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ABSTRACT
Recent results have established that a variety of voting rules
are computationally hard to manipulate in the worst-case;
this arguably provides some guarantee of resistance to ma-
nipulation when the voters have bounded computational
power. Nevertheless, it has become apparent that a truly
dependable obstacle to manipulation can only be provided
by voting rules that are average-case hard to manipulate.

In this paper, we analytically demonstrate that, with respect
to a wide range of distributions over votes, the coalitional
manipulation problem can be decided with overwhelming
probability of success by simply considering the ratio be-
tween the number of truthful and untruthful voters. Our
results can be employed to significantly focus the search
for that elusive average-case-hard-to-manipulate voting rule,
but at the same time these results also strengthen the case
against the existence of such a rule.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity;
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems;
J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics

General Terms
Algorithms, Theory, Economics

Keywords
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1. INTRODUCTION
Recent years have seen a surge of interest in the computa-
tional aspects of social choice theory. This attention is mo-
tivated by applications of social choice paradigms to fields

such as electronic commerce and multiagent systems. Vot-
ing, in particular, is often used as a method of aggregating
the preferences of heterogeneous, self-interested agents. For
instance, voting has been employed to help agents reach an
agreement regarding joint plans, schedules [10], and recom-
mended movies [9].

Unfortunately, for a socially desirable outcome to emerge
from an election, voters should reveal their true preferences
— but precluding manipulation is impossible in general.
The celebrated Gibbard-Satterthwaite Theorem [13] states
that, with any reasonable voting rule (a function that de-
termines the outcome of the election, given the voters’ pref-
erences), there are elections where some of the voters can
benefit by voting untruthfully. This result holds if there are
three or more candidates, if the voting rule is non-dictatorial
(i.e., sensitive to more than the wishes of a single voter),
and if the voting rule could conceivably enable any one of
the candidates to win, under some alignment of voter pref-
erences.

Computational complexity theory seemingly provides a way
to circumvent the Gibbard-Satterthwaite Theorem. It has
been suggested by Bartholdi et al. [3] that, although in
principle a voter may lie in order to improve its position,
determining if it is possible in practice, given a specific
setting, may be a computationally hard problem. Indeed,
Bartholdi and Orlin [2] demonstrated that the important
Single Transferable Vote (STV) voting rule is NP-hard to
manipulate. More recent results imply that it is possible
to make simple voting rules, which could otherwise be ma-
nipulated efficiently, hard to manipulate by adding a pre-
round [6]. Other research shows that many voting rules are
NP-hard to manipulate by a coalition of weighted voters [5,
4]; these results hold even when the number of candidates
is constant, though the number of manipulative voters must
be unbounded.

The abovementioned computational results all imply worst-
case hardness. Although it can be argued that these results
demonstrate some measure of resistance to manipulation,
by no means do they preclude it. An NP-hard problem
has an infinite number of “hard instances” [11], but it may
still be the case that most instances are “easy”. In our set-
ting, this means that a strategic voter might usually be able
to determine whether or not to reveal its true preferences.
Therefore, an average-case analysis is required.



Naturally, it is not possible for to find a voting rule that
is usually hard to manipulate with respect to any distribu-
tion over the instances. However, on the face of it, it is
reasonable to hope for a voting rule that has this property
at least under certain interesting distributions. Sadly, two
recent papers presented evidence to the contrary. Procaccia
and Rosenschein [12] defined the notion of junta distribution,
and argued that if an algorithm can usually decide the ma-
nipulation problem with respect to a junta distribution, the
same algorithm would usually succeed with respect to other
natural distributions. The authors proceeded to show that
there is such an algorithm when the voting rule is a scoring
rule (see Section 2 for a formal definition). However, the
relation between junta distributions and other distributions
is not as yet formally established.

Conitzer and Sandholm [7] proposed a different approach:
they demonstrated that if an instance of the manipulation
problem has certain properties, it is easy to decide. Fur-
ther, it was empirically shown that, in a variety of voting
rules, a large fraction of instances possess these properties.
The main drawback of this result is that the experiments
only consider instances that are distributed according to a
specific family of distributions, and in all experiments the
number of manipulators and candidates is extremely small
compared to the number of voters. In addition, the paper
provides few theoretical guarantees.

In the current paper we notice that, for a variety of interest-
ing distributions, it is either almost always possible to find
a successful manipulation, or almost never possible. The
correct alternative depends only on easily testable proper-
ties of the distribution, and on the fraction of manipula-
tors. If n is the number of manipulators and N is the num-
ber of nonmanipulative voters, we demonstrate that, when
n = o(

√
N), manipulation is almost never possible under al-

most any distribution where the voters vote independently.
When n = ω(

√
N), we characterize the distributions where

manipulation is almost always possible, and the ones where
it is almost never possible. We rigorously prove these re-
sults in the context of an important family of voting rules,
but argue that they are also valid with respect to others.
Ultimately, our results yield a generic algorithm that usu-
ally decides the manipulation problem under many natural
distributions. This can be viewed as additional evidence
against the existence of a voting rule that is hard to manip-
ulate, but can also be used to focus the search for such a
rule, should it exist.

Some recent research in economics has independently rec-
ognized that when the fraction of manipulators is small,
manipulation is rarely possible [14, 1]. However, these pa-
pers consider only variations on the uniform distribution
over possible elections; this is plausible from the economist’s
point of view, but in computer science we can preclude
average-case hardness only by showing that the problem
is average-case tractable under any distribution. Addition-
ally, unlike the abovementioned work, we present our results
and their implications from a computational point of view.
In particular, the formulation of the manipulation problem
that we consider is the one generally accepted in computer
science, and not the one investigated in that research.

The paper proceeds as follows. In Section 2 we give some
background concerning voting rules and the coalitional ma-
nipulation problem. In Section 3 we present our results. In
Section 4 we discuss the meaning and significance of our
results, and we conclude in Section 5.

2. PRELIMINARIES
An election consists of a set V = {v1, v2, . . .} of voters, and
a set C = {c1, c2, . . . , cm} of candidates; voters’ indices usu-
ally appear in superscript, while candidates’ indices usually
appear in subscript. Each voter’s preferences can be rep-
resented as a linear order1; let L be set of linear orders on
C. A voting rule is a function F : LV → C, that maps the
preferences of the voters to the winning candidate.

2.1 Scoring Rules
The voting rules we shall discuss in this paper are scoring
rules. A scoring rule is defined by a vector α = 〈α1, . . . , αm〉,
where the αl are real numbers such that α1 ≥ α2 ≥ · · · ≥
αm ≥ 0. Each voter awards α1 points to the candidate
it ranks first, α2 points to the candidate it ranks second,
and in general αl points to the candidate it ranks l’th. The
candidate with the most points (summed over all the voters)
wins the election. Some prominent scoring rules are:

• Plurality : ~α = 〈1, 0, . . . , 0〉.

• Borda: ~α = 〈m− 1,m− 2, . . . , 0〉.

• Veto: ~α = 〈1, . . . , 1, 0〉.

Remark 1. Plurality is in fact the voting rule that gov-
erns most real-life elections.

It is also possible to consider weighted voting: voters are
associated with weights, and a voter with weight k is taken
into account as k voters casting identical votes. For example,
if m = 3 and the voting rule is Borda, a voter with weight
2 awards 4 points to its first choice, 2 points to its second
choice, and 0 points to its last choice.

2.2 The Coalitional Manipulation Problem
Hereinafter, we conceptually partition the set V of voters
into two sets: V = V1 ] V2, where |V1| = N and |V2| = n.
V1 = {v1, . . . , vN} is the set of nonmanipulators, while V2 =
{vN+1, . . . , vN+n} is the set of manipulators, who are col-
luding in an attempt to make a certain candidate p win the
election. The standard assumption is that the manipulators
know exactly how the nonmanipulators cast their votes.2 In
addition, we assume that m, the number of candidates, is
constant: m = O(1).

Definition 1. In the Coalitional-Weighted-
Manipulation (CWM) problem, we are given the set of
voters V = V1 ] V2, the set of candidates C, the weights of

1A linear order is a binary relation that satisfies antisym-
metry, transitivity, and totality.
2In game-theoretic settings, it is usually assumed that
strategic players know how the other players play.



all voters, and a preferred candidate p ∈ C. In addition, we
are given the votes of the voters in V1, and assume that the
manipulators are aware of these votes. We ask whether it is
possible for the manipulators in V2 to cast their votes in a
way that makes the preferred candidate p win the election.

It is known that CWM is NP-hard when the voting rule is
Borda or Veto and the number of candidates satisfies m ≥ 3,
as well as when the voting rule is Copeland or Maximin and
the number of candidates satisfies m ≥ 4 [5, 4]. We shall
argue below that CWM is average-case tractable in these
rules (when the number of candidates is constant).

3. RESULTS
We wish to study the relationship between the number of
nonmanipulators versus manipulators (or, if you will, the
fraction of manipulators relative to overall voters) and the
chances an instance of CWM is a “yes” or a “no” instance.
Essentially, we suggest that in many cases the manipulators
cannot affect the outcome of the election at all.

Definition 2. An instance of CWM is a closed instance
if, no matter how the manipulators in V2 cast their votes,
the same candidate gets elected. An instance that is not a
closed instance is called an open instance.

Naturally, knowing whether an instance is closed goes a long
way towards deciding CWM. For example, a closed instance
is a “yes” instance if and only if the distinguished candidate
in Definition 2 is the preferred candidate p.

Any result in average-case complexity clearly depends on
the distribution over the possible instances of the manipu-
lation problem. In fact, since we are mostly interested in
whether an instance is open or closed, the only parameters
of the problem that are not given are the votes of the non-
manipulators, and the weights of the voters. However, as
in [7], we prove sufficient conditions for openness/closedness
which depend only on the total weight of the manipulators
— the individual weights of the manipulators are of no im-
portance. Therefore, weights are a nonissue, and it is suffi-
cient to consider distributions over the possible votes of the
nonmanipulators in V1.

3.1 Fraction of Manipulators is Small
In this subsection we demonstrate that when the fraction
of manipulators is small, that is n = o(

√
N), then usually

instances of CWM are closed. This result holds for scoring
rules, and requires only weak assumptions on the distribu-
tion of votes.

Given an instance of the manipulation problem in a scor-
ing rule, consider the scores of candidates based only on the
votes of the nonmanipulators. If there is a candidate whose
score is higher than others’ by more than α1n, then the in-
stance is surely closed: even if all manipulators ranked this
candidate last and another candidate first, the difference in
scores would decrease by at most α1n, which is not enough
to close the gap. Further, notice that the total score, based
on the nonmanipulators’ votes, of candidate ck is given by

PN
i=1 S

i
k. We have established the following sufficient con-

dition for closedness:

Lemma 1. Consider an instance of the coalitional manip-
ulation problem in a scoring rule with parameters ~α. Let Sik
be the score given to candidate ck by the voter vi. If there
exists a candidate ck such that for all cl 6= ck,

PN
i=1 S

i
k −PN

i=1 S
i
k > α1n, then the instance is closed.

Let Di be a distribution over voter vi’s votes, 1 ≤ i ≤ N ; de-
note the joint distribution over votes by DN =

QN
i=1D

i. Di

induces a random variable Sik, which determines the points
voter vi awards candidate ck.

Example 1. Let the voting rule be Borda, and m = 3 —
each voter awards 2 points to its first choice, 1 point to its
second choice, and 0 points to its last. If Di is the uniform
distribution, then for k = 1, 2, 3, Sik is 2 with probability 1

3
,

1 with probability 1
3
, and 0 with probability 1

3
.

We are now ready to present our result.

Theorem 1. Let P be a scoring rule with parameters ~α,
and assume that the number of manipulators and nonma-
nipulators satisfies:

• n = o(
√
N).

Let Di be voter i’s distribution over the possible votes with
m = O(1) candidates, and denote DN =

QN
i=1D

i. Let Sik,

for each vi ∈ V1 and ck ∈ C, be random variables, induced
by the Di, which determine the score of candidate ck from
voter vi. Assume that the distributions over votes satisfy:

• (d1) There exists a constant d > 0 such that for all
vi ∈ V1 and ck, cl ∈ C, d < Var[Sik − Sil ].

• (d2) The Di are independently distributed.

Then the probability that an instance is closed converges to
1 as the number of voters grows.

The proof relies heavily on the central limit theorem. For
our purposes, this theorem implies that the probability that
a sum of random variables obtains values in a very small
segment is very small, as long as the variance of the random
variables is nonzero.

Theorem 2 (Central Limit Theorem). [8] Let

X1, X2, . . . , XN , . . .

be a sequence of independent discrete random variables. For
each i, denote the mean and variance of Xi by µi and σi,



respectively, and assume that
PN
i=1 σ

i N→∞−→ ∞, and that

|Xi| ≤ A for some constant A and all i. Then for a < b:

Pr

24a < PN
i=1X

i −
PN
i=1 µ

iqPN
i=1 σ

i

< b

35 N→∞−→ 1√
2π

Z b

a

e−
x2
2 dx.

Proof of Theorem 1. By Lemma 1 we have:

Pr
DN

[instance is closed]

≥ Pr
DN

"
∃ck ∈ C, ∀cl 6= ck,

NX
i=1

Sik −
NX
i=1

Sil > α1n

#

≥ Pr
DN

"
∀ck, cl 6= ck, |

NX
i=1

Sik −
NX
i=1

Sil | > α1n

#

= 1− Pr
DN

"
∃ck, cl ∈ C s.t. 0 ≤

NX
i=1

Sik −
NX
i=1

Sil ≤ α1n

#
.

Now, by the union bound, we have that

Pr
DN

"
∃ck, cl ∈ C s.t. 0 ≤

NX
i=1

Sik −
NX
i=1

Sil ≤ α1n

#

≤
X

ck,cl∈C

Pr
DN

"
0 ≤

NX
i=1

Sik −
NX
i=1

Sil ≤ α1n

#
.

(1)

Fix two candidates ck, cl ∈ C, and denote Xi = Sik−Sil . Let
µi = E[Xi], σi = Var[Xi]. Notice that

PN
i=1 S

i
k−
PN
i=1 S

i
l =PN

i=1X
i. In addition, observe that by assumption (d1) d <

σi, and thus
PN
i=1 σ

i N→∞−→ ∞. In addition, for all vi ∈ V ,

|Xi| ≤ α1. Therefore, we may apply Theorem 2 to the
variables Xi.

Pr
DN

"
0 ≤

NX
i=1

Xi ≤ α1n

#

= Pr
DN

24−PN
i=1 µ

iqPN
i−1 σ

i

≤
PN
i=1X

i −
PN
i=1 µ

iqPN
i−1 σ

i

≤
α1n−

PN
i=1 µ

iqPN
i−1 σ

i

35
N→∞−→ 1√

2π

Z α1n−
PN
i=1 µ

irPN
i−1 σ

i

−
PN
i=1 µ

irPN
i−1 σ

i

e−
x2
2 dx

≤
Z α1n−

PN
i=1 µ

irPN
i−1 σ

i

−
PN
i=1 µ

irPN
i−1 σ

i

1 dx

=
α1nqPN
i−1 σ

i

≤ α1n√
dN

= O

„
n√
N

«
.

Plugging this result into Equation (1), we have that

Pr
DN

"
∃ck, cl ∈ C s.t. 0 ≤

NX
i=1

Sik −
NX
i=1

Sil ≤ α1n

#

≤ m(m− 1) ·O
„

n√
N

«
= O

„
n√
N

«
,

where the second transition follows from the fact that m is
constant. Rolling back, we have that

Pr
DN

[instance is open] ≥ 1−O
„

n√
N

«
.

Under the assumption that n = o(
√
N), this expression con-

verges to 1 as the number of voters grows.

3.2 Fraction of Manipulators is Large
In this subsection, we tackle a setting where the number of
manipulators is large, i.e., n = ω(

√
N), but not excessively

so, i.e., n = o(N). The mathematical techniques we use here
differ from the ones applied in Section 3.1.

As before, we characterize instances of the manipulation
problem in scoring rules. Notice that in the current set-
ting, manipulators may often have enough power to sway
the outcome of the election. Therefore, we require a suffi-
cient condition for the openness of a manipulation instance.

Lemma 2. Consider an instance of the coalitional manip-
ulation problem in a scoring rule with parameters ~α, and as-
sume n ≥ m. Let Sik be the score given to candidate ck by
the voter vi. Let C′ ⊆ C such that for any two candidates
ck, cl ∈ C′ it holds that

PN
i=1 S

i
k −

PN
i=1 S

i
l <

α1−αm
2m

· n,

and for any ck ∈ C′ and cl /∈ C′,
PN
i=1 S

i
k −

PN
i=1 S

i
l ≥ 0.

Then the manipulators can make any candidate in C′ win.

Proof. Assume w.l.o.g. that the manipulators wish to
make candidate cm ∈ C′ win; the manipulators vote as fol-
lows. The i’th manipulator, i = 1, . . . , n, ranks cm first,
ci mod (m−1) last, and the other candidates in some arbi-
trary order. Each candidate other than cm is ranked last by

at least
j

n
m−1

k
manipulators, and the rest of the manipu-

lators award it at most α1 points. Therefore, the difference
in the points awarded by the manipulators to cm and any

other candidate is at least
j

n
m−1

k
· (α1 − αm) ≥ α1−αm

2m
· n,

where the inequality holds whenever n ≥ m.

Our theorems regarding the current setting are weaker than
the ones in Section 3.1, in the sense that the voters’ votes
are (independent and) identically distributed. The follow-
ing theorem differentiates two cases: if there are at least two
candidates whose expected score is at least as large as any
other candidate’s, then the instance is open; otherwise, the
instance is closed. Intuitively, whenever the first case holds,
one of the candidates with a large expected score will surely
win, but the manipulators are powerful enough to decide
between them. However, if there is a candidate whose ex-
pected score is greater than any other’s, even a large fraction
of manipulators cannot prevent this candidate from winning.



Theorem 3. Let P be a scoring rule with parameters ~α,
and assume that the number of manipulators and nonma-
nipulators satisfies:

• n = ω(
√
N) and n = o(N).

Let Di be voter i’s distribution over the possible votes with
m = O(1) candidates, and denote DN =

QN
i=1D

i. Let Sik,

for each vi ∈ V1 and ck ∈ C, be random variables, induced
by the Di, which determine the score of candidate ck from
voter vi. Assume that the distributions over votes satisfy:

• (d2) The Di are independently distributed

• (d3) The Di are identically distributed.

Let C′ = {ck ∈ C : ∀cl 6= ck, E[S1
k] ≥ E[S1

l ]} be the subset
of candidates with maximal expected score.

1. If |C′| ≥ 2, then the probability of drawing an open
instance converges to 1 as the number of voters grows.

2. If |C′| = 1 then the probability of drawing a closed
instance converges to 1 as the number of voters grows.

The proof of the theorem relies on Chernoff’s bounds. In-
formally, these bounds assert that the probability that the
average of i.i.d. random variables will be far from their com-
mon expectation is very small.

Lemma 3 (Chernoff’s Bounds). Let X1, . . . , XN be
i.i.d. random variables such that a ≤ Xi ≤ b and E[Xi] = µ.
Then for any ε > 0, it holds that:

• Pr[ 1
N

PN
i=1X

i ≥ µ+ ε] ≤ e−2N ε2

(b−a)2

• Pr[ 1
N

PN
i=1X

i ≤ µ− ε] ≤ e−2N ε2

(b−a)2

Proof of Theorem 3.

1. Assume |C′| ≥ 2. Using Lemma 2 with d′ = α1−αm
2m

,
and Lemma 1, we obtain:

Pr
DN

[Instance is open]

≥ Pr
DN

[c can be made to win iff c ∈ C′]

≥ Pr
DN

" 
∀cl1 , cl2 ∈ C

′,
NX
i=1

Sil1 −
NX
i−1

Sil2 < d′n

!

∧

 
∀ck ∈ C′, cl ∈ C \ C′,

NX
i=1

Sik −
NX
i=1

Sil > α1n

!#

= 1− Pr
DN

" 
∃cl1 , cl2 ∈ C

′ s.t.

NX
i=1

Sil1 −
NX
i−1

Sil2 ≥ d
′n

!

∨

 
∃ck ∈ C′, cl ∈ C \ C′ s.t.

NX
i=1

Sik −
NX
i=1

Sil ≤ α1n

!#
(2)

Now, it holds that:

Pr
DN

"
∃cl1 , cl2 ∈ C

′s.t.

NX
i=1

Sil1 −
NX
i=1

Sil2 ≥ d
′n

#

≤
X

cl1 ,cl2∈C
′

Pr
DN

"
NX
i=1

Sil1 −
NX
i=1

Sil2 ≥ d
′n

#

=
X

cl1 ,cl2∈C
′

Pr
DN

"
NX
i=1

(Sil1 − S
i
l2)

≥ E

"
NX
i=1

(Sil1 − S
i
l2)

#
+ d′n

#

≤ |C′| · (|C′| − 1) · e
−2N

„
d′n
N

«2

(2α1)2

≤ m(m− 1)e−d1
n2
N

= O(e−d1
n2
N )

(3)

for some constant d1 > 0. The first transition follows
from the union bound, the second from the fact that all
candidates in C′ have maximal expected score and the
linearity of expectation, and the third from Chernoff’s
bounds (where we use the fact that the difference be-
tween the scores given to two candidates by a voter is
in the range [−α1, α1], and that the Sik are i.i.d. for a
fixed k if the Di are i.i.d.).

Further, we have that:

Pr
DN

"
∃ck ∈ C′, cl ∈ C \ C′ s.t.

NX
i=1

Sik −
NX
i=1

Sil ≤ α1n

#

≤
X

ck∈C′,cl∈C\C′
Pr
DN

"
NX
i=1

Sik −
NX
i=1

Sil ≤ α1n

#

=
X

ck∈C′,cl∈C\C′
Pr
DN

"
NX
i=1

(Sik − Sil )

≤ E

"
NX
i=1

(Sik − Sil )

#
−

 
E

"
NX
i=1

(Sik − Sil )

#
− α1n

!#

≤ |C′| · (m− |C′|) · e
−2N

„
d′′N−α1n

N

«2

(2α1)2 = O(e−d2N ).

(4)

The first transition follows from the union bound. The
third transition is entailed by Chernoff’s bounds, where
d′′ is a constant such that E[Sik − Sil ] ≥ d′′ for all
ck ∈ C′, cl ∈ C \ C′.3 The last transition follows from
the assumption that n = o(N); d2 > 0 is a constant.

Combining Equations (2), (3), and (4), and applying

3It is safe to state that such a constant d′′ exists, as we
assumed that E[Sik − Sil ] > 0, and D is (implicitly) a distri-
bution that is dependent only on the number of candidates
m, and not on the number of voters N + n.



the union bound, yields:

Pr
DN

[The instance is open]

≥ 1−
„
O(e−d1

n2
N ) +O(e−d2N )

«
= 1−O(e−d

n2
N ),

for d = d1, under the assumption that n = o(N).

When n = ω(
√
N), this expression converges to 1 as

the number of voters grows.

2. Assume C′ = {ck}. By Lemma 2, we have:

Pr
DN

[instance is closed]

≥ Pr
DN

"
∀cl 6= ck,

X
i

Sik −
X
i

Sil > α1n

#

= 1− Pr
DN

"
∃cl 6= ck s.t.

X
i

Sik −
X
i

Sil ≤ α1n

#
.

(5)

Similarly to Equation (4), it holds that

Pr
DN

"
∃cl 6= ck s.t.

X
i

Sik −
X
i

Sil ≤ α1n

#
≤ O(e−dN ).

Plugging this into Equation (5) gives the desired result.

The next corollary establishes a useful connection between
the proof of Theorem 3 and deciding the coalitional manip-
ulation problem.

Corollary 4. Under the conditions of Theorem 3, if C′

is the set of candidates with maximal expected score, then
with probability that converges to 1 it holds that any candi-
date from C′ can be made to win, and no other candidate
can be made to win.

4. DISCUSSION
Consider Algorithm 1, which instantly decides instances of
the manipulation problem, drawn according to some dis-
tribution, on the basis of the ratio between the number
of manipulators and nonmanipulators. Theorems 1 and 3
directly imply that for any distribution that satisfies as-
sumptions (d1), (d2), and (d3), Algorithm 1 is almost never
wrong when the number of voters is large. Indeed, when
n = o(

√
N), Theorem 1 asserts that instances are almost

always closed — and therefore p can be made to win iff p
wins for any arbitrary vote of the manipulators. In case
n = ω(

√
N), Corollary 4 states that it is usually true that

the manipulators can only make candidates with maximal
expected score win the election.

But how restrictive are the assumptions (d1), (d2), and
(d3)? Assumption (d1) requires that there exist a con-
stant d > 0 such that for all vi ∈ V1 and ck, cl ∈ C, d <
Var[Sik − Sil ]. This is certainly a condition that seems very

Algorithm 1 Deciding the coalitional manipulation prob-
lem in scoring rules via the fraction of manipulators. The
input is a voting instance drawn according to a distribution
over the votes of the nonmanipulators; p is the manipulators’
preferred candidate.

1: if n = o(
√
N) then . Theorem 1

2: choose arbitrary manipulators’ vote; c is the winner
3: if p = c then
4: return true
5: else
6: return false
7: end if
8: else if n = ω(

√
N) and n = o(N) then . Theorem 3

9: if p has maximal expected score then
10: return true
11: else
12: return false
13: end if
14: else . n = Θ(

√
N) or n = Ω(N)

15: return ?
16: end if

reasonable: the demand is that according to each voter’s
distribution, there are no two candidates that always have
the same difference in scores. That is, we simply require
a seemingly minimal element of randomness in the votes.
Granted, requiring that the votes of the nonmanipulators
be distributed i.i.d. — the union of assumptions (d2) and
(d3) — is a much stricter assumption. Nevertheless, we
argue below that interesting distributions satisfy all three
assumptions.

As an example, we shall consider the family of distributions
that Conitzer and Sandholm used to obtain empirical ev-
idence regarding the nonexistence of voting rules that are
hard to manipulate [7]; these distributions are due to the
Marquis de Condorcet himself. The starting point is that
there is a “correct” ranking of candidates t, and voters dis-
agree with this ranking over pairs of candidates with prob-
ability q. More formally, the probability of a voter casting
a vote r is proportional to

qa(r,t)(1− q)m(m−1)/2−a(r,t), (6)

where a(r, t) is the number of pairs of candidates on whose
relative ranking r and t agree. The parameter q can take val-
ues in [1/2, 1]: if q = 1 then the voters always agree with the
correct ranking, and if q = 1/2 then voters vote randomly.
Of course, the expression in Equation (6) above has to be
normalized in order to obtain a probability distribution.

Proposition 5. Let m = O(1). Condorcet’s distribution
with any 0.5 ≤ q < 1 satisfies (d1), (d2), and (d3).

Proof. By definition, the distribution satisfies (d2) and
(d3), so it is sufficient to prove that (d1) is satisfied. Let vi ∈
V , ck, cl ∈ C, and let d′ > 0 be a constant such that dividing
the expression in Equation (6) by d′ yields a probability
distribution. Let t be the “correct” ranking of candidates,
and observe the restriction of t to all candidates other than
ck, cl — t ↓C\{ck,cl}. Now, let r1 be the expansion of this
ranking such that ck is ranked first and cl last, and let r2 be



the expansion such that cl is ranked first and ck is ranked
last. Under r1 it holds that Sik−Sil = α1−αm, while under r2
it holds that Sik−Sil = αm−α1. Therefore, with respect to at
least one of r1 and r2, it is true that |(Sik−Sil )−E[Sik−Sil ]| ≥
α1−αm — w.l.o.g. with respect to r1. By the construction of
r1, this ranking can differ from t only on pairs of candidates
which include ck or cl, i.e., a(r1, t) ≤ 2(m − 1). Therefore,

Pr[vi’s ballot is r1] ≥ p2(m−1)(1−p)(
m
2 −2)(m−1)

d′ ; denote this
(constant) expression by d. To conclude, we have obtained:

Var[Sik − Sil ] = E[((Sik − Sil )− E[Sik − Sil ])2]

≥ Pr[vi’s ballot is r1] · (α1 − αm)2

≥ d(α1 − αm)2.

Remark 2. Incidentally, the so-called junta distribution,
which Procaccia and Rosenschein present in [12], satisfies
(d2) and (d3) but not (d1): the votes of the nonmanipu-
lators are distributed in an interval which is proportional
to the number of manipulators, and thus the variance can
be very small in terms of the number of nonmanipulators.
This of course makes the distribution harder to manipulate
— otherwise Theorem 1 could have been used to decide in-
stances distributed with respect to the distribution.

Still, there remain gray areas, even when considering distri-
butions that satisfy all three conditions: Theorems 1 and 3
do not apply to situations where n = Θ(

√
N) or n = Ω(N).

The second case, where n = Ω(N), does not seem very in-
teresting: it is quite clear that when the number of ma-
nipulators is that large, the manipulators can usually do
whatever they want, and thus an algorithm might always
answer “true” in this case. However, the first case, where
n = Θ(

√
N), persists as a wide-open question. In fact, if

an average-case-hard-to-manipulate distribution were to ex-
ist (especially in the context of scoring rules), our belief is
that the distribution would be over instances that satisfy
n = Θ(

√
N).

Although our results apply only to scoring rules, we believe
that similar results hold for all other important voting rules.
Preliminary results indicate that this is certainly true for
the Copeland and Maximin rules — but the probabilistic
properties behind the proofs can be found in other voting
rules as well.

To conclude, there are two ways to interpret our results. A
positive interpretation would be that an average-case-hard-
to-manipulate voting rule and distribution exist, and the
results may simply help focus the search for such a distri-
bution. Interpreted negatively, these results strengthen the
case against the existence of voting rules that are hard to
manipulate. Indeed, they imply that the manipulation prob-
lem in many important voting rules can usually be trivially
decided, with respect to a wide-range of distributions.

Theorem 1 deserves a short aside, as its conditions on the
distribution are much weaker than those of Theorem 3, and
an analogous version can be shown to be true for several
other rules. This theorem, in the spirit of [14, 1], implies

that manipulation may be a nonissue when the number of
manipulators is small compared to the number of nonmanip-
ulators: under almost any distribution on the votes (where
the nonmanipulators vote independently), the manipulators
can rarely even affect the outcome of the election.

5. CONCLUSIONS
In this paper, we have discussed how the ratio between the
number of manipulators and nonmanipulators in an election
using scoring rules can help decide the coalitional manipu-
lation problem. We have shown that when the number of
manipulators n satisfies n = o(

√
N), where N is the number

of nonmanipulators, it holds that the manipulators can very
rarely affect the outcome of the election. This result is true
for almost any distribution over the votes (requiring merely
independence and some minimal measure of randomness in
the votes).

We have also discussed the case where n = ω(
√
N); we have

shown that in this case, it is almost always true that the ma-
nipulators can make any candidate with maximal expected
score win the election, but no other candidate. However,
this result requires that the votes be distributed i.i.d.

We have demonstrated how the abovementioned results can
be applied to construct an algorithm that usually decides the
coalitional manipulation problem correctly, when the distri-
bution over the votes satisfies certain conditions. We have
argued that the conditions are not very restrictive by demon-
strating that an interesting family of distributions satisfies
them. Finally, we have noted that our results strengthen
the case against the existence of voting rules that are hard
to manipulate in the average-case, but should one exist, our
results may help zero-in on such a rule.
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