v|H(S) = v(S) if S forms a connected subgraph of H , and v|H(S) = 0 otherwise; that
is, in G|H a coalition S ⊆ N may form if and only if S forms a connected subgraph of H .

A tree decomposition of H is a tree T with the set of nodes V (T ) that has the following proper-
ties:

1. Each node of T is a subset of N .

2. For every pair of nodes X,Y ∈ V (T ) and every i ∈ N , if i ∈ X and i ∈ Y then for any node
Z on the (unique) path between X and Y in T we have i ∈ Z.

3. For every edge e = {i, j} of E there exists a node X ∈ V (T ) such that e ⊆ X .1

The width of a tree decomposition T is tw(T ) = maxX∈V (T ) |X| − 1; the treewidth of H is
defined as tw(H) = min{tw(T ) | T is a tree decomposition of H}. Examples of graphs with
low treewidth include trees (whose treewidth is 1) and series-parallel graphs (whose treewidth is at
most 2), see, e.g., [7].

Given a subtree T ′ of a tree decomposition T (we use the term “subtree” to refer to any con-
nected subgraph of T ), we denote the agents that appear in the nodes of T ′ by N(T ′). Conversely,
given a set of agents S ⊆ N , we let T (S) denote the subgraph of T induced by the node set
{X ∈ V (T ) | X ∩ S 6= ∅}; it is not hard to check that T (S) is a subtree of T for every S ⊆ N .
Given a tree decomposition T of H and a node R ∈ V (T ), we can set R to be the root of T . In this
case, we denote the subtree rooted in a node S ∈ V (T ) by TS .

A tree decomposition of a graph H such that T is a path is called a path decomposition of H .
The pathwidth of H is defined as pw(H) = min{tw(T ) | T is a path decomposition of H}. It is
known that for any graph H , tw(H) ≤ pw(H) and pw(H) = tw(H) ·O(log(n)).

1We note that a tree decomposition of hypergraphs is defined in the same way, except that every hyperedge must be
contained in some node.
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3 Treewidth and the Cost of Stability
Our goal in this section is to provide a general upper bound on the cost of stability for TU games
whose interaction networks have bounded treewidth. We start by proving a bound for simple games;
we then show how to extend it to the general case.

3.1 Simple Games

Algorithm 1: STABLE-PAYOFF-TW(G = 〈N, v〉 , H, k, T )

Fix an arbitrary R ∈ V (T ) to be the root;
t← 0, N1 ← N , x← 0n;
for A ∈ V (T ), traversed from the leaves upwards do

t← t+ 1;
if there is some S ⊆ N(TA) ∩Nt such that v|H(S) = 1 then

for i ∈ A ∩Nt do
xi ← 1

Nt+1 ← Nt \N(TA);
// remove all agents in N(TA) from the entire tree

else
Nt+1 ← Nt;

return x = (x1, . . . , xn);

We will now show that if G is a game with a set of agents N and H is an interaction network over
N then RCoS (G|H) ≤ tw(H)+1. Our proof is constructive: we design an algorithm (Algorithm 1)
that receives as its input a simple game G = 〈N, v〉, a network H , a parameter k, and a tree
decomposition T of H of width of at most k, and outputs a stable super-imputation for G|H . Briefly,
Algorithm 1 picks an arbitrary node R ∈ V (T ) to be the root of T and traverses the nodes of T from
the leaves towards the root. Upon arriving at a node A, it checks whether the subtree TA rooted in A
contains a coalition that is winning in G|H (note that we have to check every subset of N(TA)∩Nt,
since G|H is not necessarily monotone). If this is the case, it pays 1 to all agents in A and removes
all agents in TA from every node of T . Note that every winning coalition in TA has to be connected,
so either it is fully contained in a proper subtree of TA or it contains agents in A. The reason for
deleting the agents in TA is simple: every winning coalition that contains members of TA is already
stable (one of its members is getting a payoff of 1). The algorithm then continues up the tree in the
same manner until it reaches the root. Note that Algorithm 1 is very similar to the one proposed
by Demange [9]; however, Algorithm 1 may pay 2 · OPT (G|H) if H is a tree.2 Moreover, while
Demange’s algorithm runs in polynomial time, Algorithm 1 may require exponential time, since it
is designed to work for non-monotone simple games. However, if the simple game given as input is
monotone, a straightforward modification (check whether v|H(S) = 1 only for S = N(TA) rather
than for every S ⊆ N(TA)) will make it run in polynomial time.

Theorem 3.1. For every simple game G = 〈N, v〉 and every interaction network H over N it holds
that RCoS (G|H) ≤ tw(H) + 1.

Proof. Let T be a tree decomposition of H such that tw(T ) = k. Suppose first that G|H is su-
peradditive. This means that any two winning coalitions in G|H intersect. Hence, for every pair

2This is because Algorithm 1 operates on the tree decomposition T of H , which has nodes of size 2. In this special case
we can modify our algorithm by only paying one of the agents in A—the one that does not appear above A in the tree. The
resulting payoff vector would then coincide with the one constructed by Demange’s algorithm.
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of winning coalitions S1, S2 ⊆ N the subtrees T (S1) and T (S2) intersect. This implies that there
exists a node A ∈ V (T ) that belongs to the intersection of all subtrees that correspond to winning
coalitions in T (this fact is known as Helly’s Theorem for Trees), and hence intersects every win-
ning coalition. Therefore we can stabilize the game by paying 1 to every agent in A. Thus, our total
payment is |A| ≤ tw(T ) + 1 ≤ k + 1.

We now turn to the more general case of arbitrary simple games. Let x be the output of Algo-
rithm 1. We claim that x is stable (i.e., x ∈ S(G|H)) and x(N) ≤ k + 1.

To prove stability, consider a coalition S with v|H(S) = 1; we need to show that x(S) > 0.
Suppose for the sake of contradiction that x(S) = 0; this means that each agent in S is deleted
before he is allocated any payoff. Consider the first time step when an agent in S is deleted; suppose
that this happens at step t when a node A ∈ V (T ) is processed. Clearly for an agent in S to be
deleted at this step it has to be the case that T (S) ∩ TA 6= ∅. Further, it cannot be the case that
S ∩ (A ∩ Nt) 6= ∅, since each agent in A ∩ Nt is assigned a payoff of 1 at step t, and we have
assumed that x(S) = 0. Therefore, T (S) must be a proper subtree of TA. Let B be the root of
T (S), and consider the time step t′ < t when B is processed. At time t′, all agents in S are still
present in T , so the node B meets the if condition in Algorithm 1, and therefore each agent in B gets
assigned a payoff of 1. This is a contradiction, since B is the root of T (S), and therefore B∩S 6= ∅,
which implies x(S) > 0.

It remains to show that x(N) ≤ (k + 1)OPT (G). To this end, we will construct a specific
coalition structure CS∗ and argue that x(N) ≤ (k + 1)v(CS∗).

The coalition structure CS∗ is constructed as follows. Let At be the node of the tree considered
by Algorithm 1 at time t, and let St = N(TAt

) ∩ Nt, i.e., St is the set of all agents that appear in
TAt

at time t. Let T ∗ be the set of all values of t such that At meets the if condition in Algorithm 1.
For each t ∈ T ∗ the set St contains a winning coalition; let Wt be an arbitrary winning coalition
contained in St. Finally, let L = N \ (∪t∈T∗Wt), and set

CS∗ = {L} ∪ {Wt | t ∈ T ∗}.

Observe that CS∗ is a coalition structure, i.e., a partition of N . Indeed, L ∩Wt = ∅ for all t ∈ T ∗,
and, moreover, if i ∈ Wt for some t > 0, then i was removed from T at time t, and cannot be a
member of coalition Wt′ for t′ > t. Further, we have v(CS∗) = |T ∗|.

To bound the total payment, we observe that no agent is assigned any payoff at time t 6∈ T ∗, and
each agent that is assigned a payoff of 1 at time t ∈ T ∗ is a member of At. Hence we have

x(N) =
∑
t∈T∗

x(At) ≤
∑
t∈T∗

|At| ≤
∑
t∈T∗

(k + 1)

= (k + 1)|T ∗| = (k + 1)v(CS∗) ≤ (k + 1)OPT (G),

which proves that RCoS (G) ≤ k + 1.

We note that under the payment scheme constructed by Algorithm 1 the payoff of every agent is
either 1 or 0. Note also that the proof of Theorem 3.1 goes through as long as G|H is simple, even
if G itself is not simple.

3.2 The General Case
Using Theorem 3.1, we are now ready to prove our main result.

Theorem 3.2. For every game G = 〈N, v〉 and every interaction network H over N it holds that
RCoS (G|H) ≤ tw(H) + 1.

Proof. We first prove the claim for all integer-valued games. We use an inductive argument on
OPT (G|H) = m. If OPT (G|H) = 1 then in particular G|H is simple, so we are done by Theo-
rem 3.1. Now suppose that our claim is true for all m′ < m; we will show that it holds for m. To
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simplify notation, we identify v with v|H , i.e., we write v in place of v|H throughout the proof. We
define the following simple game G′ = 〈N, v′〉:

v′(S) =

{
1 if v(S) > 0
0 otherwise

By Theorem 3.1, there exists a super-imputation x′ such that x′(S) ≥ v′(S) for all S ⊆ N and
x′(N) ≤ (tw(H) + 1)v(CS ′), where CS ′ is an optimal coalition structure over G′. Moreover, we
can assume that x′ ∈ {0, 1}n, as Algorithm 1 outputs such a super-imputation. We define a game
G′′ = 〈N, v′′〉 by setting

v′′(S) = max{0, v(S)− x′(S)}.
Note that v′′(S) ∈ Z+ for all S ⊆ N , since x′ ∈ {0, 1}n and G is integer-valued. Moreover, let
CS ′′ be an optimal coalition structure for G′′, and let CS ′′+ = {S ∈ CS ′′ | v′′(S) > 0}. We have∑

S∈CS ′′

v′′(S) =
∑

S∈CS ′′+

v′′(S) =
∑

S∈CS ′′+

v(S)− x′(S).

Moreover, for every S ∈ CS ′′+ we have v(S) − x′(S) > 0; in particular this means that v(S) > 0,
which implies that v′(S) = 1 ≤ x′(S). Therefore for any S ∈ CS ′′+ we have

v′′(S) = v(S)− x′(S) ≤ v(S)− 1 < v(S).

We conclude that ∑
S∈CS ′′

v′′(S) =
∑

S∈CS ′′+

v′′(S) <
∑

S∈CS ′′+

v(S) ≤ m.

Thus, the value of an optimal coalition structure over G′′ is strictly less than m, i.e., we can apply
the induction hypothesis to G′′. This means that there is a super-imputation x′′ such that x′′(N) ≤
(tw(H) + 1)v′′(CS ′′) and x′′(S) ≥ v′′(S) for all S ⊆ N . We set x = x′ + x′′. We will now show
that x(N) ≤ (tw(H) + 1)OPT (G) and x(S) ≥ v(S) for all S ⊆ N .

First, observe that for all S ⊆ N we have x(S) = x′(S) + x′′(S) ≥ x′(S) + v′′(S) ≥ x′(S) +
v(S)−x′(S) = v(S), so x is a stable super-imputation for G. Now, let CS ′′ be an optimal coalition
structure over G′′, and consider CS ′′ \CS ′′+, i.e., the set of all coalitions of value 0 in CS ′′. We can
assume without loss of generality that CS ′′ \ CS ′′+ is a singleton, i.e., there is only one coalition of
value 0 in CS ′′; we denote this coalition by S0. Let CS ′ be an optimal coalition structure over G′,
and let CS ′+ = {S ∈ CS ′ | v′(S) = 1}. Set N∗ = N \ S0; then we have

x′(N∗) ≥
∑

S∈CS ′+

x′(S ∩N∗) ≥
∑

S∈CS ′+

v′(S ∩N∗) = |{S ∈ CS ′+ | S ∩N∗ 6= ∅}|.

Let t∗ = {S ∈ CS∗+ | S ∩N∗ 6= ∅} and let t0 = {S ∈ CS∗+ | S ⊆ S0}. We denote the number of
coalitions in CS∗+ that intersect N∗ by t∗, and the number of those who are contained in S0 by t0.
The total value of CS ′ is thus |CS ′+| = t∗ + t0.

We are now ready to bound x(N). Indeed, we have

x(N) = x′(N) + x′′(N) ≤ (tw(H) + 1)v′′(CS ′′) + (tw(H) + 1)v′(CS ′)

= (tw(H) + 1)

 ∑
S∈CS ′′+

(v(S)− x′(S)) + |CS ′+|


= (tw(H) + 1)

 ∑
S∈CS ′′+

v(S)− x′(N∗) + |CS ′+|


≤ (tw(H) + 1)

(
v(CS ′′+)− t∗ + |CS ′+|

)
= (tw(H) + 1)

(
v(CS ′′+) + t0

)
(1)
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Further, we have t0 =
∑

S∈CS ′+:S⊆S0
v′(S) ≤

∑
S∈CS ′+|S⊆S0

v(S), so the final term in (1) is at

most (tw(H) + 1)
(
v(CS ′′+) +

∑
S∈CS ′+:S⊆S0

v(S)
)

. This is a sum over a partition of (a subset
of) N , so its total value is at most that of OPT (G|H), which concludes the proof for integer-valued
games.

To see why the result still holds for non-integer-valued games, we make the following observa-
tion. Given a game G = 〈N, v〉, we can consider the game εG = 〈N, vε〉 given by vε(S) = εv(S)
for every S ⊆ N ; we note that if G is simple, then for any ε > 0 Algorithm 1 can be applied to
the game εG and hence Theorem 3.1 remains true for εG. Moreover, in εG every agent receives
a payoff of either ε or 0. Further, when defining the modified characteristic function v′, we can
set ε = minS⊆N{v(S) | v(S) > 0} and let v′(S) = ε whenever v(S) > 0 (instead of setting
v′(S) = 1). The rest of the proof can be modified appropriately (with a different ε chosen at each
iteration); in particular, instead of using induction on OPT (G|H), we use induction on the number
of coalitions with non-zero value.

The RCoS of any cooperative game, even with unrestricted cooperation, is at most
√
n (see [4,

16]). Thus, we obtain RCoS (G|H) ≤ min{tw(H) + 1,
√
n}, assuming that coalition structures are

allowed. Moreover, when applied to superadditive games, Theorem 3.2 implies that there is some
stable super-imputation x such that x(N) ≤ (tw(H) + 1)v(N).3

Finally, since a simple superadditive game can be viewed as a collection of intersecting sets, we
obtain the following corollary, which may be of independent interest.

Corollary 3.3. Let H = 〈N,E〉 be a graph, and let Rk = 〈N,F , k〉 be an instance of HITTING
SET, where F = {Sj}mj=1 is a collection of pairwise intersecting subsets of N , and every Sj is
connected in H (i.e.,

〈
Sj , E|Sj

〉
is connected). Then for all k ≤ tw(H) − 1 it holds that Rk is a

“yes”-instance of HITTING SET and a hitting set of size (at most) k can be found efficiently.

3.3 Tightness
Demange [9] showed that if tw(H) = 1, then the game G|H admits a stable outcome, i.e.,
RCoS (G|H) = 1. This result is limited to games whose interaction networks are trees. How-
ever, we will now show that if the treewidth of the interaction network is at least 2, then the upper
bound of tw(H) + 1 proved in Theorem 3.2 is tight.

Theorem 3.4. For every k ≥ 2 there is a simple superadditive game G = 〈N, v〉 and an interaction
network H over N such that tw(H) = k and RCoS (G|H) = k + 1.

Proof. Instead of defining H directly, we will describe its tree decomposition T . There is one central
node A = {z1, . . . , zk+1}. Further, for every unordered pair I = {i, j}, where i, j ∈ {1, . . . , k+1}
and i 6= j, we define a set DI that consists of 7 agents and set N = A ∪

⋃
i 6=j∈{1,...,k+1}D{i,j}.

The tree T is a star, where leaves are all sets of the form {zi, zj , d}, where d ∈ D{i,j}. That is,
there are 7 ·

(
k+1
2

)
leaves, each of size 3. Since the maximal node of T is of size k+1, it corresponds

to some network whose treewidth is at most k. We set Di =
⋃

j 6=i D{i,j}; observe that for any two
agents zi, zj ∈ A we have Di ∩ Dj = D{i,j}. Given T , it is now easy to construct the underlying
interaction network H: there is an edge between zi and every d ∈ D{i,j} for every j 6= i; see
Figure 1 for more details.

For every unordered pair I = {i, j} ⊆ {1, . . . , k + 1}, let QI denote the projective plane
of dimension 3 (a.k.a. the Fano plane) over DI . That is, QI contains seven triplets of elements
from DI , so that every two triplets intersect, and every element d ∈ DI is contained in exactly 3
triplets in QI . Winning sets are defined as follows. For every i = 1, . . . , k + 1 and every selection

3Note that, while the proof for simple superadditive games is straightforward, we cannot use the inductive argument made
in Theorem 3.2 directly, as superadditivity may not be preserved; therefore, we must go through all steps of the proof.
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{
Q{i,j} ∈ Q{i,j}

}
j 6=i

the set {zi}∪
⋃

j 6=i Q{i,j} is winning. Thus for every zi there are 7k winning
coalitions containing zi, each of size 1 + 3k. Let us denote by Wi the set of winning coalitions
that contain zi; observe that for every d /∈ A, d appears in exactly 3 · 7k−1 winning coalitions in
Wi: d belongs to some D{i,j}, and is selected to be in a winning coalition with zi if a triplet Q{i,j}
containing d is joined to zi. There are 3 triplets in Q{i,j} that contain d, and there are 7k−1 ways to
choose the other triplets (seven choices from every one of the other k − 1 sets).

We first argue that the all winning coalitions intersect. Indeed, let Ci, Cj be winning coalitions
such that zi ∈ Ci, zj ∈ Cj . Then both Ci and Cj contain some triplet from Q{i,j}. Suppose
Q{i,j} ⊆ Ci, Q

′
{i,j} ⊆ Cj . Since Q{i,j}, Q

′
{i,j} ∈ Q{i,j}, they must intersect, and thus Ci and Cj

must also intersect. This implies that the simple game induced by these winning coalitions is indeed
superadditive and has an optimal value of 1. Note that if we pay 1 to each zi ∈ A, then the resulting
super-imputation is stable, since every winning coalition intersects A. To conclude the proof, we
must show that any stable super-imputation must pay at least k + 1 to the agents.

Given a stable super-imputation x, we know that x(Ci) ≥ 1 for every Ci ∈ Wi. Thus,∑
Ci∈Wi

x(Ci) ≥ 7k. We can write
∑

Ci∈Wi
x(Ci) as

∑
Ci∈Wi

x(Ci) =
∑

Ci∈Wi

xzi +
∑

d6=zi|d∈Ci

xd

 = 7kxzi +
∑

Ci∈Wi

∑
d 6=zi|d∈Ci

xd

= 7kxzi +
∑
d∈Di

1
∑

Ci∈Wi|d∈Ci

xd = 7kxzi +
∑
d∈Di

3 · 7k−1xd

= 7kxzi + 3 · 7k−1x(Di).

This immediately implies that xzi ≥ 1− 3
7x(Di). Observe that

∑
zi∈A x(Di) = 2

∑
i<j x(D{i,j}),

as each D{i,j} appears exactly twice in the summation: once in Di and once in Dj . Also, observe
that

∑
i<j x(D{i,j}) = x(N \A), so

k+1∑
i=1

x(Di) = 2x(N \A).

Finally,

x(N) = x(A) + x(N \A) =

k+1∑
i=1

xzi + x(N \A)

≥
k+1∑
i=1

(
1− 3

7
x(Di)

)
+ x(N \A) =

k+1∑
i=1

1− 3

7
2x(N \A) + x(N \A)

= k + 1 + (1− 6

7
)x(N \A) ≥ k + 1

Thus, the cost of stability in our game is at least k + 1.

We observe that Theorem 3.4 does not hold when k = 1, since this would stand in contradiction
to Demange’s theorem. Note that the width of our construction is at least 2 (each leaf is of size 3).
For ease of exposition, we provide a somewhat simpler construction for the case of k = 2 in full
detail.

Example 3.5. Consider the following game: there is a set Z = {z1, z2, z3} and three sets containing
four players each: A = {a1, . . . , a4}, B = {b1, . . . , b4} and C = {c1, . . . , c4}; we set N =
A ∪ B ∪ C ∪ Z. The interaction network H = 〈N,E〉 is defined as follows: z1 is connected by an
edge to all agents in A and B, z2 to all agents in B and C, and z3 to all agents in C and A.
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There are six winning coalitions:

W1,1 = {z1, a1, a4, b3, b1}; W1,2 = {z1, a2, a3, b2, b4}
W2,1 = {z2, b1, b4, c3, c1}; W2,2 = {z2, b2, b3, c2, c4}
W3,1 = {z3, c1, c4, a3, a1}; W3,2 = {z3, c2, c3, a2, a4}

Any two winning coalitions intersect, so the optimal coalition structure has a value of 1. Given a
stable super-imputation x, it must be that x(W1,1) ≥ 1, thus xz1 ≥ 1 − xa1

+ xa4
+ xb3 + xb1 .

A similar condition on W1,2 gives us xz1 ≥ 1 − xa2
+ xa3

+ xb2 + xb4 . This means that xz1 ≥
1− x(A)+x(B)

2 ; a similar computation gives us that xz2 ≥ 1− x(B)+x(C)
2 , and xz3 ≥ 1− x(A)+x(C)

2 .
Finally,

x(N) = x(Z) + x(A) + x(B) + x(C)

≥ 1− x(A) + x(B)

2
+ 1− x(B) + x(C)

2
+ 1− x(A) + x(C)

2
+ x(A) + x(B) + x(C)

= 3;

since paying 1 to z1, z2 and z3 is a stable super-imputation, we conclude that RCoS (G) = 3.

a1 

a2 

a3 a4 a5 

a6 a7 z1 

b1 

b2 

b4 
b5 

b6 b7 

c1 

c2 

c3 c4 c5 

c6 

c7 

z3 
z2 

b3 
z1 

z3 z2 

b1 b2 

b4 b5 

b6 b7 b3 

z1 z2 z1 z2 

z1 z2 z1 z2 
z1 z2 

z1 z2 z1 z2 

a1 a2 

a4 a5 

a6 a7 a3 

z1 z3 z1 z3 

z1 z3 z1 z3 
z1 z3 

z1 z3 z1 z3 

c4 c5 

c6 c7 c3 

z2 z3 z2 z3 

z2 z3 z2 z3 
z2 z3 

c1 c2 
z2 z3 z2 z3 

Figure 1: The interaction network H when k = 2 in Theorem 3.4. On the right there is the tree
decomposition T . There are three sets: A = D1,3 = {a1, . . . , a7}, B = D1,2 = {b1, . . . , b7} and
C = D2,3 = {c1, . . . , c7}. An edge connects z1 to all agents in A and B, z2 to B and C, and z3
to C and A. Agent z1 forms winning coalitions with triplets of agents from A and B that are on a
dotted line, Similarly, z2 and z3 form winning coalitions with their respective sets.

4 Pathwidth and the Cost of Stability
For some graphs we can bound not just their treewidth, but also their pathwidth. For example, for a
simple cycle graph both the treewidth and the pathwidth are equal to 2. For games over interaction
networks with bounded pathwidth, the bound of tw(H) + 1 shown in Section 3 can be tightened.

Theorem 4.1. For every TU game G = 〈v,N〉 and every interaction network H over N it holds
that RCoS (G|H) ≤ pw(H), and this bound is tight.
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Algorithm 2: STABLE-PAYOFF-PW(G = 〈N, v〉 , H, k, T )

Set T = (A1, . . . , Am);
x← 0n;
I ← {i ∈ N | v({i}) = 1};
for i ∈ I do

xi ← 1;

N1 ← N \ I;
// Remove all singletons
t← 1;
for j = 1 to m do

if there is some S ⊆ N(TAj
) ∩Nj such that v(S) = 1 then

for i ∈ Aj ∩Nj do
if i ∈ N(TAj ) \Aj then

// Pay agents unless it is the first node they
appear in

xi ← 1

Nj+1 ← Nj \N(TAj
);

// Remove all agents in N(TAj
) from the entire path

else
Nj+1 ← Nj ;

return x = (x1, . . . , xn);

Proof. Note first that it suffices to show that our bound holds for simple games; we can then use
the reduction described in the proof of Theorem 3.2. For simple games, our proof is very similar
to the proof of Theorem 3.1; however, here we will show that in every node Aj that satisfies the if
condition of Algorithm 2 we can identify an agent that we do not need to pay.

Our algorithm first deals with winning coalitions of size 1. This step can be justified as follows.
Suppose we remove all agents in I = {i ∈ N | v({i}) = 1} and construct a stable super-imputation
x′ for the game G′|H , where G′ = 〈N ′, v′〉, N ′ = N \ I , and v′(S) = v(S) for each S ⊆ N \ I ,
so that x′(N ′) ≤ pw(H). Now, consider a super-imputation x for G given by xi = 1 for i ∈ I ,
xi = x′i for i ∈ N ′. We have x(N) = x′(N ′) + |I|, and, furthermore, x(S) ≥ v|H(S) for every
S ⊆ N , i.e., x is a stable super-imputation for G|H . On the other hand, it is not hard to check that
OPT (G|H) = OPT (G′|H) + |I|. Hence, we obtain

x(N)

OPT (G|H)
=

x′(N ′) + |I|
OPT (G′|H) + |I|

<
x′(N ′)

OPT (G′|H)
≤ pw(H),

i.e., x witnesses that RCoS (G|H) ≤ pw(H). Thus, we begin Algorithm 2 by paying all winning
singletons 1 and ignoring them (and any winning coalitions that contain them) for the rest of the
execution; note, however, that we do not remove the winning singletons from H , i.e., we do not
modify our path decomposition or its width.

Next we show stability. Given a node Aj , we must make sure that each winning coalition in
N(TAj

) is paid at least 1. By the proof of Theorem 3.1, paying all agents in Aj is sufficient. Note,
however, that there is no need to pay an agent i that is not in N(TAj

) \ Aj : since we removed all
winning singletons, every winning coalition in N(TAj

) that contains i (and that is not yet stabilized)
must also contain another agent from Aj .

Finally, we must show that in every paid node Aj , j ≥ 2, there is at least one agent that is not
paid. Note that Aj has a unique child Aj−1. If Aj ⊆ Aj−1, then no agent in Aj is being paid (as
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they had already been paid when processing Aj−1). Otherwise, there is some agent i ∈ Aj \ Aj−1.
Since T is a path and all nodes containing i must be connected, we have i /∈ N(Aj) \ Aj . Thus
i is not paid. Note that in Algorithm 2 the agents in A1 are not paid in the first iteration of the
algorithm. To show tightness, we slightly modify the construction from Section 3.3 (we omit the
full details).

5 Discussion
Our main result shows a tight connection between the treewidth of an interaction network and the
maximal subsidy required to stabilize a game played by the interacting agents. Simply put, as the
interaction becomes “simpler”, the game becomes easier to stabilize.

5.1 Implications
Our results have broad implications regarding the stability of cooperative games. While interaction
networks have been introduced as an external restriction independent of the value function, in some
families of cooperative games this restriction is implicit in the game description. A prominent exam-
ple is induced subgraph games (ISG) by Deng and Papadimitriou [10], where agents correspond to
vertices of a graph, and the value of a coalition is the sum of weights of the edges between coalition
members. Imposing the very same graph as an interaction network will preserve the value of any
coalition structure in the game. Therefore, we can deduce a bound on the RCoS of a given ISG
directly from its description, by measuring the treewidth of its underlying graph. Other families that
implicitly induce a Myerson graph are matching games and some variations of network-flow games.

Hypergraphs Myerson’s model can be generalized to use hypergraphs rather than graphs [21].
Since our methods work with tree decompositions rather than the interaction networks themselves,
they apply equally well to this case. Interestingly, the underlying hypergraph of games defined via
marginal contribution nets [?] also induces a Myerson (hyper)graph, which can in turn be used to
bound the required subsidy.

Our result implies a separation between games whose interaction networks are acyclic, which
have been shown to be stable [9], and other games. That is, treewidth of 1 implies RCoS of 1, but for
any higher value of treewidth, the RCoS is somewhat higher. In particular, the result of Demange
is not a special case of our theorem, although it can be proved using a very similar technique (i.e.
by breaking to game to multiple simple games). Yet, a stronger bound is guaranteed if we can also
bound the pathwidth of the interaction network—which is, however, quite restrictive.

The least-core While the CoS is a stability measure that reflects required subsidies, it is strongly
related to other stability measures, such as the least core (An approximation of the core that allows
coalitions to be “almost satisfied”). In particular, the CoS equals the minimal value of the weak-ε-
core (multiplied by n), and provides an upper bound on the minimal value of the strong-ε-core [17].
It follows any bound on the treewidth or pathwidth of the underlying graph immediately supplies us
with a bound on the level of dissatisfaction of coalitions in the least core.

5.2 Future work
While the bound on the subsidy is tight in the worst case, it may be further improved by considering
finer restrictions on the structure of the interaction network and/or the value function itself.

More generally, we believe that this new connection between a well-studied graph parameter
such as the treewidth, and the stability properties of a related game, is fascinating. We look forward
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to studying how such parameters can be used to reveal other hidden connections in both cooperative
and non-cooperative game theory.
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