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Abstract

Encouraging voters to truthfully reveal their preferences in an election has long been an important issue.
Previous studies have shown that some voting protocols are hard to manipulate, but predictably usedNP-
hardness as the complexity measure. Such aworst-caseanalysis may be an insufficient guarantee of resistance
to manipulation.

Indeed, we demonstrate thatNP-hard manipulations may be tractable in theaverage-case. For this purpose,
we augment the existing theory of average-case complexity with new concepts; we consider elections distributed
with respect tojunta distributions, which concentrate on hard instances, and introduce a notion ofheuristic
polynomial time. We use our techniques to prove that a family of important voting protocols is susceptible to
manipulation by coalitions, when the number of candidates is constant.

1 Introduction

In multiagent environments, it may be the case that different agents have diverse preferences. Therefore, it is
important to find a way to aggregate the agents’ preferences. A general scheme for preference aggregation is
voting: the agents reveal their preferences by ranking a set of candidates; a winner is determined according to
a voting protocol. The candidates can be various entities such as beliefs or plans, and indeed may be potential
real-life parliament members.

Things are made complicated by the fact that in many settings (as in reality) the agents are self-interested.
Such an agent may reveal its preferences untruthfully, if it believes this would make the final outcome of the
elections more favorable for it. Consequently, the outcome may be one that does not maximize social welfare.
This problem is provably acute: it is known [7, 8] that, for elections with three or more candidates, in any voting
protocol that is non-dictatorial1, there are elections where an agent is better off by voting untruthfully.

Fortunately, it is reasonable to make the assumption that the agents are computationally bounded. Therefore,
although in principle an agent may be able to manipulate an election, the computation required may be infeasible.
This has motivated researchers to study the computational complexity of manipulating voting protocols. It has
long been known [2] that there are voting protocols that areNP-hard to manipulate by a single voter. Recent
results by Conitzer and Sandholm [4, 3] show that some manipulations of common voting protocols areNP-
hard, even for a small number of candidates. Moreover, in [5], it is shown that adding a preround to some voting
protocols can make manipulations hard (evenPSPACE-hard in some cases). Elkind and Lipmaa [6] show that
the notion of preround, together with one-way functions, can be used to construct protocols that are hard to
manipulate even by a large minority fraction of the voters.

In Computer Science, the notion of hardness is usually considered in the sense of worst-case complexity.
Not surprisingly, most results on the complexity of manipulation useNP-hardness as the complexity measure.
However, it may still be the case that most instances of the problem are easy to manipulate. A relatively little-
known theory of average case complexity exists [9]; this theory introduces the concept of distributional problems,
and defines what a reduction between distributional problems is. It is also known that average-case complete

1In a dictatorial protocol, there is an agent that dictates the outcome regardless of the others’ choices.
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problems exist (albeit artificial ones, such as a distributional version of the halting problem). Sadly, it is very
difficult to show that a certain problem is average-case complete, and such results are known only for a handful
of problems. Additionally, the goal of the existing theory is to define when a problem ishard in the average-case;
it does not provide criteria for deciding when a problem iseasy. A step towards showing that a manipulation is
easy on average was made in [6]. It involves an analysis of the plurality protocol with a preround, but focuses on
a very specific distribution, which does not satisfy some basic desiderata as to what properties an “interesting”
distribution should have.

In this paper, we engage in a novel average-case analysis, based on criteria we propose. Coming up with an
“interesting” distribution of problem instances with respect to which the average-case complexity is computed is
a difficult task, and the solution may be controversial. We analyze problems whose instances are distributed with
respect to ajunta distribution. Such a distribution must satisfy several conditions, which (arguably) guarantee that
it focuses on instances that are harder to manipulate. We consider a protocol to besusceptibleto manipulation
when there is a polynomial time algorithm that can usually manipulate it: the probability of failure (when the
instances are distributed according to a junta distribution) must be inverse-polynomial. Such an algorithm is
known as aheuristicpolynomial time algorithm.

We use these new methods to prove our main result: an important family of protocols, calledscoringprotocols,
is susceptible to coalitional manipulation when the number of candidates is constant. Specifically, we contemplate
sensitivescoring protocols, which include such well known protocols as Borda and STV. To accomplish this task,
we define a natural distibutionµ∗ over the instances of a well-defined coalitional manipulation problem, and show
this is a junta distribution. Furthermore, we present the manipulation algorithm GREEDY, and show that it usually
succeeds with respect toµ∗.

We also show that all protocols are susceptible to a certain setting of manipulation, where the manipulator is
unsure about the others’ votes. This result depends upon a basic conjecture regarding junta distribtions, but also
has implications that transcend our specific definition of these distributions.

In Section 2, we outline some important voting protocols, and properly define the manipulation problems we
shall discuss. In Section 3, we formally introduce the tools for our average case analysis: junta distributions,
heuristic polynomial time, and susceptibility to manipulations. In Section 4 we prove our main result: sensitive
scoring protocols are susceptible to coalitional manipulation with few candidates. In Section 5, we discuss the case
when a single manipulator is unsure about the other voters’ votes. Finally, in Section 6, we present conclusions
and future directions for research.

2 Preliminaries

We first describe some common voting protocols and formally define the manipulation problems with which we
shall deal. Next, we introduce a useful lemma from probability theory.

2.1 Elections and Manipulations

An election consists of a setC of m candidates, and a setV of n voters, who provide a total order on the
candidates. An election also includes a winner determination function from the set of all possible combinations
of votes toC. We note that throughout this paper,m = O(1), so the complexity results are in terms ofn.

Different voting protocols are distinguished by their winner determination functions. The protocols we shall
discuss are:

• Scoring protocols:A scoring protocol is defined by vector~α = 〈α1, α2, . . . , αm〉, such thatα1 ≥ α2 ≥
. . . ≥ αm andαi ∈ N ∪ {0}. A candidate receivesαi points for each voter which ranks it in thei’th place.
Examples of scoring protocols are:

– Plurality: ~α = 〈1, 0, . . . , 0, 0〉.
– Veto: ~α = 〈1, 1, . . . , 1, 0〉.
– Borda: ~α = 〈m− 1,m− 2, . . . , 1, 0〉.

• Copeland: For each possible pair of candidates, simulate an election; a candidate wins such a pairwise
election if more voters prefer it over the opponent. A candidate gets 1 point for each pairwise election it
wins, and−1 for each pairwise election it loses.
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• Maximin: A candidate’s score in a pairwise election is the number of voters that prefer it over the opponent.
The winner is the candidate whose minimum score over all pairwise elections is highest.

• Single Transferable Vote:The election proceeds in rounds. In each round, the candidate’s score is the
number of voters that rank it highest among the remaining candidates; the candidate with the lowest score
is eliminated.

We assume that tie-breaking is always adversarial to the manipulator. Additionally, in the case of weighted
votes, a voter with weightk is naturally considered to bek voters who vote unanimously. In this paper, we
consider weights in[0, 1]. This is equivalent, since any set of integer weights in the range1, . . . ,polyn can be
scaled down to weights in the segment[0, 1] with O(logn) bits of precision.

The main results of the paper focus on scoring protocols. We shall require the following definition:

Definition 1 (Sensitive Scoring Protocol). Let P be a scoring protocol with parameters~α = 〈α1, α2, . . . , αm〉.
We say thatP is sensitive ifα1 ≥ α2 ≥ . . . ≥ αm−1 > αm = 0 (notice the strict inequality on the right).

In particular, observe that Borda and Veto are sensitive scoring protocols. Generally, from any scoring protocol
with αm−1 > αm, an equivalent sensitive scoring protocol can be obtained by subtractingαm on a coordinate-by-
coordinate basis from the vector~α. Moreover, observe that if a protocol is a scoring protocol but is not sensitive,
andαm = 0, thenαm−1 = 0. In this case, for three candidates it is equivalent to the plurality protocol, for
which most manipulations are tractable even in the worst-case. Therefore, it is sufficient to restrict our results to
sensitive scoring protocols.

We next consider some types of manipulations, state the appropriate complexity results, and introduce some
notations. We discuss theconstructivecases, where the goal is trying to make a candidate win, as opposed to
destructivemanipulation, where the goal is to make a candidate lose. Constructive manipulations are always at
least as hard (in the worst-case sense) as their destructive counterparts, and in some cases strictly harder (if one is
able to determine whetherp can be made to win, one can also ask whether any of the otherm− 1 candidates can
be made to win, thus makingp lose).

Definition 2 (INDIVIDUAL-MANIPULATION (IM)) . We are given all the other votes, and a preferred candi-
datep. We are asked whether there is a way for the manipulator to cast its vote so thatp wins.

In [2] it is shown that IM isNP-complete in Single Transferable Vote, provided the number of candidates is
unbounded. However, the problem is inP for most voting schemes, and hence will not be studied here.

Definition 3 (COALITIONAL-WEIGHTED-MANIPULATION (CWM)) . We are given a set of weighted votes
S, the weights of a set of votesT which are still open, and a preferred candidatep. We are asked whether there is
a way to cast the votes inT so thatp wins the election.

We know [4, 3] that CWM is NP-complete in Borda, Veto and Single Transferable Vote, even with3 candi-
dates, and in Maximin and Copeland with at least4 candidates.

This problem will be studied in Section 4; the CWM version that we shall analyze, which is specifically
tailored for scoring protocols, is a slightly modified version whose analysis is more straightforward:

Definition 4 (SCORING-COALITIONAL-WEIGHTED-MANIPULATION (SCWM)). We are given an initial
scoreS[c] for each candidatec, the weights of a set of votesT which are still open, and a preferred candidatep.
We are asked whether there is a way to cast the votes inT so thatp wins the election.

S[c] can be interpreted asc’s total score from the votes inS. However, we do not require that there exists a
combination of votes that actually inducesS[c] for all c.

Definition 5 (UNCERTAIN-VOTES-WEIGHTED-EVALUATION (UVWE)). We are given a weight for each
voter, a distribution over all the votes, a candidatep, and a numberr ∈ [0, 1]. We are asked whether the
probability ofp winning is greater thanr.

Definition 6 (UNCERTAIN-VOTES-WEIGHTED-MANIPULATION (UVWM)). We are given a single manip-
ulative voter with a weight, weights for all other voters, a distribution over all the others’ votes, a candidatep,
and a numberr, wherer ∈ [0, 1]. We are asked whether the manipulator can cast its vote so thatp wins with
probability greater thanr.
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If CWM is NP-hard in a protocol, then UVWE and UVWM are alsoNP-hard in it [4]. These problems
will be studied in Section 5. We make the assumption that the given distributions over the others’ votes can be
sampled in polynomial time.

2.2 Chernoff’s bounds

The following lemma will be of much use later on. Informally, it states that the average of independent identically
distributed (i.i.d.) random variables is almost always close to the expectation.

Lemma 1 (Chernoff’s Bounds). LetX1, . . . , Xt be i.i.d. random variables such thata ≤ Xi ≤ b andE[Xi] = µ.
Then for anyε > 0, it holds that:

• Pr[ 1t
∑t

i=1 Xi ≥ µ + ε] ≤ e
−2t ε2

(b−a)2

• Pr[ 1t
∑t

i=1 Xi ≤ µ− ε] ≤ e
−2t ε2

(b−a)2

3 Junta Distributions and Susceptible Mechanisms

In this section we lay the mathematical foundations required for an average-case analysis of the complexity of
manipulations. All of the definitions are as general as possible; they can be applied to the manipulation of any
mechanism, not merely to the manipulation of voting protocols.

We describe a distribution over the instances of a problem as a collection of distributionsµ1, . . . , µn, . . .,
whereµn is a distribution over the instancesx such that|x| = n. We wish to analyze problems whose instances
are distributed with respect to a distribution which focuses on hard-to-manipulate instances. Ideally, we would
like this distinguished distribution to be such that if one manages to produce an algorithm which can usually
manipulate instances according to this “difficult” distribution, the algorithm would also usually succeed when the
instances are distributed with respect to most other reasonable distributions.

Definition 7 (Junta Distribution). Letµ = {µn}n∈N be a distribution over the possible instances of anNP-hard
manipulation problemM . µ is a junta distribution if and only ifµ has the following properties:

1. Hardness: The restriction ofM to µ is the manipulation problem whose possible instances are only:⋃
n∈N{x : |x| = n ∧ µn(x) > 0}. Deciding this restricted problem is stillNP-hard.

2. Balance: There exist a constantc > 0 andN ∈ N such that for alln ≥ N :

1
c
≤ Prx∼µn

[M(x) = 1] ≤ 1− 1
c
.

3. Dichotomy: for alln and instancesx such that|x| = n:

µn(x) ≥ 2−polyn ∨ µn(x) = 0.

If M is a manipulation problem, we also require the following property:

4. Symmetry: Letv be a voter whose vote is given, letc1, c2 6= p be two candidates, and leti ∈ [m]. The
probability thatv ranksc1 in thei’th place is the same as the probability thatv ranksc2 in thei’th place.

If M is a coalitional manipulation problem, we also require the following property:

5. Refinement: Let x be an instance such that|x| = n andµn(x) > 0; if all colluders voted identically, thenp
would not be elected.

The name “junta distribution” comes from the idea that in such a distribution, relatively few “powerful” and
difficult instances represent all the other problem instances. Alternatively, our intent is to have a few problematic
distributions (the family of junta distributions) convincingly represent all other distributions with respect to the
average-case analysis.
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The first three properties are basic, and are relevant to problems of manipulating any mechanism. The defin-
ition is modular, and relevant additional properties may be added on top of the basic three, in case one wishes to
analyze a mechanism which is not a voting protocol.

The exact choice of properties is of extreme importance (and may be arguable). We shall briefly explain our
choices. Hardness is meant to insure that the junta distribution contains hard instances. Balance guarantees that
a trivial algorithm which always accepts (or always rejects) has a significant chance of failure. The dichotomy
property helps in preventing situations where the distribution gives a (positive but) neglible probability to all the
hard instances, and a high probability to several easy instances.

We now examine the properties that are specific to manipulation problems. The necessity of symmetry is best
explained by an example. Consider CWM in STV withm ≥ 3. One could design a distribution wherep wins
if and only if a distinguished candidate loses the first round. Such a distribution could be tailored to satisfy the
other conditions, but misses many of the hard instances. In the context of SCWM, we interpret symmetry in the
following way: for every two candidatesc1, c2 6= p andy ∈ R,

Pr
x∼µn

[S[c1] = y] = Pr
x∼µn

[S[c2] = y].

Refinement is less important than the other four properties, but seems to help in concentrating the probability
on hard instances. Observe that refinement is only relevant to coalitional manipulation; we believe that in the
analysis of individual voting manipulation problems, the first four properties are sufficient.

Definition 8 (Distributional Problem [9]). A distributional problem is a pair〈L, µ〉whereL is a decision problem
andµ is a distribution over the set{0, 1}∗ of possible inputs.

Informally, an algorithm is a heuristic polynomial time algorithm for a distributional problem if it runs in
polynomial time, and fails only on a small fraction of the inputs. We now give a formal definition; this definition
is inspired by [9] (there the same name is used for a somewhat different definition).

Definition 9 (Heuristic Polynomial Time). Let 〈M,µ〉 be a distributional problem, whereM is a manipulation
problem.

1. An algorithmA is a deterministic heuristic polynomial time algorithm for the distributional manipulation
problem〈M,µ〉 if A always runs in polynomial time, and there exists a polynomial p andN ∈ N such that
for all n ≥ N :

Pr
x∼µn

[A(x) 6= M(x)] <
1

p(n)
. (1)

2. LetA be a probabilistic algorithm, which uses a random strings. A is a probabilistic heuristic polynomial
time algorithm for the distributional manipulation problem〈M,µ〉 if A always runs in polynomial time, and
there exists a polynomial p andN ∈ N such that for alln ≥ N :

Pr
x∼µn,s

[A(x) 6= M(x)] <
1

p(n)
. (2)

Probabilistic algorithms have two potential sources of failure: an unfortunate choice of input, or an unfortunate
choice of random strings. The success or failure of deterministic algorithms depends only on the choice of input.

We now combine all the definitions introduced in this section in an attempt to establish when a mechanism is
susceptible to manipulation in the average case. The following definition abuses notation a bit:M is both used to
refer to the manipulation itself, and the corresponding decision problem.

Definition 10 (Susceptibility to Manipulation). We say that a mechanism is susceptible to a manipulationM if
there exists a junta distributionµ, such that there exists a deterministic/probabilistic heuristic polynomial time
algorithm for〈M,µ〉.
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4 Susceptibility to SCWM

Recall [4, 3] that in Borda and Veto, CWM isNP-hard, even with3 candidates. Since Borda and Veto are
examples of sensitive scoring protocols, we would like to study how resistant this family of protocols really is
with respect to coalitional manipulation. In this section we use the methods from the previous section to prove
our main result:

Theorem 2. LetP be a sensitive scoring protocol. ThenP , with candidatesC = {p, c1, . . . , cm}, m = O(1), is
susceptible to SCWM.

Intuitively, the instances of CWM (or SCWM) which are hard are those that require a very specific partitioning
of the voters inT to subsets, where each subset votes unanimously. These instances are rare in any reasonable
distribution; this insight will ultimately yield the theorem.

The following proposition generalizes Theorem 1 of [4] and Theorem 2 of [3], and justifies our focus on the
family of sensitive scoring protocols. It will also be crucial in order to prove the hardness property of a junta
distribution we shall design.

Definition 11 (PARTITION). We are given a set of integers{ki}i∈[t], summing to2K, and are asked whether a
subset of these integers sum toK.

It is well-known that PARTITION isNP-complete.

Proposition 3. LetP be a sensitive scoring protocol. Then CWM inP isNP-hard, even with3 candidates.

Proof. We reduce an arbitrary PARTITION instance to the following CWM instance. There are3 candidates,a,
b, andp. In S, there areK(4α1 − 2α2) − 1 voters votinga � b � p, andK(4α1 − 2α2) − 1 voters voting
b � a � p. In T , for everyki there is a vote of weight2(α1 + α2)ki. Observe that fromS, botha andb get
(K(4α1 − 2α2)− 1)(α1 + α2) points.

Assume first that a partition exists. Let the voters inT in one half of the partition votep � a � b, and let the
other half votep � b � a. By this vote,a andb each have

(K(4α1 − 2α2)− 1)(α1 + α2) + 2K(α1 + α2)α2 = (α1 + α2)(4Kα1 − 1)

votes, whilep has(α1 + α2)4Kα1 points; thus there is a manipulation.
Conversely, assume that there exists a manipulation. Clearly there must exist a manipulation where all the

voters inT vote eitherp � a � b or p � b � a, because the colluders do not gain anything by not placingp
at the top in a scoring protocol. In this manipulation,p has(α1 + α2)4Kα1 points, whilea andb already have
(K(4α1−2α2)−1)(α1 +α2) points fromS. Therefore,a andb must gain less than(2α2K +1)(α1 +α2) points
from the voters inT . Each voter corresponding toki contributes2(α1 + α2)α2ki points; it follows that the sum
of theki corresponding to the voters votingp � a � b is less thanK + 1

2α2
, and likewise for the voters voting

p � b � a. Equivalently, the sum can be at mostK, since allki are integers andα2 ≥ 1. In both cases the sum
must be at mostK; hence, this is a partition.

Since an instance of CWM can be translated to an instance of SCWM in the obvious way, we have:

Corollary 4. LetP be a sensitive scoring protocol. Then SCWM inP isNP-hard, even with3 candidates.

4.1 A Junta Distribution

Let w(v) denote the weight of voterv, and letW denote the total weight of the votes inT ; P is a sensitive scoring
protocol. We denote|T | = n: the size ofT is the size of the instance.

Consider a distributionµ∗ = {µ∗n}n∈N over the instances of CWM inP , with m+1 candidatesp, c1, . . . , cm,
where eachµ∗n is induced by the following sampling algorithm:

1. ∀v ∈ T : Randomly and independently choosew(v) ∈ [0, 1] (up toO(logn) bits of precision).

2. ∀i ∈ [m]: Randomly and independently chooseS[ci] ∈ [(α1 − α2)W,α1W ] (up to O(logn) bits of
precision).
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A few comments are in order. We assume thatS[p] = 0, i.e., all voters inS rankp last. This assumption is not
a restriction. If it holds for a candidatec thatS[c] ≤ S[p], then candidatec will surely lose, since the colluders all
rankp first. Therefore, ifS[p] > 0, we may simply normalize the scores by subtractingS[p] from the scores of
all candidates. This is equivalent to our assumption.

More importantly, we believe thatµ∗ is the most natural distribution with repect to which coalitional manipu-
lation in scoring protocols should be studied. Even if one disagrees with the exact definition of junta distribution,
µ∗ should satisfy many reasonable conditions one could produce. We shall, of course, (presently) prove that the
distribution posesses the properties of a junta distribution.

Proposition 5. Let P be a sensitive scoring protocol. Thenµ∗ is a kernel distribution for SCWM inP with
C = {p, c1, . . . , cm}, andm = O(1).

Proof. We first observe that the dichotomy and symmetry conditions are obviously satisfied.
The proof of the hardness property relies on the reduction from PARTITION in Proposition 3. The reduction

generates instancesx of CWM in P with 3 candidates, whereW = 4(α1 + α2)K, and

S[a] = S[b] = (K(4α1 − 2α2)− 1)(α1 + α2) = (α1 − α2/2)W − (α1 + α2),

for someK that originates in the PARTITION instance. These instances satisfy(α1−α2)W ≤ S[a], S[b] ≤ α1W .
It follows thatµ∗(x) > 0 (after scaling down the weights).2

We now proveµ∗ has the balance property. If for all i,S[ci] > (α1 − α2/m)W , then clearly there is no
manipulation, since at leastα2W points are given by the voters inT to the undesirable candidatesc1, . . . , cm.
This happens with probability at least1mm .

On the other hand, consider the situation where for alli,

S[ci] < (α1 −
m2 − 1

m2
α2)W ; (3)

this occurs with probability at least 1
(m2)m . Intuitively, if the colluders could distribute the votes inT in such a

way that each undesirable candidate is ranked last in exactly1/m-fraction of the votes, this would be a successful
manipulation: each undesirable candidate would gain at most an additionalm−1

m α2W points. Unfortunately this
is usually not the case, but the following condition is sufficient for a successful manipulation (assuming condition
(3) holds). Partition the voters in T tom disjoint subsetsp1, . . . , pi (w.l.o.g. of sizen/m), and denote byWpi the
total weight of the votes inpi. The condition is that for alli ∈ [m]:

(1− 1/m) · 1/2 · n/m ≤ Wpi ≤ (1 + 1/m) · 1/2 · n/m. (4)

This condition is sufficient, because if the voters inpi all rankci last, the fraction of the votes inT which givesci

points is at most:
(m− 1)(1 + 1/m)

(m− 1)(1 + 1/m) + 1− 1/m
=

m2 − 1
m2 + m− 2

.

Hence the number of pointsci gains from the colluders is at most:

m2 − 1
m2 + m− 2

α2 ≤
m2 − 1

m2
α2 < α1W − S[ci].

Furthermore, by Lemma 1 and the fact that the expected total weight ofn/m votes is1/2 · n/m, the probability
that condition (4) holds is at least1− 2e−

2n
m3 . Sincem is a constant, this probability is larger than1/2 for a large

enoughn.
Finally, it can easily be seen thatµ∗ has the refinement property: if all colluders rankp first and candidate

c second, thenp getsα1W points, andc getsα2W + S[c] points. ButS[c] ≥ (α1 − α2)W , and thusp surely
loses.

2It seems the reduction can be generalized for a larger number of candidates. The hard instances are the ones where all undesirable
candidates but two have approximately(α1 − α2)W initial points, and two problematic candidates have approximately(α1 − αm/2)W
points. These instances have a positive probability underµ∗.
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4.2 A Heuristic Polynomial Time Algorithm

We now present our algorithm for SCWM.~w denotes the vector of the weights of voters inT .

GREEDY(C = {p, c1, . . . , cm},S[p], S[c1], . . . , S[cm],T = {t1, . . . , tn},~w)

1: for all c do
2: S0[c] = S[c]
3: end for
4: for i = 1 to n do
5: Let j1, j2, . . . , jm such thatSi−1[cj1 ] ≤ Si−1[cj2 ] ≤ . . . ≤ Si−1[cjm

]
6: Voter ti votesp � cj1 � cj2 � . . . � cjm

7: for l = 1 to m : do
8: Si[cjl

] = Si−1[cjl
] + w(ti)αl+1

9: end for
10: Si[p] = Si−1[p] + w(ti)α1

11: end for
12: if argmaxc∈C{Sn[c]} = {p} then
13: return 1
14: else
15: return 0
16: end if

The voters inT , according to some order, each rankp first, and the rest of the candidates by their current
score: the candidate with the lowest current score is ranked highest. GREEDY accepts if and only ifp wins this
election.

This algorithm, designed specifically for scoring protocols, is a realization of an abstract greedy algorithm:
at each stage, voterti ranks the undesirable candidates in an order that minimizes the highest score that any
undesirable candidate obtains after the current vote. If there is a tie between several permutations, the voter
chooses the option such that the second highest score is as low as possible, etc. In any case, every colluder
always ranksp first. This abstract scheme might also be appropriate for protocols such as Maximin and Copeland.
Similarly to scoring protocols, in these two protocols the colluders are always better off by rankingp first. In
addition, the abstract greedy algorithm can be applied to Maximin and Copeland since the result of an election is
based on the score each candidate has (unlike STV, for example).

In the following lemmas, astagein the execution of the algorithm is an iteration of the for loop.

Lemma 6. If there exists a stagei0 during the execution ofGREEDY, and two candidatesa, b 6= p, such that

|Si0 [a]− Si0 [b]| ≤ α2, (5)

then for alli ≥ i0 it holds that|Si[a]− Si[b]| ≤ α2.

Proof. The proof is by induction oni. The base of the induction is given by equation (5). Assume that|Si[a] −
Si[b]| ≤ α2, and without loss of generality:Si[a] ≥ Si[b]. By the algorithm, voterti+1 ranksb higher thana, and
therefore:

Si+1[b]− Si+1[a] ≥ −α2. (6)

Sincep is always ranked first, and the weight of each vote is at most1, b gains at mostα2 points. Therefore:

Si+1[b]− Si+1[a] ≤ α2. (7)

Combining equations (6) and (7) completes the proof.

Lemma 7. Let p 6= a, b ∈ C, and suppose that there exists a stagei0 such thatSi0 [a] ≥ Si0 [b], and a stage
i1 ≥ i0 such thatSi1 [b] ≥ Si1 [a]. Then for alli ≥ i1 it holds that|Si[a]− Si[b]| ≤ α2.

Proof. Assume the that there exists a stagei0 such thatSi0 [a] ≥ Si0 [b], and a stagei1 ≥ i0 such thatSi1 [b] ≥
Si1 [a]; w.l.o.g.i1 > i0 (otherwise at stagei0 it holds thatSi0 [b] = Si0 [a], and then we finish by Lemma 6). Then
there must be a stagei2 such thati0 ≤ i2 < i1 andSi2 [a] ≥ Si2 [b] butSi2+1[b] ≥ Si2+1[a]. Since the weight of
each vote is at most1, b gains at mostα2 points by voterti2+1. Hence the conditions of Lemma 6 hold for stage
i2, which implies that for alli ≥ i2: |Si[a]− Si[b]| ≤ α2. In particular,i1 ≥ i2.
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Lemma 8. LetP be a sensitive scoring protocol, and assumeGREEDY errs on an instance of SCWM inP which
has a successful manipulation. Then there isd ∈ {2, 3, . . . ,m}, and a subset of candidatesD = {cj1 , . . . , cjd

},
such that:

d∑
i=1

(α1W − S[cji
])−

d−1∑
i=1

(i · α2) ≤ W
d∑

i=1

αm+2−i ≤
d∑

i=1

(α1W − S[cji
]). (8)

Proof. For the right inequality, observe that for anyd candidates, even if all voters inT rank them last in every
vote, the total points distributed among them isW

∑d
i=1 αm+2−i. If this inequality does not hold, there must

be some candidateci that gains at leastα1W − S[ci] points from the colluders, implying that this candidate
has at leastα1W points. However,p also has at mostα1W points, and we assumed that there is a successful
manipulation — a contradiction.

For the left inequality, assume the algorithm erred. Then at some stagei0, there is a candidatecj0 who
has a total of at leastα1W points (w.l.o.g. only one candidate passes this threshold simultaneously). Denote
T0 = {t1, t2, . . . , ti0}, and letWT0 be the total weight of the voters inT0. Voter ti0 did not rankcj0 last, since
αm+1 = 0, and thus ranking a candidate last gives it no points. We have that there is another candidatecj1 ,
such that:Si0−1[cj1 ] ≥ Si0−1[cj0 ]. By Lemma 7,Si0 [cj0 ] − Si0 [cj1 ] ≤ α2, and thusSi0 [cj1 ] ≥ α1W − α2.
If these canidates were not always ranked last by the voters ofT0, there must be another candidatecj2 who was
ranked strictly higher by some voter inT0, w.l.o.g. higher thancj1 . Therefore, we have from Lemma 7 that:
Si0 [cj1 ] − Si0 [cj2 ] ≤ α2, and socj2 has a total of at leastα1W − 2α2 points. By inductively continuing this
reasoning, we obtain a subsetD of d candidates (possiblyd = m), who were always ranked in thed last places
by the voters inT0, and for thel’th candidate it holds that:Si0 [cjl

] ≥ α1W − (l − 1)α2. The total points gained
by this l’th candidate until stagei0 must be at leastα1W − (l − 1)α2 − S[cjl

]. Since the total points distributed
by the voters inT0 to thed last candidates isWT0

∑d
i=1 αm+2−i, we have:

d∑
i=1

(α1W − S[cji ])−
d−1∑
i=1

(i · α2) ≤ WT0

d∑
i=1

αm+2−i ≤ W

d∑
i=1

αm+2−i.

Lemma 9. LetM be SCWM in a sensitive scoring protocolP with C = {p, c1, . . . , cm}, m=O(1). ThenGREEDY

is a deterministic heuristic polynomial time algorithm for〈M,µ∗〉.

Proof. It is obvious that if the given instance has no successful manipulation, then the greedy algorithm would
indeed answer that there is no manipulation, since the algorithm is constructive (it actually selects specific votes
for the colluders).

We wish to bound the probability that there is a manipulation and the algorithm erred. By Lemma 8, a
necessary condition for this to occur is as specified in equation (8), or equivalently:

W

d∑
i=1

α1 −W

d∑
i=1

αm+2−i −
d(d− 1)

2
α2 ≤

d∑
i=1

S[cji ] ≤ W
d∑

i=1

α1 −W
d∑

i=1

αm+2−i. (9)

In this case the algorithm may err; but what is the probability of equation (9) holding? Fix a subsetD of size
d ∈ {2, . . . ,m}.

∑d
i=1 S[cji

] is a random variable that takes values in[d(α1 − α2)W,dα1W ]. By fixing values
for S[cj1 ], . . . , S[cjd−1 ], we have that the probability of

∑d
i=1 S[cji

] taking values in some interval[a, b] is at most
the chance ofS[cjd

] taking a value in an interval of sizeb − a, which is at most b−a
α1W−(α1−α2)W

, sinceS[cjd
]

is uniformly distributed. By Lemma 1,W < n/4 with probability at mostε(n) = e−
n
8 . On the other hand, if

W ≥ n/4, then (9) holds forD with probability at most

d(d−1)
2 α2

α1W − (α1 − α2)W
=

d(d− 1)
2W

≤ 2d(d− 1)
n

=
1

pD(n)
,
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for some polynomialpD. We complete the proof by showing that equation (1) holds:

Pr
x∼µ∗n

[GREEDY(x) 6= M(x)] ≤ Pr[W ≥ n/4 ∧ (∃D ⊂ C s.t. |D| ≥ 2 ∧ (9) holds)] + Pr[W < n/4]

≤
∑

D⊂C:|D|≥2

1
pD(n)

+ ε(n)

≤ 1
poly n

The last inequality holds by the assumption thatm = O(1).

Clearly, Theorem 2 directly follows.

5 Susceptibility to UVWM

In this section we shall prove:

Theorem 10. Let P be a voting protocol such that there exists a junta distributionµP over the instances of
UVWM in P , with the following property:r is uniformly distributed in[0, 1]. ThenP , with candidatesC =
{p, c1, . . . , cm}, m = O(1), is susceptible to UVWM.

The existence of a junta distribution withr uniformly distributed is a very weak requirement (it is even quite
natural to haver uniformly distributed). In fact, the following claim is very likely to be true:

Conjecture 11. LetP be a voting protocol. Then there exists a junta distributionµP over the instances of UVWM
in P , with r uniformly distributed in[0, 1].

If this conjecture is indeed true, we have that all voting protocols are susceptible to UVWM. If for some reason
the conjecture is not true with respect to our definition of junta distributions, then perhaps the definition is too
restrictive and should be modified accordingly. We also remark that similar results can be derived for destructive
manipulations by analogous proofs.

To prove Theorem 10, we first present a helpful procedure, which decides UVWE.~w denotes the vector of
given weights, andν is the given distribution over all the votes.

SAMPLE(C = {p, c1, . . . , cm}, ~w, ν, r)

1: count = 0
2: for i = 1 to n3 do
3: Sample the distributionν over the votes
4: Calculate the result of the election using the sampled votes
5: if p won then
6: count = count + 1
7: end if
8: end for
9: if count/n3 > r then

10: return 1
11: else
12: return 0
13: end if

SAMPLE samples the given distribution on the votesn3 times, and calculates the winner of the election each
time. If p won more than anr-fraction of the elections then the procedure accepts, otherwise it rejects.

Lemma 12. LetP be a voting protocol, andE be UVWE inP with C = {p, c1, . . . , cm}. Furthermore, letµ be
a distribution over the instances ofE, with r uniformly distributed in[0, 1]. Then there existsN such that for all
n ≥ N :

Pr
x∼µn

[SAMPLE(x) 6= E(x)] ≤ 1
polyn

.
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Proof. Let {Xi}n3

i=1 be random variables, such thatXi = 1 if p won in thei’th iteration of the for loop, and
Xi = 0 otherwise. Letr′ be the probability thatp wins in the given instance. By Lemma 1 and the union bound:

Pr

∣∣∣∣∣∣ 1
n3

n3∑
i=1

Xi − r′

∣∣∣∣∣∣ ≥ 1
n

 ≤ 2e−2n3 1
n2 = 2e−2n.

We deduce that if|r− r′| > 1
n , SAMPLE will fail with an exponentially small probability. By the assumption that

r is uniformly distributed, the probability that|r− r′| ≤ 1
n is at most2/n. Thus, by the union bound it holds that:

Pr
x∼µn

[SAMPLE(x) 6= E(x)] ≤ Pr
[
|r − r′| ≤ 1

n

]
+ Pr

[
|r − r′| > 1

n
∧ SAMPLE(x) 6= E(x)

]
≤ 2/n + 2e−2n

≤ 1
polyn

.

We now present an algorithm which decides UVCM. Here,~w denotes the weights of all voters including the
manipulator, andν is the given distribution over the others’ votes.

SAMPLE-AND-MANIPULATE (C = {p, c1, . . . , cm}, ~w, ν, r)

1: ans = 0
2: for i = 1 to (m + 1)! do
3: π = next permutation of them + 1 candidates
4: ν∗ = the manipulator always votesπ, others’ votes are distributed with respect toν
5: if SAMPLE(C, ~w, ν∗, r) = 1 then
6: ans =1
7: end if
8: end for
9: return ans

Given an instance of UVWM, SAMPLE-AND-MANIPULATE generates(m + 1)! instances of the UVWE
problem, one for each of the manipulator’s possible votes, and executes SAMPLE on each instance. SAMPLE-
AND-MANIPULATE accepts if and only if SAMPLE accepts one of the instances.

Lemma 13. LetP be a voting protocol, andM be UVWM inP with C = {p, c1, . . . , cm}, m = O(1). Further-
more, letµ be a distribution over the instances of UVWM, withr uniformly distributed in[0, 1]. ThenSAMPLE-
AND-MANIPULATE is a probabilistic heuristic polynomial time algorithm for〈M,µ〉.

Proof. For each independent call to SAMPLE, the chance of failure is inverse-polynomial. By applying the union
bound we have that the probability of SAMPLE failing on any of the(m+1)! invocations is at most(m+1)! 1

polyn ,
which is still inverse-polynomial sincem is constant. The lemma now follows from the fact that there is a
manipulation if and only if there is a permutation of candidates, such that if the manipulator votes according to
this permutation, the chance ofp winning is greater thanr.

Notice that SAMPLE-AND-MANIPULATE is indeed polynomial by the fact thatm = O(1), and we assumed
that the given distribution over the votes can be sampled in polynomial time.

6 Conclusions and Future Research

The issue of resistance of mechanisms to manipulation is important, particularly in the context of voting protocols.
Most results on this issue useNP-hardness as the complexity measure. One of this paper’s main contributions
has been in introducing tools that can be utilized in showing that manipulating mechanisms iseasyin the average
case. We were mostly concerned with the likely case of coalitional manipulation, and showed that sensitive scoring
protocols are susceptible to such manipulation when the number of candidates is constant. We also described how
a single manipulator can find a beneficial manipulation when it only has a distribution on the others’ votes.
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These results suggest that scoring protocols cannot be safely employed. More importantly, this paper should
be seen as a starting point for studying the average case complexity of other types of manipulations, in other
protocols. In addition, the definitions in Section 3 are deliberately general, and can be applied to manipulations of
mechanisms which are not voting mechanisms. One such mechanism of which we are aware, whose manipulation
isNP-hard, is presented in [1].

There is still room for debate as to the exact definition of a junta distribution, especially if Conjecture 11 turns
out to be false. It may also be the case that there are “unconvincing” distributions that satisfy all of the (current)
conditions of a junta distribution.

An issue of great importance is coming up with natural criteria to decide when a manipulation problem is
hard in the average-case. The traditional definition of average-case completeness is very difficult to work with
in general; is there a satisfying definition that applies specifically to the case of manipulations? Once the subject
is fully understood, this understanding can be used to design mechanisms that are hard to manipulate in the
average-case.

References

[1] Y. Bachrach and J. S. Rosenschein. Achieving allocatively-efficient and strongly budget-balanced mecha-
nisms in the network flow domain for bounded-rational agents. InThe Nineteenth International Joint Confer-
ence on Artificial Intelligence, Edinburgh, Scotland, August 2005. To appear (poster).

[2] J. Bartholdi and J. Orlin. Single transferable vote resists strategic voting.Social Choice and Welfare,
8(4):341–354, 1991.

[3] V. Conitzer, J. Lang, and T. Sandholm. How many candidates are needed to make elections hard to manipu-
late? InProceedings of the International Conference on Theoretical Aspects of Reasoning about Knowledge,
pages 201–214, Bloomington, Indiana, 2003.

[4] V. Conitzer and T. Sandholm. Complexity of manipulating elections with few candidates. InProceedings of
the National Conference on Artificial Intelligence, pages 314–319, Edmonton, Canada, July 2002.

[5] V. Conitzer and T. Sandholm. Universal voting protocol tweaks to make manipulation hard. InProceedings
of the International Joint Conference on Artificial Intelligence, pages 781–788, Acapulco, Mexico, August
2003.

[6] E. Elkind and H. Lipmaa. Small coalitions cannot manipulate voting. InInternational Conference on Fi-
nancial Cryptography, Lecture Notes in Computer Science. Springer-Verlag, Roseau, The Commonwealth of
Dominica, 2005.

[7] A. Gibbard. Manipulation of voting schemes.Econometrica, 41:587–602, 1973.

[8] M. Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and correspondence theorems for
voting procedures and social welfare functions.Journal of Economic Theory, 10:187–217, 1975.

[9] L. Trevisan. Lecture notes on computational complexity. Available from
http://www.cs.berkeley.edu/˜luca/notes/complexitynotes02.pdf, 2002. Lecture 12.

12


