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Abstract

Encouraging voters to truthfully reveal their preferences in an election has long been an important issue.
Previous studies have shown that some voting protocols are hard to manipulate, but predictablyRsed
hardness as the complexity measure. Susloist-caseanalysis may be an insufficient guarantee of resistance
to manipulation.

Indeed, we demonstrate th&P-hard manipulations may be tractable in therage-caseFor this purpose,
we augment the existing theory of average-case complexity with new concepts; we consider elections distributed
with respect tgunta distributions which concentrate on hard instances, and introduce a notitrewrdstic
polynomial time. We use our techniques to prove that a family of important voting protocols is susceptible to
manipulation by coalitions, when the number of candidates is constant.

1 Introduction

In multiagent environments, it may be the case that different agents have diverse preferences. Therefore, it is
important to find a way to aggregate the agents’ preferences. A general scheme for preference aggregation is
voting the agents reveal their preferences by ranking a set of candidates; a winner is determined according to
a voting protocol. The candidates can be various entities such as beliefs or plans, and indeed may be potential
real-life parliament members.

Things are made complicated by the fact that in many settings (as in reality) the agents are self-interested.
Such an agent may reveal its preferences untruthfully, if it believes this would make the final outcome of the
elections more favorable for it. Consequently, the outcome may be one that does not maximize social welfare.
This problem is provably acute: it is known [7, 8] that, for elections with three or more candidates, in any voting
protocol that is non-dictatoriglthere are elections where an agent is better off by voting untruthfully.

Fortunately, it is reasonable to make the assumption that the agents are computationally bounded. Therefore,
although in principle an agent may be able to manipulate an election, the computation required may be infeasible.
This has motivated researchers to study the computational complexity of manipulating voting protocols. It has
long been known [2] that there are voting protocols that/s-hard to manipulate by a single voter. Recent
results by Conitzer and Sandholm [4, 3] show that some manipulations of common voting protochli®are
hard, even for a small number of candidates. Moreover, in [5], it is shown that adding a preround to some voting
protocols can make manipulations hard (ef&$iP.ACE-hard in some cases). Elkind and Lipmaa [6] show that
the notion of preround, together with one-way functions, can be used to construct protocols that are hard to
manipulate even by a large minority fraction of the voters.

In Computer Science, the notion of hardness is usually considered in the sense of worst-case complexity.
Not surprisingly, most results on the complexity of manipulation &@-hardness as the complexity measure.
However, it may still be the case that most instances of the problem are easy to manipulate. A relatively little-
known theory of average case complexity exists [9]; this theory introduces the concept of distributional problems,
and defines what a reduction between distributional problems is. It is also known that average-case complete

1in a dictatorial protocol, there is an agent that dictates the outcome regardless of the others’ choices.



problems exist (albeit artificial ones, such as a distributional version of the halting problem). Sadly, it is very
difficult to show that a certain problem is average-case complete, and such results are known only for a handful
of problems. Additionally, the goal of the existing theory is to define when a probléardsn the average-case;

it does not provide criteria for deciding when a problenedsy A step towards showing that a manipulation is
easy on average was made in [6]. It involves an analysis of the plurality protocol with a preround, but focuses on
a very specific distribution, which does not satisfy some basic desiderata as to what properties an “interesting”
distribution should have.

In this paper, we engage in a novel average-case analysis, based on criteria we propose. Coming up with an
“interesting” distribution of problem instances with respect to which the average-case complexity is computed is
a difficult task, and the solution may be controversial. We analyze problems whose instances are distributed with
respect to gunta distribution Such a distribution must satisfy several conditions, which (arguably) guarantee that
it focuses on instances that are harder to manipulate. We consider a protocauscegtibléo manipulation
when there is a polynomial time algorithm that can usually manipulate it: the probability of failure (when the
instances are distributed according to a junta distribution) must be inverse-polynomial. Such an algorithm is
known as @euristicpolynomial time algorithm.

We use these new methods to prove our main result: an important family of protocols scaliedjprotocols,
is susceptible to coalitional manipulation when the number of candidates is constant. Specifically, we contemplate
sensitivescoring protocols, which include such well known protocols as Borda and STV. To accomplish this task,
we define a natural distibutiqi* over the instances of a well-defined coalitional manipulation problem, and show
this is a junta distribution. Furthermore, we present the manipulation algoritheg Gy, and show that it usually
succeeds with respect tg.

We also show that all protocols are susceptible to a certain setting of manipulation, where the manipulator is
unsure about the others’ votes. This result depends upon a basic conjecture regarding junta distribtions, but also
has implications that transcend our specific definition of these distributions.

In Section 2, we outline some important voting protocols, and properly define the manipulation problems we
shall discuss. In Section 3, we formally introduce the tools for our average case analysis: junta distributions,
heuristic polynomial time, and susceptibility to manipulations. In Section 4 we prove our main result: sensitive
scoring protocols are susceptible to coalitional manipulation with few candidates. In Section 5, we discuss the case
when a single manipulator is unsure about the other voters’ votes. Finally, in Section 6, we present conclusions
and future directions for research.

2 Preliminaries

We first describe some common voting protocols and formally define the manipulation problems with which we
shall deal. Next, we introduce a useful lemma from probability theory.

2.1 Elections and Manipulations

An election consists of a s&t of m candidates, and a sét of n voters, who provide a total order on the
candidates. An election also includes a winner determination function from the set of all possible combinations
of votes toC. We note that throughout this papet,= O(1), so the complexity results are in termsrof

Different voting protocols are distinguished by their winner determination functions. The protocols we shall
discuss are:

e Scoring protocols:A scoring protocol is defined by vectar = (a1, as, ..., ), such thaty; > as >
... > oy, anda; € NU{0}. A candidate receives; points for each voter which ranks it in thh place.
Examples of scoring protocols are:

— Plurality: @ = (1,0,...,0,0).
- Veto:a = (1,1,...,1,0).
— Borda:d=(m—-1,m—-2,...,1,0).
e Copeland: For each possible pair of candidates, simulate an election; a candidate wins such a pairwise

election if more voters prefer it over the opponent. A candidate gets 1 point for each pairwise election it
wins, and—1 for each pairwise election it loses.



e Maximin: A candidate’s score in a pairwise election is the number of voters that prefer it over the opponent.
The winner is the candidate whose minimum score over all pairwise elections is highest.

e Single Transferable VoteThe election proceeds in rounds. In each round, the candidate’s score is the
number of voters that rank it highest among the remaining candidates; the candidate with the lowest score
is eliminated.

We assume that tie-breaking is always adversarial to the manipulator. Additionally, in the case of weighted
votes, a voter with weighk is naturally considered to bk voters who vote unanimously. In this paper, we
consider weights in0, 1]. This is equivalent, since any set of integer weights in the range , polyn can be
scaled down to weights in the segméht1] with O(logn) bits of precision.

The main results of the paper focus on scoring protocols. We shall require the following definition:

Definition 1 (Sensitive Scoring Protocol)lLet P be a scoring protocol with parametefs = (aq, as, . . ., Q).
We say thaf is sensitive itv; > as > ... > a,,,—1 > a4y, = 0 (notice the strict inequality on the right).

In particular, observe that Borda and Veto are sensitive scoring protocols. Generally, from any scoring protocol
with o, 1 > «y,, @n equivalent sensitive scoring protocol can be obtained by subtragctimy a coordinate-by-
coordinate basis from the vect@r Moreover, observe that if a protocol is a scoring protocol but is not sensitive,
anda,, = 0, thena,,_; = 0. In this case, for three candidates it is equivalent to the plurality protocol, for
which most manipulations are tractable even in the worst-case. Therefore, it is sufficient to restrict our results to
sensitive scoring protocols.

We next consider some types of manipulations, state the appropriate complexity results, and introduce some
notations. We discuss theonstructivecases, where the goal is trying to make a candidate win, as opposed to
destructivemanipulation, where the goal is to make a candidate lose. Constructive manipulations are always at
least as hard (in the worst-case sense) as their destructive counterparts, and in some cases strictly harder (if one is
able to determine whethgrcan be made to win, one can also ask whether any of the othen candidates can
be made to win, thus makinglose).

Definition 2 (INDIVIDUAL-MANIPULATION (IM)) . We are given all the other votes, and a preferred candi-
datep. We are asked whether there is a way for the manipulator to cast its vote sohias.

In [2] it is shown that IM isA/P-complete in Single Transferable Vote, provided the number of candidates is
unbounded. However, the problem isfinfor most voting schemes, and hence will not be studied here.

Definition 3 (COALITIONAL-WEIGHTED-MANIPULATION (CWM)) . We are given a set of weighted votes
S, the weights of a set of vot&swhich are still open, and a preferred candidateWe are asked whether there is
a way to cast the votes ifi so thatp wins the election.

We know [4, 3] that CWM is NP-complete in Borda, Veto and Single Transferable Vote, ever wéhdi-
dates, and in Maximin and Copeland with at lehsaindidates.

This problem will be studied in Section 4; the CWM version that we shall analyze, which is specifically
tailored for scoring protocols, is a slightly modified version whose analysis is more straightforward:

Definition 4 (SCORING-COALITIONAL-WEIGHTED-MANIPULATION (SCWM)). We are given an initial
scoreS|c| for each candidate, the weights of a set of vot&swhich are still open, and a preferred candidate
We are asked whether there is a way to cast the votéssa thatp wins the election.

S|c] can be interpreted ass total score from the votes if. However, we do not require that there exists a
combination of votes that actually inducg€g] for all c.

Definition 5 (UNCERTAIN-VOTES-WEIGHTED-EVALUATION (UVWE)) We are given a weight for each
voter, a distribution over all the votes, a candidateand a number € [0,1]. We are asked whether the
probability ofp winning is greater tham.

Definition 6 (UNCERTAIN-VOTES-WEIGHTED-MANIPULATION (UVWM)). We are given a single manip-
ulative voter with a weight, weights for all other voters, a distribution over all the others’ votes, a cangidate
and a number, wherer € [0,1]. We are asked whether the manipulator can cast its vote sothdns with
probability greater than-.



If CWM is N'P-hard in a protocol, then UVYWE and UVWM are ald6P-hard in it [4]. These problems
will be studied in Section 5. We make the assumption that the given distributions over the others’ votes can be
sampled in polynomial time.

2.2 Chernoff’'s bounds

The following lemma will be of much use later on. Informally, it states that the average of independent identically
distributed (i.i.d.) random variables is almost always close to the expectation.

Lemma 1(Chernoff's Bounds) Let X, ..., X; be i.i.d. random variables such that< X; < bandE[X;] = u.
Then for any > 0, it holds that:
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3 Junta Distributions and Susceptible Mechanisms

In this section we lay the mathematical foundations required for an average-case analysis of the complexity of
manipulations. All of the definitions are as general as possible; they can be applied to the manipulation of any
mechanism, not merely to the manipulation of voting protocols.

We describe a distribution over the instances of a problem as a collection of distributions, p.,, . . .,
wherey,, is a distribution over the instancessuch thatz| = n. We wish to analyze problems whose instances
are distributed with respect to a distribution which focuses on hard-to-manipulate instances. Ideally, we would
like this distinguished distribution to be such that if one manages to produce an algorithm which can usually
manipulate instances according to this “difficult” distribution, the algorithm would also usually succeed when the
instances are distributed with respect to most other reasonable distributions.

Definition 7 (Junta Distribution) Let u = {u., }nen be a distribution over the possible instances of\a®-hard
manipulation problem\/. p is a junta distribution if and only if: has the following properties:

1. Hardness: The restriction of/ to p is the manipulation problem whose possible instances are only:
Uneni® s 12| = n A pp(z) > 0}. Deciding this restricted problem is stiN’P-hard.

2. Balance: There exist a constant- 0 and N € N such that for alln > N:

1
< Pro,, [M@)=1< 1-
C
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3. Dichotomy: for alln and instances: such thatz| = n:

pn () > 27PN (2) = 0.

If M is a manipulation problem, we also require the following property:

4. Symmetry: Let be a voter whose vote is given, lgt co # p be two candidates, and léte [m]. The
probability thatv ranksc; in thei'th place is the same as the probability thatanksc, in thei'th place.

If M is a coalitional manipulation problem, we also require the following property:

5. Refinement: Let x be an instance such that= n and ., (z) > 0; if all colluders voted identically, thep
would not be elected.

The name “junta distribution” comes from the idea that in such a distribution, relatively few “powerful” and
difficult instances represent all the other problem instances. Alternatively, our intent is to have a few problematic
distributions (the family of junta distributions) convincingly represent all other distributions with respect to the
average-case analysis.



The first three properties are basic, and are relevant to problems of manipulating any mechanism. The defin-
ition is modular, and relevant additional properties may be added on top of the basic three, in case one wishes to
analyze a mechanism which is not a voting protocol.

The exact choice of properties is of extreme importance (and may be arguable). We shall briefly explain our
choices. Hardness is meant to insure that the junta distribution contains hard instances. Balance guarantees that
a trivial algorithm which always accepts (or always rejects) has a significant chance of failure. The dichotomy
property helps in preventing situations where the distribution gives a (positive but) neglible probability to all the
hard instances, and a high probability to several easy instances.

We now examine the properties that are specific to manipulation problems. The necessity of symmetry is best
explained by an example. Consider CWM in STV with> 3. One could design a distribution whesavins
if and only if a distinguished candidate loses the first round. Such a distribution could be tailored to satisfy the
other conditions, but misses many of the hard instances. In the context of SCWM, we interpret symmetry in the
following way: for every two candidates, c; # p andy € R,

Pr [S[ei] =yl = Pr [S[eo] = y].
Ty T hn
Refinement is less important than the other four properties, but seems to help in concentrating the probability
on hard instances. Observe that refinement is only relevant to coalitional manipulation; we believe that in the
analysis of individual voting manipulation problems, the first four properties are sufficient.

Definition 8 (Distributional Problem [9]) A distributional problem is a paifL, 1) whereL is a decision problem
andy is a distribution over the s€f0, 1}* of possible inputs.

Informally, an algorithm is a heuristic polynomial time algorithm for a distributional problem if it runs in
polynomial time, and fails only on a small fraction of the inputs. We now give a formal definition; this definition
is inspired by [9] (there the same name is used for a somewhat different definition).

Definition 9 (Heuristic Polynomial Time) Let (M, 1) be a distributional problem, wher#/ is a manipulation
problem.

1. An algorithmA is a deterministic heuristic polynomial time algorithm for the distributional manipulation
problem(M, p) if A always runs in polynomial time, and there exists a polynomial psind N such that
foralln > N:

1
Pr [A(x M(z)| < —. 1
o A@) # M@ < o )
2. LetA be a probabilistic algorithm, which uses a random stringd is a probabilistic heuristic polynomial

time algorithm for the distributional manipulation problei/, 1) if A always runs in polynomial time, and
there exists a polynomial p andl € N such that for alln > N:

1
%1;;3,8[14(55) # M(z)] < ()’

(2)
Probabilistic algorithms have two potential sources of failure: an unfortunate choice of input, or an unfortunate

choice of random string. The success or failure of deterministic algorithms depends only on the choice of input.
We now combine all the definitions introduced in this section in an attempt to establish when a mechanism is

susceptible to manipulation in the average case. The following definition abuses notatioiWashoth used to

refer to the manipulation itself, and the corresponding decision problem.

Definition 10 (Susceptibility to Manipulation) We say that a mechanism is susceptible to a manipuldtioif
there exists a junta distributiop, such that there exists a deterministic/probabilistic heuristic polynomial time
algorithm for (M, ).



4 Susceptibility to SCWM

Recall [4, 3] that in Borda and Veto, CWM j§P-hard, even with3 candidates. Since Borda and Veto are
examples of sensitive scoring protocols, we would like to study how resistant this family of protocols really is
with respect to coalitional manipulation. In this section we use the methods from the previous section to prove
our main result;

Theorem 2. Let P be a sensitive scoring protocol. Théh with candidates” = {p,c1,...,cm}, m = O(1),is
susceptible to SCWM.

Intuitively, the instances of CWM (or SCWM) which are hard are those that require a very specific partitioning
of the voters inl" to subsets, where each subset votes unanimously. These instances are rare in any reasonable
distribution; this insight will ultimately yield the theorem.

The following proposition generalizes Theorem 1 of [4] and Theorem 2 of [3], and justifies our focus on the
family of sensitive scoring protocols. It will also be crucial in order to prove the hardness property of a junta
distribution we shall design.

Definition 11 (PARTITION). We are given a set of intege{$; };c[y, Summing t@ K, and are asked whether a
subset of these integers sumio

It is well-known that PARTITION is\P-complete.
Proposition 3. Let P be a sensitive scoring protocol. Then CWMFris N'P-hard, even witl3 candidates.

Proof. We reduce an arbitrary PARTITION instance to the following CWM instance. Therg eaadidatesq,
b, andp. In S, there areK (4a; — 2a3) — 1 voters votinga = b > p, and K (4«1 — 2a2) — 1 voters voting
b > a > p. InT, for everyk; there is a vote of weigh(«; + a2)k;. Observe that front, botha andb get
(K (401 — 202) — 1)(aq + o) points.

Assume first that a partition exists. Let the voterd'iin one half of the partition votg > a > b, and let the
other half votep - b > a. By this vote,a andb each have

(K(4a1 — 2a9) — 1) (g + aa) + 2K (a1 + ag)as = (a1 + az)(4Ka; — 1)

votes, whilep has(a; + as)4K a4 points; thus there is a manipulation.
Conversely, assume that there exists a manipulation. Clearly there must exist a manipulation where all the
voters inT' vote eitherp > a > borp = b > a, because the colluders do not gain anything by not plaging
at the top in a scoring protocol. In this manipulatiprhas(a; + a2)4K oy points, whilea andb already have
(K (41 —2ai2) — 1) (aq + a2) points fromS. Thereforeq andb must gain less tha2as K + 1) (a; + a2) points
from the voters iril". Each voter corresponding £g contribute2(a; + as)ask; points; it follows that the sum
of the k; corresponding to the voters votinpg~ a > b is less thank” + i and likewise for the voters voting
p > b = a. Equivalently, the sum can be at mdst since allk; are integers and, > 1. In both cases the sum
must be at mosk(; hence, this is a partition. O

Since an instance of CWM can be translated to an instance of SCWM in the obvious way, we have:

Corollary 4. Let P be a sensitive scoring protocol. Then SCWNMPiiis NP-hard, even witt8 candidates.

4.1 A Junta Distribution

Letw(v) denote the weight of voter, and letiV denote the total weight of the votesih P is a sensitive scoring
protocol. We denotél’| = n: the size ofl" is the size of the instance.

Consider a distributiop™ = {u} },,en Over the instances of CWM if?, with m + 1 candidate®, c1, . . . , ¢,
where each:’, is induced by the following sampling algorithm:

1. Vv € T: Randomly and independently choasév) € [0, 1] (up toO(logn) bits of precision).

2. Vi € [m]: Randomly and independently chooS&;] € [(a1 — a2)W, a1 W] (up to O(logn) bits of
precision).



A few comments are in order. We assume tfip = 0, i.e., all voters inS rankp last. This assumption is not
arestriction. If it holds for a candidatethat S[c] < S[p|, then candidate will surely lose, since the colluders all
rankp first. Therefore, ifS[p] > 0, we may simply normalize the scores by subtractitg| from the scores of
all candidates. This is equivalent to our assumption.

More importantly, we believe that* is the most natural distribution with repect to which coalitional manipu-
lation in scoring protocols should be studied. Even if one disagrees with the exact definition of junta distribution,
w* should satisfy many reasonable conditions one could produce. We shall, of course, (presently) prove that the
distribution posesses the properties of a junta distribution.

Proposition 5. Let P be a sensitive scoring protocol. Theti is a kernel distribution for SCWM i#® with
C= {p7 Cly- -+ Cm}: andm = O(l)

Proof. We first observe that the dichotomy and symmetry conditions are obviously satisfied.
The proof of the hardness property relies on the reduction from PARTITION in Proposition 3. The reduction
generates instancesof CWM in P with 3 candidates, wher®” = 4(a; + a2) K, and

S[CL] = S[b] = (K(4C¥1 — 20[2) — 1)(0[1 + 0[2) = (0[1 — OZQ/Z)W — (Oél —+ Ckz),

for someK that originates in the PARTITION instance. These instances sétisfyas)W < S[a], S[b] < oy W.
It follows that.*(z) > 0 (after scaling down the weight3).

We now provey* has the balance property. If for all $[c;] > (a1 — as/m)W, then clearly there is no
manipulation, since at least W points are given by the voters ifi to the undesirable candidates .. ., ¢,,.
This happens with probability at least- .

On the other hand, consider the situation where fo,all

Slei] < (a1 — )W 3

this occurs with probability at Iea§tm§—)m. Intuitively, if the colluders could distribute the votes’lhin such a

way that each undesirable candidate is ranked last in exgotlyfraction of the votes, this would be a successful
manipulation: each undesirable candidate would gain at most an addiﬁgéaigw points. Unfortunately this

is usually not the case, but the following condition is sufficient for a successful manipulation (assuming condition
(8) holds). Partition the voters in T te disjoint subsets, . .., p; (w.l.0.g. of sizen/m), and denote byV’,,, the

total weight of the votes ip,. The condition is that for all € [m]:

(1-=1/m)-1/2-n/m <W,, <(1+1/m)-1/2-n/m. 4)

This condition is sufficient, because if the votergjrall rankc; last, the fraction of the votes ifi which givesc;
points is at most:
(m—1)(141/m) o om?—1

(m—-1DA+1/m)+1—-1/m m2+m—2
Hence the number of points gains from the colluders is at most:

m2—1 m2 —1

mag S ?OZQ < Oélw — S[CJ

Furthermore, by Lemma 1 and the fact that the expected total weightrofvotes isl/2 - n/m, the probability

that condition (4) holds is at least- 2¢™ 5. Sincem is a constant, this probability is larger thafe for a large
enoughn.

Finally, it can easily be seen that has the refinement property: if all colluders ragnkirst and candidate
¢ second, thep getsay W points, and: getsax W + S[c] points. ButS[c] > (a1 — a2)W, and thugp surely
loses. O

2|t seems the reduction can be generalized for a larger number of candidates. The hard instances are the ones where all undesirable
candidates but two have approximatély; — a.2)W initial points, and two problematic candidates have approximdtely— a, /2)W
points. These instances have a positive probability upder



4.2 A Heuristic Polynomial Time Algorithm

We now present our algorithm for SCWNM. denotes the vector of the weights of votergin

GREEDY(C = {p,c1,...,cm},S[p], Sleals - -+, Slem] T = {t1, . . ., tn }0)

1: forall cdo

2:  Splc] = S[c]

3: end for

4: fori=1ton do

5: Letjl,jg, ey Im such thalSi_l[cjl] < Si—l[cjz] <...< Si_l[ij]
6: \otert; votesp = c;j, = c¢j, = ... = ¢j,,
7. fori=1tom:do

8: Silej ] = Sicale;] + wlti)ara

9: end for

10: Sl[p] = S,j_l[p] + w(tq;)ozl

11: end for

12: if argmax{Sn[c]} = {p} then
13 return 1

14: else

15:  return 0

16: end if

The voters inT", according to some order, each rgnkirst, and the rest of the candidates by their current
score: the candidate with the lowest current score is ranked higheste ¥ accepts if and only ip wins this
election.

This algorithm, designed specifically for scoring protocols, is a realization of an abstract greedy algorithm:
at each stage, votef ranks the undesirable candidates in an order that minimizes the highest score that any
undesirable candidate obtains after the current vote. If there is a tie between several permutations, the voter
chooses the option such that the second highest score is as low as possible, etc. In any case, every colluder
always rank9 first. This abstract scheme might also be appropriate for protocols such as Maximin and Copeland.
Similarly to scoring protocols, in these two protocols the colluders are always better off by rankisg In
addition, the abstract greedy algorithm can be applied to Maximin and Copeland since the result of an election is
based on the score each candidate has (unlike STV, for example).

In the following lemmas, atagein the execution of the algorithm is an iteration of the for loop.

Lemma 6. If there exists a stagg during the execution oGREEDY, and two candidates, b # p, such that
|Siola] = Sio [b]] < a2, 5)
then for alli > iy it holds that|S;[a] — S;[b]] < as.

Proof. The proof is by induction on. The base of the induction is given by equation (5). Assume|fhat] —
S;i[b]] < ag, and without loss of generalitys;[a] > S;[b]. By the algorithm, votet; ; ranksb higher tham, and
therefore:

Sit1[b] = Sit1la] > —as. (6)
Sincep is always ranked first, and the weight of each vote is at hasgains at mostv, points. Therefore:

Six1[b] — Sit1la] < as. (7)
Combining equations (6) and (7) completes the proof. O

Lemma 7. Letp # a,b € C, and suppose that there exists a stageuch thatS, [a] > S;,[b], and a stage
i1 > 1o such thatS;, [b] > S;, [a]. Then for alli > 4; it holds that|S;[a] — S;[b]]| < aq.

Proof. Assume the that there exists a stagsuch thatS; [a] > S;,[b], and a stage; > iy such thatS;, [b] >

Si, la]; w.l.o.g.i1 > io (otherwise at stagg it holds thatS;,[b] = S;, [a], and then we finish by Lemma 6). Then
there must be a stade such that, < ix < i; andS;,[a] > S;,[b] butS;,+1[b] > Si,+1[a]. Since the weight of
each vote is at mogt, b gains at mostv, points by voter,, 1. Hence the conditions of Lemma 6 hold for stage
ia, which implies that for alf > i5: |S;[a] — S;[b]| < as. In particulari; > is. O



Lemma 8. Let P be a sensitive scoring protocol, and assUBREEDY errs on an instance of SCWM A which

has a successful manipulation. Then theré is {2,3,...,m}, and a subset of candidaté$ = {c,,,...,c;,},
such that:
d d—1 d
S (W =Se;]) =Y (i-02) WD amia; < Z W — S[e;.]). (8)

=1 i=1 i=1

Proof. For the right inequality, observe that for adycandidates, even if all voters ifi rank them last in every
vote, the total points distributed among thenWst:1 am+2—q. If this inequality does not hold, there must
be some candidate that gains at leasty W — S|[¢;] points from the colluders, implying that this candidate
has at leasty; W points. Howeverp also has at mosi; W points, and we assumed that there is a successful
manipulation — a contradiction.

For the left inequality, assume the algorithm erred. Then at some #fagieere is a candidate;, who
has a total of at least; W points (w.l.o.g. only one candidate passes this threshold simultaneously). Denote
To = {t1,t2,...,t, }, and letWy, be the total weight of the voters ify,. Votert;, did not ranke;, last, since
am+1 = 0, and thus ranking a candidate last gives it no points. We have that there is another cafgjdate
such that:Siofl[le] > Sigfl[CjO]. By Lemma 7vSio [Cjo] — Sio [le] < a9, and thusS'iO [le] > a W — ao.
If these canidates were not always ranked last by the votefg,ahere must be another candidaig who was
ranked strictly higher by some voter ify, w.l.0.g. higher thare;,. Therefore, we have from Lemma 7 that:
Siolei ] — Siolej,] < ag, and soc;, has a total of at least; W — 2a, points. By inductively continuing this
reasoning, we obtain a subgetof d candidates (possibly = m), who were always ranked in thElast places
by the voters irl, and for thel'th candidate it holds thaiS;, [c;,] > a1 W — (I — 1)ae. The total points gained
by this{’th candidate until stag& must be at IeashW — (I —=1)ag — S[c;,]. Since the total points distributed

by the voters irfy to thed last candidates i8/r, Z —1 Qmy2—4, We have:

d -1

D (W = Sle]) = Y (i az) < Wr, Zam+2 i < W204m+2 i

1 =1 =1

U

=1 7
O

Lemma 9. Let M be SCWM in a sensitive scoring protodowith C = {p, c1, . .., ¢, }, M=0(1). TherGREEDY
is a deterministic heuristic polynomial time algorithm fav/, 1.*).

Proof. It is obvious that if the given instance has no successful manipulation, then the greedy algorithm would
indeed answer that there is no manipulation, since the algorithm is constructive (it actually selects specific votes
for the colluders).

We wish to bound the probability that there is a manipulation and the algorithm erred. By Lemma 8, a
necessary condition for this to occur is as specified in equation (8), or equivalently:

d d d
Wzalfwzam—&&—i*i Z CJ <WZO[1 WZQM-FQ i (9)
i=1 i=1 i=1

In this case the algorithm may err; but what is the probability of equation (9) holding? Fix a duludfetize
de{2,...,m}. Zle Slej,] is a random variable that takes valuesdfw; — a2)W, doy W1. By fixing values
for S[e;, ], ..., Slej,_, ), we have that the probability @le S|c;,] taking values in some interval, b] is at most
the chance of|c;,] taking a value in an interval of siZe— a, which is at most% sinceS|c;,]
is uniformly distributed. By Lemma 1)V < n/4 with probability at most(n) = e~%. On the other hand, if
W > n/4, then (9) holds foiD with probability at most

WD g, dd-1) _2d(d-1) 1

oW — (o — )W T Taw S n - pP(n)’




for some polynomiap”. We complete the proof by showing that equation (1) holds:

mf}; [GREEDY(x) # M(z)] < Pr[W >n/4 A (3D C C s.t. |D| > 2 A (9) holds] + Pr[W < n/4]

< Z ! +¢(n)

D
pccplz2 P (n)
1
<
~ polyn

The last inequality holds by the assumption that O(1). O

Clearly, Theorem 2 directly follows.

5 Susceptibility to UVYWM

In this section we shall prove:

Theorem 10. Let P be a voting protocol such that there exists a junta distributidh over the instances of
UVWM in P, with the following property:r is uniformly distributed in0,1]. ThenP, with candidate =
{p,c1,...,em}, m = O(1), is susceptible to UVWM.

The existence of a junta distribution withuniformly distributed is a very weak requirement (it is even quite
natural to have: uniformly distributed). In fact, the following claim is very likely to be true:

Conjecture 11. Let P be a voting protocol. Then there exists a junta distributidhover the instances of UVWM
in P, with r uniformly distributed in0, 1].

If this conjecture is indeed true, we have that all voting protocols are susceptible to UVWM. If for some reason
the conjecture is not true with respect to our definition of junta distributions, then perhaps the definition is too
restrictive and should be modified accordingly. We also remark that similar results can be derived for destructive
manipulations by analogous proofs.

To prove Theorem 10, we first present a helpful procedure, which decides U\iMienotes the vector of
given weights, and is the given distribution over all the votes.

SAMPLE(C = {p,c1,...,Cm}, W, v, T)
1. count=0
2: for i = 1ton® do
3:  Sample the distribution over the votes

4:  Calculate the result of the election using the sampled votes
5. if pwonthen

6: count=count+1

7. endif

8: end for

9: if count/n® > r then

10: return 1

11: else

12:  return 0

13: end if

SAMPLE samples the given distribution on the votestimes, and calculates the winner of the election each
time. If p won more than an-fraction of the elections then the procedure accepts, otherwise it rejects.

Lemma 12. Let P be a voting protocol, and’ be UVWE inP with C = {p, ¢4, ..., ¢;n }. Furthermore, lefu be
a distribution over the instances &f, with r uniformly distributed in0, 1]. Then there existd’ such that for all
n > N:

1
P E(x)] < .
INL[SAMPLE(x) # E(x)] < oy
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Proof. Let {Xi}?; be random variables, such th& = 1 if p won in thei'th iteration of the for loop, and
X; = 0 otherwise. Let’ be the probability thap wins in the given instance. By Lemma 1 and the union bound:

3
1 - / 1 o2n3 L 2
—_— P — — I —an
Pr 3 ZX’ r| > - < 2e 2e .
i=1

We deduce that ifr — /| > L, SamPLE will fail with an exponentially small probability. By the assumption that
r is uniformly distributed, the probability that — 7’| < 1 is at most/n. Thus, by the union bound it holds that:

Pr [SAMPLE(z) # E(z)] < Pr [|r —7r'| < 711] + Pr [|r —7r'| > % A SAMPLE(x) # E(z)

T~
<2/n+ 2e~2"

1
< .

~ polyn

O

We now present an algorithm which decides UVCM. Heralenotes the weights of all voters including the
manipulator, and is the given distribution over the others’ votes.

SAMPLE-AND-MANIPULATE(C = {p,¢1,...,Cm}, W, v, T)
1. ans=0
2: fori=1to(m+1)!do
3:  m = next permutation of the: + 1 candidates

4: v* =the manipulator always votes others’ votes are distributed with respecito
5. if SAMPLE(C, W, v*, r) =1 then

6: ans =1

7. endif

8: end for

9: return ans
Given an instance of UVWM, &IPLE-AND-MANIPULATE generategm + 1)! instances of the UVWE
problem, one for each of the manipulator’s possible votes, and executesL8 on each instance. AMPLE-
AND-MANIPULATE accepts if and only if 8MPLE accepts one of the instances.

Lemma 13. Let P be a voting protocol, and/ be UVYWM inP with C = {p, c1, ..., cn}, m = O(1). Further-
more, letu be a distribution over the instances of UVWM, witbniformly distributed in0, 1]. ThenSAMPLE-
AND-MANIPULATE is a probabilistic heuristic polynomial time algorithm foM, ).

Proof. For each independent call t?a@PLE, the chance of failure is inverse-polynomial. By applying the union
bound we have that the probability oh8PLE failing on any of thgm +1)! invocations is at mogtn +1)! po%yn,
which is still inverse-polynomial since: is constant. The lemma now follows from the fact that there is a
manipulation if and only if there is a permutation of candidates, such that if the manipulator votes according to
this permutation, the chance pivinning is greater than.

Notice that 3MPLE-AND-MANIPULATE is indeed polynomial by the fact that = O(1), and we assumed

that the given distribution over the votes can be sampled in polynomial time. O

6 Conclusions and Future Research

The issue of resistance of mechanisms to manipulation is important, particularly in the context of voting protocols.
Most results on this issue ugéP-hardness as the complexity measure. One of this paper’'s main contributions
has been in introducing tools that can be utilized in showing that manipulating mechanesasgiisthe average

case. We were mostly concerned with the likely case of coalitional manipulation, and showed that sensitive scoring
protocols are susceptible to such manipulation when the number of candidates is constant. We also described how
a single manipulator can find a beneficial manipulation when it only has a distribution on the others’ votes.
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These results suggest that scoring protocols cannot be safely employed. More importantly, this paper should
be seen as a starting point for studying the average case complexity of other types of manipulations, in other
protocols. In addition, the definitions in Section 3 are deliberately general, and can be applied to manipulations of
mechanisms which are not voting mechanisms. One such mechanism of which we are aware, whose manipulation
is N"P-hard, is presented in [1].

There is still room for debate as to the exact definition of a junta distribution, especially if Conjecture 11 turns
out to be false. It may also be the case that there are “unconvincing” distributions that satisfy all of the (current)
conditions of a junta distribution.

An issue of great importance is coming up with natural criteria to decide when a manipulation problem is
hard in the average-case. The traditional definition of average-case completeness is very difficult to work with
in general; is there a satisfying definition that applies specifically to the case of manipulations? Once the subject
is fully understood, this understanding can be used to design mechanisms that are hard to manipulate in the
average-case.
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