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Abstract. The theoretical guarantees provided by voting have distinguished it
as a prominent method of preference aggregation among autoncageuss.
However, unlike humans, agents usually assign each candidate drughsg
whereas an election is resolved based solely on each voter’s lineangrdé
candidates. In essence, the agents’ cardinal (utility-based) pneéereare em-
bedded into the space of ordinal preferences. This often gives résgistortion

in the preferences, and hence in the social welfare of the outcome.

In this paper, we formally define and analyze the concept of distorti@enfuily
characterize the distortion under different restrictions imposed orisigandinal
preferences; both possibility and strong impossibility results are estathligVee
also tackle some computational aspects of calculating the distortion. Ultimately,
we argue that, whenever voting is applied in a multiagent system, distortish mu
be a pivotal consideration.

1 Introduction

Social choice mechanisms have long been in the service gbatmscientists, a tool in
the quest to reach consensus among agents. The problenedsadiyacute, as multiple
heterogeneous, self-interested agents may (and oftenagle)donflicting preferences.
\oting is a well-studied and well-understood method of erefice aggregation, with
numerous applications in multiagent systems. In practioeglection is held, and the
winning candidate is declared to be the agreed choice; thdidates can be beliefs,
joint plans [7], schedules [9], movies [8], or indeed enttbf almost any conceivable
sort.

A social choice functionalso known as aoting protoco] is used to determine the
winner of an election. The agents specify their preferegeeporting a linear order
relation on the candidates. Sustdinal preferences are only natural when the voters are
humans; a human might prefer, say, Ehud Olmert to Benjamtaryahu as the prime
minister of Israel, but would probably find it impossible teakiate each candidate
precisely in terms of utility.

For computational agents, on the other hand, calculatiigjag is a way of (ar-
tificial) life. In fact, even in settings where voting is usedis usually assumed that
agents compute the utility of each alternative. For ingaii@hosh et al. [8] describe
a movie recommender system that relies on voting; with trerantees provided by
voting schemes, the system is able to generate convinciplgreations for different
recommendations, and is robust to small errors in the etratuaf the user’s prefer-
ences. Aspects of these preferences are represented asiding and every movie has



a value (or utility) with respect to each dimension. The éxsitities are not taken into
account: one movie is preferred over another with respextiimension if the former’s
utility is greater than the latter’s.

So in some settings, designers of multiagent systems do aithyexactcardinal
(utility-based) preferences in order to exploit differendperties of voting. Essentially,
the cardinal preferences of agents are embedded into tlce spardinal preferences
over candidates, in a way somewhat reminiscent of embeddihmetric spaces [10].
This embedding of preferences entails a degredistbrtion, which depends on the
properties of the social choice function used in the electio

Informally, we define the distortion of a social choice fuantto be the maximal
ratio between the total utility of the candidate that maziesi social welfare, and the
total utility of the candidate that is elected. The maximugrtaken over all possible
cardinal preference profiles, subject to certain restrmiti

We first explore distortion when the only restriction impdsa cardinal preferences
is that all voters have the same sum of utilities for candislaiVe establish some strong
impossibility results regarding the degree of distortinrhis model. Further, we show
that these results also hold in an alternative model, whidigas are not constrained,
but weighted voting is used. Another impossibility ressltcomputational in nature:
we prove that a decision problem associated with the cortipotaf distortion isA/P-
hard?

The impossibility results mentioned above suggest thabidisn is an obstacle that
should be taken into account when applying voting in muéiggystems. Nevertheless,
they motivate us to examine a model where the preferenceseo are more restricted,;
in this context, we reformulate distortion assrepresentationWWe examine the mis-
representation of different well-known social choice ftimies. In addition, we analyze
complexity issues related to calculating misrepreseati

The paper proceeds as follows. In Section 2 we review sonewamel issues in
social choice theory. In Section 3, we put forward resultscenning the distortion of
social choice functions in models where preferences dledibnstrained. In Section 4,
we examine the more specific setting of misrepresentatgpeaally with respect to
important social choice functions. Finally, we give our clusions in Section 5.

2 Preliminaries

In this section we give a brief introduction to classic sbclaice theory. Readers are
urged to consult [3] for more information.

Let N be the set of voter§V| = n, and letC' be the set of candidatel}| = m;
we assume that > 2 andm > 3, unless explicitly stated otherwise. We usually use
the index: to refer to voters, and the indexto refer to candidates. When we discuss
attributes of voters or candidates, the index of a voter liysappears in superscript,
whereas the index of a candidate appears in subscript.

1 Many recent articles have explored other computational aspects ofjystia for example [5,
6,12,2].



Let £ be the set of all linear orderen C.. Each voter has ordinal preference’ss L.
We refer to-= (~1,...,=") € LV as arordinal preference profile
Given-1, letji, ..., jn be indices of candidates such that-* j, =°* --- =% j,.;
we denote by the candidate that votéranks in the'th place, i.e.p! = j;. We denote
by l§ the position in which candidatgis ranked by votet; it holds thatp!, = j.
J

2.1 Social Choice Functions

A social choice functiopalso known as &oting protocof is a functionF : £V — C,
i.e., a mapping from preferences of voters to candidateshat consider the following
voting protocols:

— Scoring protocolsare defined by a vectat = (ay,...,a,,).* Given ¢ LV,
the score of candidatgis s; = >, a;i. The candidate who wins the election is
J

F(>) = argmaxs;. Some of the well-known scoring protocols are:

e Borda = (m —1,m—2,...,0).

e Plurality: a = (1,0,...,0).

e Vetaa = (1,...,1,0).
Some of our results (in particular regarding complexityh@entrate on scoring
protocols, as these voting protocols can be concisely septed by the vectax.

— Copeland we say that candidatebeats;’ in a pairwise election if{i € N : l;ﬁ <
l5:}| > n/2. The scores; of candidatej is the number of candidates thabeats in
pairwise elections, and Copeland) = argmaxs;.

— Maximin the maximin score of candidafeis the candidate’s worst performance
in a pairwise elections; = miny [{i € N : [} < I},}[, and Maximirn(~) =
argmaxs;.

— Single Transferable VotSTV): the election proceeds in rounds (a totahof- 1
rounds); in each round, the candidate with the fewest vataiemg him first among
the remaining candidates is eliminated.

— Plurality with Runoff similar to STV, but there are only two rounds. After the first
round, only the two candidates that maximjfe € N : [; = 1}| survive. In the
second round, a pairwise election is held between thesedandidates.

— Bucklin for any candidatg andl € {1,...,m},letB;; = {i e N : I} <I}. It
holds that Bucklitt>-) = argmin,(min{l : |B;,| > n/2}).

It is also to possible to consider weighted voting. A votewith weight K and
preferences-? is taken into account a& voters, each with preferences.

2 Binary relations that satisfy antisymmetry, transitivity, and totality.

3 We use the two terms interchangeably.

4 More formally, a scoring protocol is defined by a sequence of suctorg one for each value
of m, but we abandon this formulation for clarity’s sake.



2.2 Properties of Social Choice Functions

In this subsection we formulate several criteria that amaroonly used to compare
social choice functions.

— Majority criterion:[3j € C s.t. [{i € N : I} =1}| > n/2] = F(>) = j.

— Participation: if F(>) = j and one adds a ballot that ranksbove;’, then the
winner is notj’ (it is better to vote honestly than not to vote at all).

— Monotonicity: If F'(>-) = j, and>' is an ordinal preference profile where some of
the voters rank higher compared te- (but none rankj lower), thenF' (') = j.

— Consistency: if the electorate is partitioned in two and addate wins in both
parts, then he wins overall.

3 Distortion of General Cardinal Preferences

Letid = (NU{0})® be the set of all possible cardinal preferenceg/oftach voter is
associated with preferencestif) u’ = <u§, ..., u%), whereu} € NU {0} is voteri's
utility for candidatej; denoteu; =}, uj, and denote theardlnal preference profile
byu = (ul,...,u") e UN.

When voting is used to aggregate preferences, agents’ ehngiaferences are
translated into ordinal preferences in the natural way.

Definition 1. Letu € U™ and~c L. ~ is derivedfrom v iff both of the following
conditions hold:

1.Vie N, ji1,jo€C: u§1>u§2:>j1 >'ij2.
2.Yi €N, ji,jo € C: ul, =ul, = j1 >"jaV j2 »" j1, but not both.

Definition 2. Let F' be a social choice function. Thkstortionof F' with n voters and
m candidates, denoted”, (F), is max ma"l “J , Where the first maximum is taken over

all w € YN and-c £V, under the restrlctlons that there exishs € N such that for
all votersi, >, u; = K > 1, and>- is derived fromu. It is additionally assumed that
in case several candldates are tied in the election, the loaeminimizes social welfare
is electec? If the denominator is 0 but the numerator is not 0, we wrlg (F) = oo,
whereco > k forall k£ € N.

Less formally, the distortion of" with n voters andn candidates is the worst-case
ratio between the utility of the candidate that maximizesaavelfare and the winner
according toF’, when one considers all possible cardinal preference psafilwith
fixed utility-sum for each voter, and derived ordinal prefere profiles-.

Remark 1.Clearly, when one eschews the assumption Egtug = K for all 4, it is
not possible to bound the distortion even when a small numibesters and candidates
is considered. For example, assume- 3 andm = 2, andF is the plurality protocol.
Letu} = cfor somec > 2, ul = 0, u? = u? = 0, u3 = u3 = 1. The derived ordinal
preference profile is ! 2,2 =2 1, 2 =2 1, therefore candidate 2 is chosen by the
plurality protocol. The distortion ig/2.

5 This assumption is justified as we engage herevimest-caseanalysis.



The following proposition is a strong impossibility resuttimplies that no voting
protocol is optimal in terms of distortion, even for very dhvalues ofn andm.

Proposition 1. Let F' be a social choice function. Thets(F) > 1.

Proof. Consider the cardinal utility profilel = 3, u} = 2, u? = 0, u2 = 5, u$ = 3,
u3 = 2. The only derived ordinal preference profilelis-! 2,2 =2 1, 1 =3 2. Since
u1 < ug, if F(>=) = 1 then we are done. Otherwise, suppé¥e-) = 2, and consider
the cardinal preference profitel = 5, ul = 0, u = 0, w3 = 5, u} = 5, u = 0.
Again, the only derived preference profilexis but nowu; > us. O

Definition 3. LetF' be a social choice function. We say tiiahas unbounded distortion
if there existsn € N such that for allk € N, A”, (F') > k for infinitely many values of
n.

Proposition 2. Let F' be a scoring protocol with

1
az2 —— > 1)
1#£2

for somem. ThenF has unbounded distortion.

Proof. Letn such thatn — 1 dividesn. Consider the profile. € 4~ where for every
candidatej # 1, exactlyn/(m — 1) votersi have utiIityu;l =1 anduj-/ = 0 for every
j' # j. Let= be a derived ordinal preference profile; define for all

Py ={i€N: p =j}

It must hold that for allj # 1, |P; 1| = n/(m — 1). Moreover, it is possible to derive
an ordinal preference profile such that for al¥4 1 andl # 2, |P;,;| = n/(m — 1),
and with respect to candidate |B; 2| = n. Without loss of generality, let be such
a profile. The score of candidate 1 in this electionds, and the score of every other
candidate s> >, ,, . Further, it holds thaty, = 0, andu; = n/(m — 1) for
all j # 1. By Equation (1) and the assumption that in case of a tie thdidate that
minimizes utility wins, it follows that candidate 1 wins tleéection, but for any other
candidate, say candidate%, = W. Thus, the distortion of is unbounded. O

It follows from Proposition 1 that in many reasonable sogipnotocols, the distor-
tion is unbounded. In particular:

Corollary 1. The Borda and Veto Protocols have unbounded distortion.

3.1 An Alternative Model

So far, we have analyzed the distortion with respect to nafgireference profiles that
satisfy, for all voters;: } uj = K. If one allows for weighted voting, it is possible
to obtain a generalization of this model. Indeed Aét= 3" v, possiblyK" # K?
for i # /. However, when an election is held based on a derived orgireierence



profile -, voteri has weightK ‘. The definition of distortion can be reformulated in
the obvious way to apply to this model; we denote the worseaatio between the
candidate that maximizes utility and the one that wins thigited election governed
by F', when different* are allowed, byA”, (F).

The next proposition shows that the two models are equivaléh respect to dis-
tortion.

Proposition 3. For all social choice functionsg”, n, andm, A™ (F) < A™

< A (F), and
there existsi; > n; such thatA?: (F) < Arz(F).

Proof. For the first inequality, let.;, m € N. Letu € U~ and~<c £V that maximize,
in the first model, the ratié‘%, subject to: for all, ), uj = K, and:- is derived

from u. In the second modekE'(>-) is as before, since all voters have identical weights

na 'IXJ

in the election ). Therefore‘— in the second model is at least as large as in the
first.

Regarding the second inequality, let,m € N, and letu € UN and a derived
= € £V that maximize the ratlé‘% (with weighted voting)z: may not be a valid
cardinal preference profile in the first model, but we cormgtauprofile that is. Let
ny = >, K% for each one of the original voteis= 1,...,ny, considerk’ votersi
whose utility isu’ —uj Iz SK7 . LetK = H~K2 |tholdsthatforallz Zju =K,
henceu is vaI|d in the first model. Further, for every candidaté holds thatu; =
K - u;. Notice that=" can be derived froms’ for every voter; that corresponds to
i; denote the ordinal preference profile that is obtained Ipjiaating ~i K1 times,
once for each voter that corresponds, tby -. In the new election, we ha§’ voters

casting identical ballots to the one cast by vateand this voter had Weigiiﬁ in the
original election. Thereforef’ (=) with weighted voting is identical té'(>-) without.
To conclude, we have obtained that:

max; uj K max; u; _ max; uj

uF(>) K’ﬁp(;—) ap(;) .

Corollary 2. Let F' be a social choice function. Thet (F) > 1.

Corollary 3. Let F' be a social choice functiort’ has unbounded distortion in the first
model iff i has unbounded distortion in the second model.

3.2 Complexity Issues

The existence of an algorithm that efficiently computes fmraximates) the distortion
of a given voting protocol is, clearly, a basic prerequiitecomparing voting protocols
in terms of distortion. As we shall see in Subsection 4.1, afrtbe building blocks of
such an algorithm is a procedure that efficiently decide$ath@ving problem:



Definition 4. IntheMIN-SCOREMAX-UTIL (MSMU) problem, we are given the num-
ber of votersn, the number of candidates, a scoring protocolF’ defined by parame-
tersas, .. ., a,,, for each votei, a sequence of nonnegative integers- (b, ..., b ),
andy, z € N. We are asked whether there argpermutations orC, 7', ..., 7", such
that for the cardinal preference profile defined byu;ﬂ = bjr,;(j) and a derived ordinal
preference profile-, it holds thatu; > y buts; < z.

To put it less formally, we are given a scoring protocol, aoddach voter, a se-
guence ofn numbers. We know what the utilities of each voter are in ganéut it is
still left to determine how each voter assigns these @#ito candidates. Essentially,
this is equivalent to choosing an ordinal preference mator each voter, and then
assigning the maximal elementiinto p¢, the second largest elementitg etc. — and
this is the approach that will later become relevant.

Remark 2.1t is not assumed here that, b} = K for all i.
Proposition 4. MSMU isA/P-complete.

Proof. Reduction from KNAPSACK; omitted due to space constraints.

4 Misrepresentation

Impossibility results regarding the general model, matéd above as Propositions 1,
2, and (to a lesser degree) 4, motivate us to impose restr&cton agents’ possible
cardinal preference profiles. In this section, we examitights/ariation on the concept
of distortion that allows for possibility results.

Monroe [11] defines a measure misrepresentatignusing our notations, voteis
misrepresentation with respect to candicy'ai@u;'- = lj- —1. To put it differently, if voter
i ranks candidatg first, theni’s misrepresentation w.r.t. tpis 0, the misrepresentation
w.r.t. the second highest-ranked candidate is 1, and sl. fohie misrepresentation of

candidatej is p1; = Y, pf.

Definition 5. Let F' be a social choice function. Thaisrepresentatioof F' with n
voters andn candidates, denoted’, (F), is max nﬁﬁ% where the maximum is taken

o - J - 7 . B
over all ordinal preference profiles® and their associated misrepresentation values. If
several candidates are tied in an election, the one that mepds misrepresentation is

elected.

Misrepresentation values can, of course, be interpretedrdinal preferences (e.g.,

u; =m— M§- — 1), albeit restricted ones: a voter’s ordinal preferencatieh - fixes a

(perfect) matching between candidates and the utilitiés. . ., m — 1.6 Consequently,
the misrepresentation of a social choice functtooan be easily reformulated as distor-
tion. In fact, similar results can be obtained, but the tdtiemulation favors candidates

5 Unlike the general model, in the current setting there is a unique derivattimisrepresenta-
tion values from ordinal preferences, and vice versa.



that are ranked last by few voters, whereas the former fatiou rewards candidates
that are placed first by many voters.

When is misrepresentation an issue? The following scenasidges a compelling,
albeit somewhat artificial, example. Consider the meetihgduling problem discussed
in [9]: scheduling agents schedule meetings on behalf of #ssociated users, based
on given user preferences; a winning schedule is decided @élegtion. Say three pos-
sible schedules are being voted on. These schedules, taingdnflict with at most
two of the requirements specified by any user. In other wadsser's misrepresenta-
tion with respect to a certain schedule is 0O if there are ndlicts) 1 if there is a single
conflict, and 2 if there are two conflictdn this case, having no conflicts at all is vastly
superior to having at least one conflict, as even one conflgt prevent a user from
attending a meeting. As noted above, this issue is takeragttount in the calculation
of misrepresentation — emphasis is placed on candidatewéra often ranked first.

Proposition 1 stated that there is no social choice fundtiitin distortion 1. Clearly
this is not the case here:

Proposition 5. Letm € N, and letF' be a scoring protocol with parameters, >
Qg > ... > . Thenu? (F)) = 1forall niff there exist andb such thaty, = —a-l+b
foralll=1,...,m.

Proof. Assume first that there exigtandb such thaty, = —a-l+bforalll =1,...,m,
and letn € N, =¢ £V. Candidate’s score is:

Zal§ = Z[fa I+ b = Z[*G(H;‘ +1)+b=nb—al— aZu;,
K3 K3 K3 1
so the candidate that maximizes the score is the one thamimis misrepresentation.
In the other direction, assume there do not exiahdb such thaty, = —a -1+ b for
alll =1,...,m. Itfollows that there exisly, a anda’ such that: # o', anda; —as = a
buta; — oy, = a’(lp — 1), anda, a’ > 0.8 Assume w.l.0.g. that > a’. Consider the
following ballot: n’ voters vote2 =% 1 =¢ ..., n’ — z votersrankl =% 2 =% ..., andy
voters cast their ballots in a way theit = 1, p;'O = 2, for somez, y € N (we have that
n = 2n’ — z + y). When comparing the scores of candidates 2 and 1, we have:

s — 81 =xa —ya'(lp — 1). 2

Further, it holds that:

p2 —p1 = —z +y(lo —1). 3
It is sufficient to show that it is possible to make candidatei the election, and
in particular guarantee that candidate 2’s score be hidtaar 1's, but simultaneously
ensure that candidate 2’s misrepresentation be higherthaimdeed, by Equations (2)
and (3) both conditions are satisfied whenever

a xr
<y< —

: . 4
a’ l()*]. ()

z
lp—1
" We implicitly assume that for each user there is one schedule with no conflieswith a
single conflict, and one with two conflicts.
8 It is safe to assume that> 0 (and therefore’ > 0), because ify; = a» then the result is
obvious.



Choosingz > 3(ly — 1)af—'a,, it is possible to choosg that satisfies Equation (4).
Moreover, it is clearly now possible to choosklarge enough so as to guarantee that
candidate 2 wins the election, since for all candidates1, 2, there are at mogtvoters

such thapi, = j, anda; > o; forall I # 1. 0
Corollary 4. For all n,m, u,(Borda) = 1.

Corollary 4 establishes the optimality of the Borda protanderms of misrepre-
sentation. Unfortunately, this protocol is notoriouslgg& manipulate, and is plagued
by other disadvantages. Therefore, it is worthwhile to esgthe misrepresentation of
other protocols.

The concept of unbounded misrepresentation can be defiméagausly to Defini-
tion 3. In the framework of misrepresentation, we have thieveng proposition.

Proposition 6. Let F' be a scoring protocol with parametets > as > ... > a,.
ThenF has unbounded misrepresentatiomiff > .

Proof. Suppose first that; > ay. Letn,m € N, =¢ £V, and assume w.l.0.g. that
argminu; = 1andF(>~) = 2. Letk = |[{i € N : I} = 1}| be the number of
voters that ranked candidate 1 first. The number of pointslidate 2 received is at
mostse < (n — k)ay + kasg, and the number of points candidate 1 received is at least
s1 > kayq. We have:

(n—k)ag + kag > s9 > s1 > kag.

Therefore k. < n5 *_—; this implies that, > ngl=%2. As us < n(m — 1), we
have that
s _ nm—1) (m—1)(20q0 — as)

M1 B

a1 — Q2
2Q1—O¢2

Qp —
For a fixedm, this expression is a constant, evemagows.

In the other direction, supposa = «-, and consider-c £V where for all voters
i,1=%2=%... It holds thatu; = 0, uz = n. We can assume w.|.0.g. thA{~) = 2,
since in case of a tie a candidate that maximizes misrepsEnis elected, hence
the winner must have misrepresentation at least as high.akhe proposition follows
from the fact thaﬂ;—j = o0. O

Corollary 5. The Veto protocol has unbounded misrepresentation.

Remark 3.Corollary 5 implies that the Participation, Monotonicignd Consistency
properties (even together) do not guarantee that a votioipgol has bounded misrep-
resentation, as the Veto protocol satisfies all three ptigser

Proposition 7. For all n, m, u?*, (Plurality) = p” (Plurality with Runofj = m — 1.
Proof. Omitted due to space constraints.

Proposition 8. For all n, m, u? (Copeland < m — 1.



Proof. Let =c LV; w.l.0.g. suppose argmjn; = 1 and Copelan@-) = 2. Addi-
tionally, denote byC’ the set of candidates that candidate 2 beats in a pairwise ele
tion, |C’| = k. For each candidatg € C’, at least[n/2] voters have; < I%. Let

Ol_' ={jecC: l5 < 1%} forall i, I = m — |C*|. It holds thaty ", |C*| > k[n/2], but
this implies that:

pr =3 s =3 (1 —1) = [(m— 1)~ O] < nlm — 1) ~ k[n/2].

% %

We distinguish two cases:

Case 1%k = m. In this case, candidate 1 has not won the pairwise elecjamst
2, and thus there are at ledst/2] votersi such that, < I¢. This implies that:; >
[n/2], and hencé < W <m-—2.

Case 2k < m — 1. Candidate 1 won at mostpairwise elections. In each pairwise
election that 1 did not win against candidgieat least[n/2] voters voted’ < . By
the same reasoning as befote,> (m — k)[n/2]. Therefore,

&<n(m—1)—k[n/21 < 2m—k—2'

S B2 S mk ©)

The ratio in Equation (5) on the right is monotonic incregsas a function of
whenl < k£ < m — 1, and thus is bounded by — 1. ad

Proposition 9. For all n, m, ul, (Bucklin) < m.

Proof. Let - LV; assume w.l.o.g. that argmjim; = 1, and Bucklir(>-) = 2. Let
lo=min{l € {1,...,m}: 3j s.t. B;; > n/2}. Atleast[n/2] votersi havep; = 2
forl <ly. Thereforepus < [n/2](lo—1)+ |n/2](m—1). We now examine two cases.

Case 11, = 1. It cannot be the case th#, ; > n/2 andB;; > n/2 simulta-
neously. Therefore, it must be true that at Iefast2] votersi havel: > 2, and hence
p1 = [n/2]. We have thatz <m — 1.

Case 21 > 2. At most|n/2| votersi havel! < I, — 1, thereforeu; > [n/2](lo —
1). It holds that

p2 _ (/210 = 1) + [n/2] (m — 1)
pr [n/2](lo — 1)

The ratio is maximized whely = 2; it follows that% < m. a
2

Proposition 10. For all n, m, u? (Mazimin) < (m—1)~1.62(m—1).

S

-1

Proof. Let - £LV. Assume w.l.0.g. that argmjn; = 1, and Maximir(>-) = 2. Ad-
ditionally, suppose that candidate 2's Maximin scoré.idVith foresight, we denote
c= % We distinguish two cases:

Case 1% > cn. At leastcn votersi havell < [i. In the worst case,l — c)n voters
ivoteli = 1,15 = m, andcn voters havédi = 1 andl} = 2. Therefore, in this case,

p2 _ (1—c) - o
s P m ) 1620m 1),



Case 2k < cn. There exists a candidate, w.l.0.g. candidate 3, s.t. at inesters
i havel! < [%,i.e., atleastl — c)n voters do not rank 1 first. Singe, < n(m — 1), it
holds that
-1 1
pe mlm=1) _ (m —1) ~ 1.62(m — 1).
5 I-¢n 1-c¢

This concludes the prodf. O
Proposition 11. For all n,m, u2 (STV) < 3(m — 1).
Proof. Omitted due to space constraints.

Remark 4.1t is easy to show that if" is a voting protocol that satisfies the majority
criterion, theru?, (F') < 2(m — 1).

4.1 Complexity Issues

In this subsection we address complexity issues relategl¢alating misrepresentation.
We begin by reformulating the MSMU problem, presented inti8ac3, in the context
of misrepresentation.

Definition 6. In the MIN-SCORE-MIN-MISREPRESENTATION(MSMM) problem, we
are given the number of voters the number of candidates, a scoring protocolF’
defined by parametes = (a1, ..., a.,), andy, z € N. We are asked whether there
exists~<c £V such that it holds that; < y buts; < z.

Unlike the general formulation of the problem, here we have:
Lemma 1. MSMM can be decided in time polynomiakirandm.

Proof. We describe a dynamic programming algorithmNvVM ISREPR, given as Algo-
rithm 1. The algorithm keeps a matrik = (axi)reqo,...,n},1€{0,....y}: €Nty ag is the
minimal score candidate 1 may have under the constraints thaters have cast their
vote, andu; < 1.

The correctness of the algorithm can be easily proven bycinoluonk. Asy =
O(nm), the running time of the algorithm i©(n?m?). Now, the given instance of
MSMM is a “yes” instance iff the output of Mi-MISREPis at mostz: a,, , < z. O

We now consider the following problem:

Definition 7. IntheLOSERWITH-MIN-MISREPRESENTATIONLWMM) problem, we
are given the number of voters the number of candidates, a scoring protocol
F defined by parameters,, . .., a.,, andy € N. We are asked whether there exists
= LN such that it holds that; < y but candidate 1 loses the election.

Lemma 2. LWMM can be decided in time polynomialsirandm.

® c was chosen such thage = ;1.



Algorithm 1
1: procedure MIN-MISRERn, m, o, y)

2: for { — 0,y do > Initialization

3: ao,; < 0

4: end for

5: for k — 1,ndo

6: for I «— 0,y do

7: q — min{l,m — 1}

8: ak,1 — Minp=o,... q(ar—1,1—p + apt1) > Induces rankings for candidate 1
9: end for
10: end for
11: return a.,

12: end procedure

Proof. Algorithm 1 can easily be adapted to return candidate 1'smahscore, under
the former constraint that; < y, and the additional constraint that exactlyvoters,

0 < n’ < n, satisfyli = 1. This can be accomplished, for example, by runningiM
MisrepPonce for each value of’, and assuming that’ voters have already cast their
vote (ranking candidate 1 first), whereas the remainirgn’ cast their vote according
to the algorithm.

For each value of/, it is possible to assume the remaining voters rank carel@lat
as high as possible, i.e., candidate 2 receiyes (n — n’)a; + n’as points. Clearly,
there exists a value of such thats, > s, iff the given instance of LWMM is a “yes”
instancet? O

Givenn, m, anda, we have shown so far that it is possible to find rankiﬁg‘j‘sw
for candidate 1, such that the associated misrepresamtatmandidate 1 satisfies:

pttY = min{p: 3= LY s.t. uy = p A candidate 1 loses the election

Ultimately, we would like to be able to computg F') = max =20; let -*€ LN

Ve
that maximizes this ratio, let; be the associated total misrepresentation values of
candidatess} be the associated scores, altjfa be the associated rankings; assume

w.l.o.g. that argmipu; = 1, andF'(>*) = 2.

Definition 8. Let F' be a scoring protocolF' has thepopular loser propertyff the
rankingsliALG are identical to the ranking& *, up to the order of the voters.

Definition 9. Let F' be a scoring protocolF’ has theeven match propertyf, givens;,
the rankingd} " are the ones that maximizg, under the constraing; > s3.

In other words, a scoring protocol has the popular loser gntgpf any ordinal
preference profile such that candidate 1 has maximal misseptation, under the con-
straint that candidate 1 is not the winner, is optimal in thase that candidate 1's

191t is enough to demand a weak inequalitysfn > s, as candidate 1 is the candidate that
minimizes the score while achieving misrepresentationif s = s; then it must hold that
e > 1, hence candidate 2 still wins the election.



ranking by voters is identical to candidate 1's ranking ie @ireference profile that
maximizes misrepresentation. A scoring protocol has tlem evatch property if, once
the above rankings for candidate 1 are known, in order to fiednisrepresentation of
the protocol it is sufficient to find rankings for candidatéhattmaximize candidate 2's
misrepresentation, while guaranteeing that 2 has a higloee shan 1.

Certainly, if F' has both properties, then Lemma 2 is a step forward towatds-ca
lating the misrepresentation &f. But are there protocols that possess both properties?

Example 1.The Plurality and Veto protocols have the popular loser ertypand the
even match property.

If so, some important protocols possess the propertiestaCteaizing more fully
the protocols that possess both properties remains an ogstian.

Theorem 1. Let F' be a scoring protocol with the popular loser property and dven
match properties. Then the problem of calculatjrjy(F') has a Fully Polynomial Time
Approximation Scheme (FPTAS).

Proof (Sketch)Observe the rankinglngLG fixed by the algorithm from the proof of

Lemma 2, on the given input. By the assumptions, it is sufiiicie find rankingg$ for
candidate 2 in a way that, is maximal, under the constraist > s{\LC.

The above problem reduces to the exastalRsACK problem with cardinality con-
straints (Ek£KP). In this problem, we are given items, each with a weight; and a
valuewv;, and a weight limitK’; the goal is to find a subsét of items of sizek, that

maximizes) _, ¢ v;, subjecttoy |, g w; < K.
In our setting/i can take any value ifiL, ..., m} \ {Ii*"“1; let there be an item
associated with each possible valudipfi = 1, ..., n (there arex(m — 1) items). The

value of the item associated with= [ is ;14 = [ — 1, and its weight isv; — ;. Exactly
n items are to be chosen; the weight limitis; — s{!£¢.

This is a polynomial time reduction. Indeed, given rankitigs = 1,...,n such
thats, > s$£¢, choosen corresponding items in the knapsack instance. The items’
total value is exactly.>. Moreover, the total weight associated with the items is@gtm
na; minus the total score of the associated rankings, whichleaats{'““. The other
direction is similar.

Caprara et al. [4] present an FPTAS forkEP. Therefore, for ang > 0, it is
possible to find (in polynomial timeg), such thatus < pi < (1 + €)ueo. In addition,
recall thatu{'*¢ = ;. Therefore:

L; * *
(uf) :NfiGMQ :@§1+€.
( ggc) Hipz  p2
My

5 Conclusions

We have defined the distortion of a social choice functionhasworst-case ratio be-
tween the total utility of the candidate that maximizes abwielfare, and the elected



[ Voting Protocol [Misrepresentation|

Borda 1

Veto Unbounded
Plurality =m-—1

Plurality with Runofi =m-1

Copeland <m-1
Bucklin <m
Maximin <1.62(m—1)

STV <1.5(m—1)

Table 1. The misrepresentation of common voting protocols.

candidate. At first, we have focused on a model where, foroadirg, the sum of utilities
is identical. We have shown that every social choice fumctiodistorted, even when
the number of voters and the number of candidates are smaikdwer, we have es-
tablished a sufficient condition for unbounded distortiore+esult which implies that
several well-known scoring protocols have unbounded distoin the general model.
We have shown our model to be equivalent, in terms of distortio another model
where the voters’ cardinal preferences are unconstraingaach voter’s weight is the
sum of its utilities. Finally, we have proven that a problessaciated with calculating
distortion isNP-complete when utilities are unconstrained.

Motivated by the impossibility results mentioned above amel work of Mon-
roe [11], we have reformulated the concept of distortion esepresentation. The main
difference between the two settings is, essentially, thété misrepresentation setting
voters’ cardinal preferences are quite restricted. We leatablished a necessary and
sufficient condition for a social choice function to be opinm terms of misrepre-
sentation, and have also characterized the scoring pietadit unbounded misrepre-
sentation. More importantly, we have given bounds — in soases tight — for the
misrepresentation of specific voting protocols; these Hewame summarized in Table 1.

Last, we have tackled the problem of calculating misreprag®n. Moving through
several sub-problems, we have ultimately demonstratddtbee is a fully polynomial
time approximation scheme (FPTAS) for this problem, whenwtbting protocol is a
scoring protocol that possesses the popular loser and ezt properties. It remains
an open issue to characterize the scoring protocols thatthage properties.

The results presented in Section 3 suggest that distortayroma major obstacle for
designers of multiagent systems who wish to apply votings ®true, however, only if
the agents’ cardinal preferences are almost unconstradmethe other hand, we have
seen in Section 4 that restricting the preferences overtsome of the impossibility
results.

In the context of restricted preferences, the results intiphyt the distortion of a
voting protocol should be a major criterion in the comparisb different protocols —
alongside other classical criteria like manipulabilitgrfnstance, whenever misrepre-
sentation is a concern (as in the meeting scheduling exadigdessed in Section 3),
one might prefer to employ the Borda protocol, which is optinm terms of misrep-
resentation but highly manipulable, rather than the ST\Mqmal, which is difficult to



manipulate [1] but has high misrepresentation. In a threwlidate example, STV’s
misrepresentation might be 3 times higher than Borda'$iérscheduling domain, this
might imply three times as many conflicts with user prefeesne- certainly a steep
price to pay for preventing strategic behavior.

We briefly mention two directions for future research. Oumpatational complex-
ity analysis of distortion is rather rough. It seems truet ttalculating distortion (or
even misrepresentation) in scoring protocold/i®-complete, but currently there is no
proof. Second, our approximation scheme relies on the popoter and even match
properties; it remains an open issue to characterize thienggarotocols that have these
properties. Further, can these assumptions be abandoned?
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