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Abstract. The theoretical guarantees provided by voting have distinguished it
as a prominent method of preference aggregation among autonomousagents.
However, unlike humans, agents usually assign each candidate an exact utility,
whereas an election is resolved based solely on each voter’s linear ordering of
candidates. In essence, the agents’ cardinal (utility-based) preferences are em-
bedded into the space of ordinal preferences. This often gives rise toa distortion
in the preferences, and hence in the social welfare of the outcome.
In this paper, we formally define and analyze the concept of distortion. We fully
characterize the distortion under different restrictions imposed on agents’ cardinal
preferences; both possibility and strong impossibility results are established. We
also tackle some computational aspects of calculating the distortion. Ultimately,
we argue that, whenever voting is applied in a multiagent system, distortion must
be a pivotal consideration.

1 Introduction

Social choice mechanisms have long been in the service of computer-scientists, a tool in
the quest to reach consensus among agents. The problem is especially acute, as multiple
heterogeneous, self-interested agents may (and often do) have conflicting preferences.
Voting is a well-studied and well-understood method of preference aggregation, with
numerous applications in multiagent systems. In practice,an election is held, and the
winning candidate is declared to be the agreed choice; the candidates can be beliefs,
joint plans [7], schedules [9], movies [8], or indeed entities of almost any conceivable
sort.

A social choice function, also known as avoting protocol, is used to determine the
winner of an election. The agents specify their preferencesby reporting a linear order
relation on the candidates. Suchordinal preferences are only natural when the voters are
humans; a human might prefer, say, Ehud Olmert to Benjamin Netanyahu as the prime
minister of Israel, but would probably find it impossible to evaluate each candidate
precisely in terms of utility.

For computational agents, on the other hand, calculating utilities is a way of (ar-
tificial) life. In fact, even in settings where voting is used, it is usually assumed that
agents compute the utility of each alternative. For instance, Ghosh et al. [8] describe
a movie recommender system that relies on voting; with the guarantees provided by
voting schemes, the system is able to generate convincing explanations for different
recommendations, and is robust to small errors in the evaluation of the user’s prefer-
ences. Aspects of these preferences are represented as dimensions, and every movie has



a value (or utility) with respect to each dimension. The exact utilities are not taken into
account: one movie is preferred over another with respect toa dimension if the former’s
utility is greater than the latter’s.

So in some settings, designers of multiagent systems do awaywith exactcardinal
(utility-based) preferences in order to exploit differentproperties of voting. Essentially,
the cardinal preferences of agents are embedded into the space of ordinal preferences
over candidates, in a way somewhat reminiscent of embeddings of metric spaces [10].
This embedding of preferences entails a degree ofdistortion, which depends on the
properties of the social choice function used in the election.

Informally, we define the distortion of a social choice function to be the maximal
ratio between the total utility of the candidate that maximizes social welfare, and the
total utility of the candidate that is elected. The maximum is taken over all possible
cardinal preference profiles, subject to certain restrictions.

We first explore distortion when the only restriction imposed on cardinal preferences
is that all voters have the same sum of utilities for candidates. We establish some strong
impossibility results regarding the degree of distortion in this model. Further, we show
that these results also hold in an alternative model, where utilities are not constrained,
but weighted voting is used. Another impossibility result is computational in nature:
we prove that a decision problem associated with the computation of distortion isNP-
hard.1

The impossibility results mentioned above suggest that distortion is an obstacle that
should be taken into account when applying voting in multiagent systems. Nevertheless,
they motivate us to examine a model where the preferences of users are more restricted;
in this context, we reformulate distortion asmisrepresentation. We examine the mis-
representation of different well-known social choice functions. In addition, we analyze
complexity issues related to calculating misrepresentation.

The paper proceeds as follows. In Section 2 we review some relevant issues in
social choice theory. In Section 3, we put forward results concerning the distortion of
social choice functions in models where preferences are little constrained. In Section 4,
we examine the more specific setting of misrepresentation, especially with respect to
important social choice functions. Finally, we give our conclusions in Section 5.

2 Preliminaries

In this section we give a brief introduction to classic social choice theory. Readers are
urged to consult [3] for more information.

Let N be the set of voters,|N | = n, and letC be the set of candidates,|C| = m;
we assume thatn ≥ 2 andm ≥ 3, unless explicitly stated otherwise. We usually use
the indexi to refer to voters, and the indexj to refer to candidates. When we discuss
attributes of voters or candidates, the index of a voter usually appears in superscript,
whereas the index of a candidate appears in subscript.

1 Many recent articles have explored other computational aspects of voting; see for example [5,
6, 12, 2].



LetL be the set of all linear orders2 onC. Each voter has ordinal preferences�i∈ L.
We refer to�= 〈�1, . . . ,�n〉 ∈ LN as anordinal preference profile.

Given�i, let j1, . . . , jm be indices of candidates such thatj1 �i j2 �i · · · �i jm;
we denote bypi

l the candidate that voteri ranks in thel’th place, i.e.,pi
l = jl. We denote

by lij the position in which candidatej is ranked by voteri; it holds thatpi
lij

= j.

2.1 Social Choice Functions

A social choice function, also known as avoting protocol,3 is a functionF : LN → C,
i.e., a mapping from preferences of voters to candidates. Weshall consider the following
voting protocols:

– Scoring protocolsare defined by a vectorα = 〈α1, . . . , αm〉.4 Given �∈ LN ,
the score of candidatej is sj =

∑
i αlij

. The candidate who wins the election is

F (�) = argmaxjsj . Some of the well-known scoring protocols are:

• Borda: α = 〈m − 1,m − 2, . . . , 0〉.
• Plurality: α = 〈1, 0, . . . , 0〉.
• Veto: α = 〈1, . . . , 1, 0〉.

Some of our results (in particular regarding complexity) concentrate on scoring
protocols, as these voting protocols can be concisely represented by the vectorα.

– Copeland: we say that candidatej beatsj′ in a pairwise election if|{i ∈ N : lij <

lij′}| > n/2. The scoresj of candidatej is the number of candidates thatj beats in
pairwise elections, and Copeland(�) = argmaxjsj .

– Maximin: the maximin score of candidatej is the candidate’s worst performance
in a pairwise election:sj = minj′ |{i ∈ N : lij < lij′}|, and Maximin(�) =
argmaxjsj .

– Single Transferable Vote(STV): the election proceeds in rounds (a total ofm − 1
rounds); in each round, the candidate with the fewest votes ranking him first among
the remaining candidates is eliminated.

– Plurality with Runoff: similar to STV, but there are only two rounds. After the first
round, only the two candidates that maximize|{i ∈ N : lij = 1}| survive. In the
second round, a pairwise election is held between these two candidates.

– Bucklin: for any candidatej andl ∈ {1, . . . ,m}, let Bj,l = {i ∈ N : lij ≤ l}. It
holds that Bucklin(�) = argminj(min{l : |Bj,l| > n/2}).

It is also to possible to consider weighted voting. A voteri with weight K and
preferences�i is taken into account asK voters, each with preferences�i.

2 Binary relations that satisfy antisymmetry, transitivity, and totality.
3 We use the two terms interchangeably.
4 More formally, a scoring protocol is defined by a sequence of such vectors, one for each value

of m, but we abandon this formulation for clarity’s sake.



2.2 Properties of Social Choice Functions

In this subsection we formulate several criteria that are commonly used to compare
social choice functions.

– Majority criterion:[∃j ∈ C s.t. |{i ∈ N : lij = 1}| > n/2] ⇒ F (�) = j.
– Participation: ifF (�) = j and one adds a ballot that ranksj abovej′, then the

winner is notj′ (it is better to vote honestly than not to vote at all).
– Monotonicity: If F (�) = j, and�′ is an ordinal preference profile where some of

the voters rankj higher compared to� (but none rankj lower), thenF (�′) = j.
– Consistency: if the electorate is partitioned in two and a candidate wins in both

parts, then he wins overall.

3 Distortion of General Cardinal Preferences

Let U = (N ∪ {0})C be the set of all possible cardinal preferences onC. Each voter is
associated with preferences inU , u

i = 〈ui
1, . . . , u

i
j〉, whereui

j ∈ N ∪ {0} is voteri’s
utility for candidatej; denoteuj =

∑
i ui

j , and denote thecardinal preference profile
by u = 〈u1, . . . ,un〉 ∈ UN .

When voting is used to aggregate preferences, agents’ cardinal preferences are
translated into ordinal preferences in the natural way.

Definition 1. Let u ∈ UN and�∈ LN . � is derivedfrom u iff both of the following
conditions hold:

1. ∀i ∈ N, j1, j2 ∈ C : ui
j1

> ui
j2

⇒ j1 �i j2.
2. ∀i ∈ N, j1, j2 ∈ C : ui

j1
= ui

j2
⇒ j1 �i j2 ∨ j2 �i j1, but not both.

Definition 2. Let F be a social choice function. Thedistortionof F with n voters and
m candidates, denoted∆n

m(F ), is max
maxj uj

uF (�)
, where the first maximum is taken over

all u ∈ UN and�∈ LN , under the restrictions that there existsK ∈ N such that for
all votersi,

∑
j ui

j = K ≥ 1, and� is derived fromu. It is additionally assumed that
in case several candidates are tied in the election, the one that minimizes social welfare
is elected.5 If the denominator is 0 but the numerator is not 0, we write∆n

m(F ) = ∞,
where∞ > k for all k ∈ N.

Less formally, the distortion ofF with n voters andm candidates is the worst-case
ratio between the utility of the candidate that maximizes social welfare and the winner
according toF , when one considers all possible cardinal preference profiles u with
fixed utility-sum for each voter, and derived ordinal preference profiles�.

Remark 1.Clearly, when one eschews the assumption that
∑

j ui
j = K for all i, it is

not possible to bound the distortion even when a small numberof voters and candidates
is considered. For example, assumen = 3 andm = 2, andF is the plurality protocol.
Let u1

1 = c for somec > 2, u1
2 = 0, u2

1 = u3
1 = 0, u2

2 = u3
2 = 1. The derived ordinal

preference profile is1 �1 2, 2 �2 1, 2 �3 1, therefore candidate 2 is chosen by the
plurality protocol. The distortion isc/2.

5 This assumption is justified as we engage here in aworst-caseanalysis.



The following proposition is a strong impossibility result; it implies that no voting
protocol is optimal in terms of distortion, even for very small values ofn andm.

Proposition 1. LetF be a social choice function. Then∆3
2(F ) > 1.

Proof. Consider the cardinal utility profileu1
1 = 3, u1

2 = 2, u2
1 = 0, u2

2 = 5, u3
1 = 3,

u3
2 = 2. The only derived ordinal preference profile is1 �1 2, 2 �2 1, 1 �3 2. Since

u1 < u2, if F (�) = 1 then we are done. Otherwise, supposeF (�) = 2, and consider
the cardinal preference profileu1

1 = 5, u1
2 = 0, u2

1 = 0, u2
2 = 5, u3

1 = 5, u3
2 = 0.

Again, the only derived preference profile is�, but nowu1 > u2. ut

Definition 3. LetF be a social choice function. We say thatF has unbounded distortion
if there existsm ∈ N such that for allk ∈ N, ∆n

m(F ) > k for infinitely many values of
n.

Proposition 2. LetF be a scoring protocol with

α2 ≥
1

m − 1

∑

l 6=2

αl (1)

for somem. ThenF has unbounded distortion.

Proof. Let n such thatm − 1 dividesn. Consider the profileu ∈ UN where for every
candidatej 6= 1, exactlyn/(m − 1) votersi have utilityui

j = 1 andui
j′ = 0 for every

j′ 6= j. Let� be a derived ordinal preference profile; define for all

Pj,l = {i ∈ N : pi
l = j}.

It must hold that for allj 6= 1, |Pj,1| = n/(m − 1). Moreover, it is possible to derive
an ordinal preference profile such that for allj 6= 1 and l 6= 2, |Pj,l| = n/(m − 1),
and with respect to candidate 1,|P1,2| = n. Without loss of generality, let� be such
a profile. The score of candidate 1 in this election isnα2, and the score of every other
candidate is n

m−1

∑
l 6=2 αl. Further, it holds thatu1 = 0, anduj = n/(m − 1) for

all j 6= 1. By Equation (1) and the assumption that in case of a tie the candidate that
minimizes utility wins, it follows that candidate 1 wins theelection, but for any other
candidate, say candidate 2,u2

u1
= n/(m−1)

0 . Thus, the distortion ofF is unbounded. ut

It follows from Proposition 1 that in many reasonable scoring protocols, the distor-
tion is unbounded. In particular:

Corollary 1. The Borda and Veto Protocols have unbounded distortion.

3.1 An Alternative Model

So far, we have analyzed the distortion with respect to cardinal preference profiles that
satisfy, for all voters,i:

∑
j ui

j = K. If one allows for weighted voting, it is possible

to obtain a generalization of this model. Indeed, letKi =
∑

j ui
j , possiblyKi 6= Ki′

for i 6= i′. However, when an election is held based on a derived ordinalpreference



profile �, voter i has weightKi. The definition of distortion can be reformulated in
the obvious way to apply to this model; we denote the worst-case ratio between the
candidate that maximizes utility and the one that wins the weighted election governed
by F , when differentKi are allowed, by∆̃n

m(F ).
The next proposition shows that the two models are equivalent with respect to dis-

tortion.

Proposition 3. For all social choice functionsF , n1 andm, ∆n1
m (F ) ≤ ∆̃n1

m (F ), and
there existsn2 ≥ n1 such that∆̃n1

m (F ) ≤ ∆n2
m (F ).

Proof. For the first inequality, letn1,m ∈ N. Let u ∈ UN and�∈ LN that maximize,
in the first model, the ratiomaxj uj

uF (�)
, subject to: for alli,

∑
j ui

j = K, and� is derived

from u. In the second model,F (�) is as before, since all voters have identical weights
in the election (K). Thereforemaxj uj

uF (�)
in the second model is at least as large as in the

first.
Regarding the second inequality, letn1,m ∈ N, and letũ ∈ UN and a derived

�̃ ∈ LN that maximize the ratiomaxj euj

uF ( e�)
(with weighted voting).̃u may not be a valid

cardinal preference profile in the first model, but we construct a profile that is. Let
n2 =

∑
i Ki; for each one of the original voters̃i = 1, . . . , n1, considerKei votersi

whose utility isui
j = u

ei
j ·

∏
ei′ 6=ei K

ei′ . LetK =
∏

ei K
ei; it holds that for alli,

∑
j ui

j = K,
henceu is valid in the first model. Further, for every candidatej it holds thatuj =

K · ũj . Notice that�̃
ei

can be derived fromui for every voteri that corresponds to

ĩ; denote the ordinal preference profile that is obtained by replicating �
ei K

ei times,
once for each voter that corresponds toĩ, by�. In the new election, we haveKei voters
casting identical ballots to the one cast by voterĩ, and this voter had weightKei in the
original election. Therefore,F (�̃) with weighted voting is identical toF (�) without.
To conclude, we have obtained that:

maxj uj

uF (�)
=

K maxj ũj

KũF (�̃)
=

maxj ũj

ũF (�̃)
.

ut

Corollary 2. LetF be a social choice function. Theñ∆3
2(F ) > 1.

Corollary 3. LetF be a social choice function.F has unbounded distortion in the first
model iffF has unbounded distortion in the second model.

3.2 Complexity Issues

The existence of an algorithm that efficiently computes (or approximates) the distortion
of a given voting protocol is, clearly, a basic prerequisitefor comparing voting protocols
in terms of distortion. As we shall see in Subsection 4.1, oneof the building blocks of
such an algorithm is a procedure that efficiently decides thefollowing problem:



Definition 4. In theM IN-SCORE-MAX -UTIL (MSMU) problem, we are given the num-
ber of votersn, the number of candidatesm, a scoring protocolF defined by parame-
tersα1, . . . , αm, for each voteri, a sequence of nonnegative integersbi = 〈bi

1, . . . , b
i
m〉,

andy, z ∈ N. We are asked whether there aren permutations onC, π1, . . . , πn, such
that for the cardinal preference profileu defined byui

j = bi
πi(j) and a derived ordinal

preference profile�, it holds thatu1 ≥ y buts1 ≤ z.

To put it less formally, we are given a scoring protocol, and for each voter, a se-
quence ofm numbers. We know what the utilities of each voter are in general, but it is
still left to determine how each voter assigns these utilities to candidates. Essentially,
this is equivalent to choosing an ordinal preference relation for each voter, and then
assigning the maximal element inbi to pi

1, the second largest element topi
2, etc. — and

this is the approach that will later become relevant.

Remark 2.It is not assumed here that
∑

l b
i
l = K for all i.

Proposition 4. MSMU isNP-complete.

Proof. Reduction from KNAPSACK; omitted due to space constraints.

4 Misrepresentation

Impossibility results regarding the general model, manifested above as Propositions 1,
2, and (to a lesser degree) 4, motivate us to impose restrictions on agents’ possible
cardinal preference profiles. In this section, we examine a slight variation on the concept
of distortion that allows for possibility results.

Monroe [11] defines a measure ofmisrepresentation; using our notations, voteri’s
misrepresentation with respect to candidatej isµi

j = lij−1. To put it differently, if voter
i ranks candidatej first, theni’s misrepresentation w.r.t. toj is 0, the misrepresentation
w.r.t. the second highest-ranked candidate is 1, and so forth. The misrepresentation of
candidatej is µj =

∑
i µi

j .

Definition 5. Let F be a social choice function. Themisrepresentationof F with n
voters andm candidates, denotedµn

m(F ), ismax
µF (�)

minj µj
, where the maximum is taken

over all ordinal preference profiles�i and their associated misrepresentation values. If
several candidates are tied in an election, the one that maximizes misrepresentation is
elected.

Misrepresentation values can, of course, be interpreted ascardinal preferences (e.g.,
ui

j = m−µi
j −1), albeit restricted ones: a voter’s ordinal preference relation�i fixes a

(perfect) matching between candidates and the utilities0, 1, . . . ,m− 1.6 Consequently,
the misrepresentation of a social choice functionF can be easily reformulated as distor-
tion. In fact, similar results can be obtained, but the latter formulation favors candidates

6 Unlike the general model, in the current setting there is a unique derivationof misrepresenta-
tion values from ordinal preferences, and vice versa.



that are ranked last by few voters, whereas the former formulation rewards candidates
that are placed first by many voters.

When is misrepresentation an issue? The following scenario provides a compelling,
albeit somewhat artificial, example. Consider the meeting scheduling problem discussed
in [9]: scheduling agents schedule meetings on behalf of their associated users, based
on given user preferences; a winning schedule is decided in an election. Say three pos-
sible schedules are being voted on. These schedules, being fair, conflict with at most
two of the requirements specified by any user. In other words,a user’s misrepresenta-
tion with respect to a certain schedule is 0 if there are no conflicts, 1 if there is a single
conflict, and 2 if there are two conflicts.7 In this case, having no conflicts at all is vastly
superior to having at least one conflict, as even one conflict may prevent a user from
attending a meeting. As noted above, this issue is taken intoaccount in the calculation
of misrepresentation — emphasis is placed on candidates that were often ranked first.

Proposition 1 stated that there is no social choice functionwith distortion 1. Clearly
this is not the case here:

Proposition 5. Let m ∈ N, and letF be a scoring protocol with parametersα1 ≥
α2 ≥ . . . ≥ αm. Thenµn

m(F ) = 1 for all n iff there exista andb such thatαl = −a·l+b
for all l = 1, . . . ,m.

Proof. Assume first that there exista andb such thatαl = −a·l+b for all l = 1, . . . ,m,
and letn ∈ N, �∈ LN . Candidatej’s score is:

∑

i

αlij
=

∑

i

[−a · lij + b] =
∑

i

[−a(µi
j + 1) + b] = n[b − a] − a

∑

i

µi
j ,

so the candidate that maximizes the score is the one that minimizes misrepresentation.
In the other direction, assume there do not exista andb such thatαl = −a · l+ b for

all l = 1, . . . ,m. It follows that there existl0, a anda′ such thata 6= a′, andα1−α2 = a
but α1 − αl0 = a′(l0 − 1), anda, a′ > 0.8 Assume w.l.o.g. thata > a′. Consider the
following ballot:n′ voters vote2 �i 1 �i . . ., n′ − x voters rank1 �i 2 �i . . ., andy
voters cast their ballots in a way thatpi

1 = 1, pi
l0

= 2, for somex, y ∈ N (we have that
n = 2n′ − x + y). When comparing the scores of candidates 2 and 1, we have:

s2 − s1 = xa − ya′(l0 − 1). (2)

Further, it holds that:
µ2 − µ1 = −x + y(l0 − 1). (3)

It is sufficient to show that it is possible to make candidate 2win the election, and
in particular guarantee that candidate 2’s score be higher than 1’s, but simultaneously
ensure that candidate 2’s misrepresentation be higher than1’s. Indeed, by Equations (2)
and (3) both conditions are satisfied whenever

x

l0 − 1
< y <

a

a′ ·
x

l0 − 1
. (4)

7 We implicitly assume that for each user there is one schedule with no conflicts, one with a
single conflict, and one with two conflicts.

8 It is safe to assume thata > 0 (and thereforea′ > 0), because ifα1 = α2 then the result is
obvious.



Choosingx > 3(l0 − 1) a′

a−a′ , it is possible to choosey that satisfies Equation (4).
Moreover, it is clearly now possible to choosen′ large enough so as to guarantee that
candidate 2 wins the election, since for all candidatesj 6= 1, 2, there are at mosty voters
such thatpi

2 = j, andα1 > αl for all l 6= 1. ut

Corollary 4. For all n,m, µn
m(Borda) = 1.

Corollary 4 establishes the optimality of the Borda protocol in terms of misrepre-
sentation. Unfortunately, this protocol is notoriously easy to manipulate, and is plagued
by other disadvantages. Therefore, it is worthwhile to explore the misrepresentation of
other protocols.

The concept of unbounded misrepresentation can be defined analogously to Defini-
tion 3. In the framework of misrepresentation, we have the following proposition.

Proposition 6. Let F be a scoring protocol with parametersα1 ≥ α2 ≥ . . . ≥ αm.
ThenF has unbounded misrepresentation iffα1 > α2.

Proof. Suppose first thatα1 > α2. Let n,m ∈ N, �∈ LN , and assume w.l.o.g. that
argminjµj = 1 andF (�) = 2. Let k = |{i ∈ N : li1 = 1}| be the number of
voters that ranked candidate 1 first. The number of points candidate 2 received is at
mosts2 ≤ (n − k)α1 + kα2, and the number of points candidate 1 received is at least
s1 ≥ kα1. We have:

(n − k)α1 + kα2 ≥ s2 ≥ s1 ≥ kα1.

Therefore,k ≤ n α1

2α1−α2
; this implies thatµ1 ≥ n α1−α2

2α1−α2
. As µ2 ≤ n(m − 1), we

have that
µ2

µ1
≤

n(m − 1)

n α1−α2

2α1−α2

=
(m − 1)(2α1 − α2)

α1 − α2
.

For a fixedm, this expression is a constant, even asn grows.
In the other direction, supposeα1 = α2, and consider�∈ LN where for all voters

i, 1 �i 2 �i · · · . It holds thatµ1 = 0, µ2 = n. We can assume w.l.o.g. thatF (�) = 2,
since in case of a tie a candidate that maximizes misrepresentation is elected, hence
the winner must have misrepresentation at least as high asµ2. The proposition follows
from the fact thatµ2

µ1
= ∞. ut

Corollary 5. The Veto protocol has unbounded misrepresentation.

Remark 3.Corollary 5 implies that the Participation, Monotonicity,and Consistency
properties (even together) do not guarantee that a voting protocol has bounded misrep-
resentation, as the Veto protocol satisfies all three properties.

Proposition 7. For all n,m, µn
m(Plurality) = µn

m(Plurality with Runoff) = m − 1.

Proof. Omitted due to space constraints.

Proposition 8. For all n,m, µn
m(Copeland) ≤ m − 1.



Proof. Let �∈ LN ; w.l.o.g. suppose argminjuj = 1 and Copeland(�) = 2. Addi-
tionally, denote byC ′ the set of candidates that candidate 2 beats in a pairwise elec-
tion, |C ′| = k. For each candidatej ∈ C ′, at leastdn/2e voters haveli2 < lij . Let
Ci = {j ∈ C : li2 < lij}; for all i, li2 = m − |Ci|. It holds that

∑
i |C

i| ≥ kdn/2e, but
this implies that:

µ2 =
∑

i

µi
2 =

∑

i

(li2 − 1) =
∑

i

[(m − 1) − |Ci|] ≤ n(m − 1) − kdn/2e.

We distinguish two cases:
Case 1:k = m. In this case, candidate 1 has not won the pairwise election against

2, and thus there are at leastdn/2e votersi such thatli2 < li1. This implies thatµ1 ≥

dn/2e, and henceµ2

µ1
≤ n(m−1)−mdn/2e

dn/2e ≤ m − 2.
Case 2:k ≤ m− 1. Candidate 1 won at mostk pairwise elections. In each pairwise

election that 1 did not win against candidatej, at leastdn/2e voters votedlij < li1. By
the same reasoning as before,µ1 ≥ (m − k)dn/2e. Therefore,

µ2

µ1
≤

n(m − 1) − kdn/2e

(m − k)dn/2e
≤

2m − k − 2

m − k
. (5)

The ratio in Equation (5) on the right is monotonic increasing as a function ofk
when1 ≤ k ≤ m − 1, and thus is bounded bym − 1. ut

Proposition 9. For all n,m, µn
m(Bucklin) ≤ m.

Proof. Let �∈ LN ; assume w.l.o.g. that argminjuj = 1, and Bucklin(�) = 2. Let
l0 = min{l ∈ {1, . . . ,m} : ∃j s.t. Bj,l > n/2}. At leastdn/2e votersi havepi

l = 2
for l ≤ l0. Therefore,µ2 ≤ dn/2e(l0−1)+bn/2c(m−1). We now examine two cases.

Case 1:l0 = 1. It cannot be the case thatB2,1 > n/2 andB1,1 > n/2 simulta-
neously. Therefore, it must be true that at leastdn/2e votersi haveli1 ≥ 2, and hence
µ1 ≥ dn/2e. We have thatµ2

µ1
≤ m − 1.

Case 2:l0 ≥ 2. At mostbn/2c votersi haveli1 ≤ l0−1, thereforeµ1 ≥ dn/2e(l0−
1). It holds that

µ2

µ1
≤

dn/2e(l0 − 1) + bn/2c(m − 1)

dn/2e(l0 − 1)
.

The ratio is maximized whenl0 = 2; it follows that µ2

µ1
≤ m. ut

Proposition 10. For all n,m, µn
m(Maximin) ≤ 2√

5−1
(m − 1) ≈ 1.62(m − 1).

Proof. Let �∈ LN . Assume w.l.o.g. that argminjuj = 1, and Maximin(�) = 2. Ad-
ditionally, suppose that candidate 2’s Maximin score isk. With foresight, we denote
c = 3−

√
5

2 . We distinguish two cases:
Case 1:k > cn. At leastcn votersi haveli2 < li1. In the worst case,(1− c)n voters

i voteli1 = 1, li2 = m, andcn voters haveli2 = 1 andli1 = 2. Therefore, in this case,

µ2

µ1
≤

(1 − c)

c
(m − 1) ≈ 1.62(m − 1).



Case 2:k ≤ cn. There exists a candidate, w.l.o.g. candidate 3, s.t. at most k voters
i haveli1 < li3, i.e., at least(1 − c)n voters do not rank 1 first. Sinceµ2 ≤ n(m − 1), it
holds that

µ2

µ1
≤

n(m − 1)

(1 − c)n
=

1

1 − c
(m − 1) ≈ 1.62(m − 1).

This concludes the proof.9 ut

Proposition 11. For all n,m, µn
m(STV ) ≤ 3

2 (m − 1).

Proof. Omitted due to space constraints.

Remark 4.It is easy to show that ifF is a voting protocol that satisfies the majority
criterion, thenµn

m(F ) ≤ 2(m − 1).

4.1 Complexity Issues

In this subsection we address complexity issues related to calculating misrepresentation.
We begin by reformulating the MSMU problem, presented in Section 3, in the context
of misrepresentation.

Definition 6. In the M IN-SCORE-M IN-M ISREPRESENTATION(MSMM) problem, we
are given the number of votersn, the number of candidatesm, a scoring protocolF
defined by parametersα = 〈α1, . . . , αm〉, andy, z ∈ N. We are asked whether there
exists�∈ LN such that it holds thatµ1 ≤ y buts1 ≤ z.

Unlike the general formulation of the problem, here we have:

Lemma 1. MSMM can be decided in time polynomial inn andm.

Proof. We describe a dynamic programming algorithm MIN-M ISREP, given as Algo-
rithm 1. The algorithm keeps a matrixA = (akl)k∈{0,...,n},l∈{0,...,y}; entryakl is the
minimal score candidate 1 may have under the constraints that k voters have cast their
vote, andµ1 ≤ l.

The correctness of the algorithm can be easily proven by induction onk. As y =
O(nm), the running time of the algorithm isO(n2m2). Now, the given instance of
MSMM is a “yes” instance iff the output of MIN-M ISREPis at mostz: an,y ≤ z. ut

We now consider the following problem:

Definition 7. In theLOSER-WITH-M IN-M ISREPRESENTATION(LWMM) problem, we
are given the number of votersn, the number of candidatesm, a scoring protocol
F defined by parametersα1, . . . , αm, andy ∈ N. We are asked whether there exists
�∈ LN such that it holds thatµ1 ≤ y but candidate 1 loses the election.

Lemma 2. LWMM can be decided in time polynomial inn andm.

9 c was chosen such that1−c

c
= 1

1−c
.



Algorithm 1
1: procedure M IN-M ISREP(n,m, α, y)
2: for l← 0, y do . Initialization
3: a0,l ← 0
4: end for
5: for k ← 1, n do
6: for l← 0, y do
7: q ← min{l, m− 1}
8: ak,l ← minp=0,...,q(ak−1,l−p + αp+1) . Induces rankings for candidate 1
9: end for

10: end for
11: return an,b

12: end procedure

Proof. Algorithm 1 can easily be adapted to return candidate 1’s minimal score, under
the former constraint thatµ1 ≤ y, and the additional constraint that exactlyn′ voters,
0 ≤ n′ ≤ n, satisfyli1 = 1. This can be accomplished, for example, by running MIN-
M ISREPonce for each value ofn′, and assuming thatn′ voters have already cast their
vote (ranking candidate 1 first), whereas the remainingn− n′ cast their vote according
to the algorithm.

For each value ofn′, it is possible to assume the remaining voters rank candidate 2
as high as possible, i.e., candidate 2 receivess2 = (n − n′)α1 + n′α2 points. Clearly,
there exists a value ofn′ such thats2 ≥ s1 iff the given instance of LWMM is a “yes”
instance.10 ut

Givenn, m, andα, we have shown so far that it is possible to find rankingsli1
ALG

for candidate 1, such that the associated misrepresentation of candidate 1 satisfies:

µALG
1 = min{µ : ∃ �∈ LN s.t. µ1 = µ ∧ candidate 1 loses the election}.

Ultimately, we would like to be able to computeµ(F ) = max
µF (�)

minj µj
; let �∗∈ LN

that maximizes this ratio, letµ∗
j be the associated total misrepresentation values of

candidates,s∗j be the associated scores, andlij
∗

be the associated rankings; assume
w.l.o.g. that argminju

∗
j = 1, andF (�∗) = 2.

Definition 8. Let F be a scoring protocol.F has thepopular loser propertyiff the
rankingsli1

ALG
are identical to the rankingsli1

∗
, up to the order of the voters.

Definition 9. LetF be a scoring protocol.F has theeven match propertyiff, givens∗1,
the rankingsli2

∗
are the ones that maximizeµ∗

2, under the constraints∗2 ≥ s∗1.

In other words, a scoring protocol has the popular loser property if any ordinal
preference profile such that candidate 1 has maximal misrepresentation, under the con-
straint that candidate 1 is not the winner, is optimal in the sense that candidate 1’s

10 It is enough to demand a weak inequality ins2 ≥ s1, as candidate 1 is the candidate that
minimizes the score while achieving misrepresentationµ1; if s2 = s1 then it must hold that
µ2 ≥ µ1, hence candidate 2 still wins the election.



ranking by voters is identical to candidate 1’s ranking in the preference profile that
maximizes misrepresentation. A scoring protocol has the even match property if, once
the above rankings for candidate 1 are known, in order to find the misrepresentation of
the protocol it is sufficient to find rankings for candidate 2 that maximize candidate 2’s
misrepresentation, while guaranteeing that 2 has a higher score than 1.

Certainly, ifF has both properties, then Lemma 2 is a step forward towards calcu-
lating the misrepresentation ofF . But are there protocols that possess both properties?

Example 1.The Plurality and Veto protocols have the popular loser property and the
even match property.

If so, some important protocols possess the properties. Characterizing more fully
the protocols that possess both properties remains an open question.

Theorem 1. Let F be a scoring protocol with the popular loser property and theeven
match properties. Then the problem of calculatingµn

m(F ) has a Fully Polynomial Time
Approximation Scheme (FPTAS).

Proof (Sketch).Observe the rankingsli1
ALG

fixed by the algorithm from the proof of
Lemma 2, on the given input. By the assumptions, it is sufficient to find rankingsli2 for
candidate 2 in a way thatµ2 is maximal, under the constraints2 ≥ sALG

1 .
The above problem reduces to the exact KNAPSACK problem with cardinality con-

straints (E-kKP). In this problem, we are givenn items, each with a weightwi and a
valuevi, and a weight limitK; the goal is to find a subsetS of items of sizek, that
maximizes

∑
i∈S vi, subject to

∑
i∈S wi ≤ K.

In our setting,li2 can take any value in{1, . . . ,m} \ {li1
ALG

}; let there be an item
associated with each possible value ofli2, i = 1, . . . , n (there aren(m− 1) items). The
value of the item associated withli2 = l is µi

2 = l−1, and its weight isα1−αl. Exactly
n items are to be chosen; the weight limit isnα1 − sALG

1 .
This is a polynomial time reduction. Indeed, given rankingsli2, i = 1, . . . , n such

that s2 ≥ sALG
1 , choosen corresponding items in the knapsack instance. The items’

total value is exactlyµ2. Moreover, the total weight associated with the items is at most
nα1 minus the total score of the associated rankings, which is atleastsALG

1 . The other
direction is similar.

Caprara et al. [4] present an FPTAS for E-kKP. Therefore, for anyε > 0, it is
possible to find (in polynomial time)µ2 such thatµ2 ≤ µ∗

2 ≤ (1 + ε)µ2. In addition,
recall thatµALG

1 = µ∗
1. Therefore:

(
µ∗

2

µ∗

1

)

(
µ2

µALG
1

) =
µALG

1 µ∗
2

µ∗
1µ2

=
µ∗

2

µ2
≤ 1 + ε.

ut

5 Conclusions

We have defined the distortion of a social choice function as the worst-case ratio be-
tween the total utility of the candidate that maximizes social welfare, and the elected



Voting Protocol Misrepresentation

Borda 1
Veto Unbounded

Plurality = m− 1
Plurality with Runoff = m− 1

Copeland ≤ m− 1
Bucklin ≤ m

Maximin ≤ 1.62(m− 1)
STV ≤ 1.5(m− 1)

Table 1.The misrepresentation of common voting protocols.

candidate. At first, we have focused on a model where, for all voters, the sum of utilities
is identical. We have shown that every social choice function is distorted, even when
the number of voters and the number of candidates are small. Moreover, we have es-
tablished a sufficient condition for unbounded distortion —a result which implies that
several well-known scoring protocols have unbounded distortion in the general model.
We have shown our model to be equivalent, in terms of distortion, to another model
where the voters’ cardinal preferences are unconstrained,but each voter’s weight is the
sum of its utilities. Finally, we have proven that a problem associated with calculating
distortion isNP-complete when utilities are unconstrained.

Motivated by the impossibility results mentioned above andthe work of Mon-
roe [11], we have reformulated the concept of distortion as misrepresentation. The main
difference between the two settings is, essentially, that in the misrepresentation setting
voters’ cardinal preferences are quite restricted. We haveestablished a necessary and
sufficient condition for a social choice function to be optimal in terms of misrepre-
sentation, and have also characterized the scoring protocols with unbounded misrepre-
sentation. More importantly, we have given bounds — in some cases tight — for the
misrepresentation of specific voting protocols; these bounds are summarized in Table 1.

Last, we have tackled the problem of calculating misrepresentation. Moving through
several sub-problems, we have ultimately demonstrated that there is a fully polynomial
time approximation scheme (FPTAS) for this problem, when the voting protocol is a
scoring protocol that possesses the popular loser and even match properties. It remains
an open issue to characterize the scoring protocols that have these properties.

The results presented in Section 3 suggest that distortion may be a major obstacle for
designers of multiagent systems who wish to apply voting. This is true, however, only if
the agents’ cardinal preferences are almost unconstrained. On the other hand, we have
seen in Section 4 that restricting the preferences overturns some of the impossibility
results.

In the context of restricted preferences, the results implythat the distortion of a
voting protocol should be a major criterion in the comparison of different protocols —
alongside other classical criteria like manipulability. For instance, whenever misrepre-
sentation is a concern (as in the meeting scheduling examplediscussed in Section 3),
one might prefer to employ the Borda protocol, which is optimal in terms of misrep-
resentation but highly manipulable, rather than the STV protocol, which is difficult to



manipulate [1] but has high misrepresentation. In a three candidate example, STV’s
misrepresentation might be 3 times higher than Borda’s; in the scheduling domain, this
might imply three times as many conflicts with user preferences — certainly a steep
price to pay for preventing strategic behavior.

We briefly mention two directions for future research. Our computational complex-
ity analysis of distortion is rather rough. It seems true that calculating distortion (or
even misrepresentation) in scoring protocols isNP-complete, but currently there is no
proof. Second, our approximation scheme relies on the popular loser and even match
properties; it remains an open issue to characterize the scoring protocols that have these
properties. Further, can these assumptions be abandoned?
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