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Abstract. Decentralized reputation systems have of late emerged as the
prominent method of establishing trust among selfish agents in today’s
online environments. A key issue is the efficient aggregation of data in the
system; several approaches have hitherto been advanced, but are plagued
by major shortcomings.
We put forward a novel decentralized data management scheme grounded
in gossip-based algorithms. Rumor mongering is known to possess algo-
rithmic advantages, and indeed, our framework inherits numerous salient
features: scalability, robustness, globality, and simplicity. We also demon-
strate that our scheme motivates agents to maintain a sparkling clean
reputation, and is inherently impervious to certain attacks.

1 Introduction

In open multiagent environments, self-interested agents are often tempted to
employ deceit as they interact with others. Fortunately, dishonest agents can
expect their victims to retaliate in future encounters. This “shadow of the future”
(e.g., as explored by Axelrod [5]) motivates cooperation and trustworthiness.

However, as the number of agents in the system grows, agents have an in-
creasingly small chance to deal with an agent they already know; as a conse-
quence, building trust in domains teeming with numerous agents becomes much
harder. Reputation systems address this problem by collecting and spreading
reports among agents, so that agents may learn from others’ experience. To put
it differently, agents are intimidated by the “shadow of the future” today, even
though tomorrow they are most likely to meet total strangers.

Reputation systems can be decomposed into two major components: the trust
model, which describes whether an agent is trustworthy, and the data manage-
ment scheme. The latter component poses some interesting questions, since it
is imperative to efficiently aggregate trust-related information in the system. A
simple solution is maintaining a central database which contains the gathered
feedback of past transactions. Unfortunately, this solution is inappropriate in
distributed environments where scalability is a major concern, as the database
soon becomes a bottleneck of the system. Moreover, this approach is not ro-
bust to failures. Previous work on decentralized reputation schemes (surveyed in
Section 6) suffers from major problems: agents have to maintain complex data



structures, evaluation of trust is based only on local information, or there are
restrictive assumptions on the trust model.1

We try our hand at tackling this hornets’ nest by designing a novel method
of trust aggregation. The roots of our gossip-based approach can be traced to to
a seminal paper by Frieze and Grimmett [13]: a rumor starts with one agent; at
each stage, each agent that knows the rumor spreads it to another agent chosen
uniformly at random. The authors show that the rumor reaches all agents very
quickly (a result that coincides with real life). We directly rely on more recent
results, surveyed in Section 2. It has been shown that aggregate information,
such as averages and sums of agents’ inputs, can be calculated using similar
methods of uniform gossip in a way that scales gracefully as the number of
agents increases. Furthermore, the approach is robust to failures, and the results
hold even when one cannot assume a point-to-point connection between any two
agents (as is the case in Peer-to-Peer networks).

In our setting, each agent merely keeps its private evaluation of the trustwor-
thiness of other agents, based on its own interactions.2 When an agent wishes
to perform a transaction with another, it obtains the average evaluation of the
other’s reputation from all agents in the system, using a gossip-based technique.
Some advantages are immediately self-evident: each agent stores very little in-
formation, which can be simply and efficiently organized, and evaluation of trust
is based on global information. Additionally, this framework inherits the advan-
tages of gossip-based algorithms: scalability, robustness to failure, decentraliza-
tion (and in particular, applicability in Peer-to-Peer networks).

We show that our scheme has two other major advantages. An important
desideratum one would like a reputation system to satisfy is motivating agents
to maintain an untarnished reputation, i.e., to be absolutely trustworthy (as
opposed to, say, being generally trustworthy but occasionally cheating). We show
that our data management scheme, together with an extremely simple trust
model, satisfies this property. We also demonstrate that our scheme is inherently
resistant to some attacks (with no assumptions on the trust model). This is a
positive side effect of the exponential convergence rates of the algorithms we use.

The paper proceeds as follows. In Section 2, we survey the gossip-based tech-
niques that we utilize. In Section 3, we describe our framework. In Sections 4
and 5, we demonstrate that our framework has the two abovementioned features.
In Section 6 we give an overview of related work, and finally, in Section 7, we
give our conclusions and present directions for future research.

2 Gossip-Based Information Aggregation

In this section, we survey the relevant results of Kempe, Dobra and Gehrke [15].
We begin by describing a simple algorithm, Push-Sum, to compute the av-

erage of values at nodes in a network. There are n nodes in the system, and each
node i holds an input xi ≥ 0. At time t, each node i maintains a sum st,i and

1 The “or” is not exclusive.
2 The question of how agents set this valuation is outside the scope of the paper.



a weight wt,i. The values are initialized as follows: s0,i = xi, w0,i = 1. At time
0, each node i sends the pair s0,i, w0,i to itself; at every time t > 0, the nodes
follow the protocol given as Algorithm 1.

Algorithm 1

1: procedure Push-Sum

2: Let {(ŝl, ŵl)}l be all the pairs sent to i at time t− 1
3: st,i ←

P

l
ŝl

4: wt,i ←
P

l
ŵl

5: Choose a target ft(i) uniformly at random
6: Send the pair ( 1

2
st,i,

1

2
wt,i) to i (yourself) and to ft(i)

7:
st,i

wt,i
is the estimate of the average at time t

8: end procedure

Let U(n, δ, ε) (the diffusion speed of uniform gossip) be an upper bound on
the number of turns Push-Sum requires so that for all t ≥ U(n, δ, ε) and all
nodes i,

1
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k xk
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∣

≤ ε

(the relative error is at most ε) with probability at least 1 − δ.

Theorem 1. [15]

1. U(n, δ, ε) = O(log n + log 1
δ + log 1

ε ).
2. The size of all messages sent at time t by Push-Sum is O(t+maxi bits(xi)),

where bits(xi) is the number of bits in the binary representation of xi.

A major advantage of gossip-based algorithms is their robustness to failures:
the aggregation persists in the face of failed nodes, permanent communication
failures, and other unfortunate events. Further, no recovery action is required.
The assumption is that nodes can detect whether their message has reached its
destination; Push-Sum is modified so that if a node detects its target failed, it
sends its message to itself. The following result is known to be true.

Theorem 2. [15] Let µ < 1 be an upper bound on the probability of message
loss at each time step, and let U ′ be the diffusion speed of uniform gossip with
faults. Then:

U ′(n, δ, ε) =
2

(1 − µ)2
U(n, δ, ε).

In several types of decentralized networks, such as peer-to-peer networks,
point-to-point communication may not be possible. In these networks, it is as-
sumed that at each stage, nodes send messages to all their neighbors (flooding).
When the underlying graph is an expander, or at least expected to have good



expansion, results similar to the above can be obtained. Fortunately, it is known
that several peer-to-peer topologies induce expander graphs [18, 16].

In the rest of the paper, we have xi ≤ 1, and in particular
∑

i xi ≤ n.
Therefore, it is possible to redefine U to be an upper bound on the num-
ber of turns required so that for all t ≥ U and all nodes i, the absolute er-

ror
∣

∣

∣

st,i

wt,i
− 1

n

∑

k xk

∣

∣

∣
is at most ε with confidence 1 − δ, and it still holds that

U(n, δ, ε) = O(log n + log 1
δ + log 1

ε ). Hereinafter, when we refer to U we have
this definition in mind.

Remark 1. The protocol Push-Sum is presented in terms of a synchronized
starting point, but this assumption is not necessary. A node which poses the
query may use the underlying communication mechanism to inform all other
nodes of the query; convergence times are asymptotically identical.

3 Our Framework

Let the set of agents be N = {1, . . . , n}. Each agent i ∈ N holds a number
rj
i ∈ [0, 1] for each agent j ∈ N (including itself); this number represents j’s

reputation with respect to i, or to put it differently, the degree to which i is
willing to trust j. As agents interact, these assessments are repeatedly updated.
We do not concern ourselves with how agents set these values.3 However, it
should be assumed that different agents use identical (or at least similar) criteria
for determining other agents’ reputations.

When an agent i is deliberating whether to deal with another agent j, i

wishes to make an informed evaluation of the other’s reputation. Let r̄j =
P

k
rj

k

n
be the average of j’s reputation with respect to all agents. Knowledge of r̄j gives
i a good idea of how trustworthy j is.4 The average is calculated via Push-Sum.

Algorithm 2

1: procedure Eval-Trust(i, j, δ, ε). i evaluates r̄j with accuracy ε, confidence 1− δ
2: for all k ∈ N do

3: xk ← rj

k . Inputs to Push-Sum are j’s reputation w.r.t. agents
4: end for

5: run Push-Sum for U = U(n, δ, ε) stages
6: return

sU,i

wU,i

7: end procedure

The protocol Eval-Trust, given as Algorithm 2, is described somewhat
informally, as the idea is very simple. Push-Sum is executed for U = U(n, δ, ε)
stages. At time U , it holds for all k ∈ N , and in particular for agent i, that

3 See Sections 4 and 7, though, for some comments on this point.
4 We address the question of how this knowledge is used in Section 4.
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st,i

wt,i
− r̄j

∣

∣

∣
≤ ε, with probability 1−δ. To put it differently, the algorithm returns

a very good approximation of j’s average reputation.
In practice, when two agents i and j interact, i may evaluate j’s reputation

(and vice versa) by calling Eval-Trust. The protocol quickly returns the ap-
proximation of r̄j , based on the values rj

k at the time Eval-Trust was called.
Each agent i keeps different values st,i and wt,i for every different query that was
issued by some other agent in the system, and updates these values repeatedly
according to Push-Sum. In other words, at any stage every agent participates
in many parallel executions of Push-Sum.

Remark 2. The size of messages depends on how the rj
i are calculated, and as

mentioned above, this issue is outside the scope of this paper. Nevertheless,
there would usually be a constant number of reputation levels (say, for instance,
ri
j ∈ {0, 0.1, 0.2, . . . , 1}), so the message size would normally be constant.

It must be stressed that as the above method of aggregating an agent’s av-
erage reputation relies on the gossip-based algorithm Push-Sum, it inherits all
the latter’s benefits, in particular robustness to failure and applicability in Peer-
to-Peer networks.

4 The Benefit of an Unstained Reputation

It is very desirable (indeed, crucial) that a reputation system be able to induce
truthfulness in agents. Naturally, an agent with a stained reputation would be
shunned by its peers, while an agent with a good reputation would easily solicit
deals and transactions. A further step in this direction is motivating agents never
to cheat. Indeed, an agent with a generally good reputation, which only occa-
sionally cheats, would probably be able to win the confidence of peers; there is
seemingly no reason why an agent should not play false now and again. Neverthe-
less, we study in this section an extremely simple and general trust model, and
show that with the data management scheme that we have presented, there is a
social benefit to having a very high reputation: the higher the agent’s reputation,
the shorter the time required to close deals.

We consider a model in which each agent i has a reputation threshold rthr
i

(similar to [20]) and a confidence level δi: agent i is willing to deal with an agent
j iff i knows that j’s average reputation is at least rthr

i , with confidence 1 − δi.
Of course, i evaluates j’s reputation as usual, using Eval-Trust. Recall that
when the algorithm terminates, agent i only has an ε-close approximation of r̄j .
If

st,i

wt,i
is very close to rthr

i , i would have to increase the accuracy.

Remark 3. We still do not commit to the way the values ri
j are determined and

updated, so the above trust model is quite general.

The procedure Decide-Trust, given as Algorithm 3, is a straightforward
method of determining whether r̄j ≥ rthr

i . Agent i increases the accuracy of
the evaluation by repeatedly halving ε, until it is certain of the result. In this
context, a stage of Eval-Trust identifies with a stage of Push-Sum.



Algorithm 3

1: procedure Decide-Trust(i, j) . i decides if it wants to deal with j
2: ε← 1/2 . Initialization
3: k1 ← 0
4: loop

5: k2 ← U(n, δi, ε)
6: run Eval-trust(j) for another k2 − k1 stages . A total of k2 stages
7: if st,i/wt,i < rthr

i − ε then

8: return false

9: else if st,i/wt,i > rthr
i + ε then

10: return true

11: end if

12: k1 ← k2

13: ε← ε/2
14: end loop

15: end procedure

Proposition 1. Let i, j ∈ N , and ∆ij = |r̄j − rthr
i |. With probability at least

1 − δi, Decide-Trust correctly decides whether agent j′s reputation is at least
rthr
i after O(log n + log 1

δi
+ log 1

∆ij
) stages of Eval-Trust.5

Proof. Assume w.l.o.g. that rthr
i < r̄j , and that the algorithm reached a stage

t0 where ε < ∆ij/2. At this stage, it holds that |
st,i

wt,i
− r̄j | ≤ ε (with probability

1 − δi), and therefore (see Figure 1):

st,i

wt,i
≥ r̄j − ε

= rthr
i + ∆ij − ε

> rthr
i + ε.

Hence, the algorithm surely terminates when ε < ∆ij/2. Now the proposition
follows directly from the fact that U(n, δi,∆ij) = O(log n+log 1

δi
+log 1

∆ij
). ut

To conclude, Proposition 1 implies that there is a benefit for agent j in
maintaining a high reputation: for any agent i with a reasonable threshold, ∆ij

is significant, and this directly affects the running time of Decide-Trust.

Remark 4. The result is limited, though, when the number of agents n is large,
as the time to evaluate an agent’s reputation is also proportional to log n.

5 Resistance to Attacks

In Section 3, we have seen that information about an agent’s reputation can
be efficiently propagated, as long as all agents consistently follow Eval-Trust.

5 The probability is the chance that the algorithm will answer incorrectly; the bound
on the number of stages is always true.
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Fig. 1. Illustration for the proof of Proposition 1. Once ε < ∆ij/2 and st,i/wt,i >
rthr

i + ε, it holds with probability 1− δi that r̄j ≥ rthr
i .

However, in multiagent systems we often deal with selfish, self-interested agents.
In our context, a manipulative agent may artificially increase or decrease the
overall evaluation of some agent’s reputation by deviating from the protocol.

In the framework we have presented, trust is evaluated on the basis of global
knowledge, i.e., the average of all reputation values in the system. Therefore, any
small coalition cannot significantly change the average reputation of some agent
j by setting their own valuations rj

i to legal values in [0, 1], and then following
the protocol Eval-Trust.6

This is of course not the case when a manipulator is allowed to set its repu-
tation value arbitrarily. As a very simple motivating example, consider a setting
where agents propagate agent j’s average reputation (xi = rj

i for all i), and a
manipulator im wants to ensure that for all i,

st,i

wt,i
converges to a high value as

the time t increases. At some stage t0, the manipulator updates st0,im to be n,
but except for this harsh deviation follows the protocol to the letter. In particu-
lar, the manipulator might initially set rj

im = xim = n. We refer to this strategy
as Strategy 1. Clearly, for all i,

st,i

wt,i
eventually converges to a value that is at

least 1.
Despite the apparent effectiveness of Strategy 1, it is very easily detected.

Indeed, unless for all i 6= im it holds that st0,i = 0 at the time t0 when the ma-
nipulator deviated by assigning st0,im = n, the expressions

st,i

wt,i
would eventually

converge to a value that is strictly greater than 1; this would clearly unmask the
deceit. It is of course possible to update st0,im to be less than n, but it is difficult
to determine a priori which value to set without pushing the average reputation
above 1.

We now consider a more subtle way to increase the values
st,i

wt,i
, a deceit

which is indeed difficult to detect; we call this strategy Strategy 2. For the first
T stages of the algorithm, the manipulator im follows Push-Sum as usual, with
the exception of the updates of st,im : after updating wt,im =

∑

l ŵl (as usual),
im updates: st,im = wt,im . In other words, the manipulator sets his personal

6 In fact, this holds for every coalition that does not constitute a sizable portion of
the entire set of agents.



evaluation of the average
st,im

wt,im
to be 1 at every stage t = 1, . . . , T . For time

t > T , the manipulator abides by the protocol. Using this strategy, it always
holds that

st,i

wt,i
≤ 1 for all i. In addition, for all t, it still holds that

∑

i wt,i = n.

Therefore, without augmenting the system with additional security measures,
this manipulation is difficult to detect. We shall presently demonstrate formally
that the manipulation is effective in the long run:

st,i

wt,i
converges to 1 for all i.

Proposition 2. Under Strategy 2, for all i ∈ N ,
s2T,i

w2T,i

T→∞
−→ 1 in probability.

Proof. We first notice that
∑

i st,i is monotonic increasing in the stage t. More-
over, as noted above, it holds that at every stage,

∑

i wt,i = n, as for all i ∈ N :
st,i

wt,i
≤ 1, and thus:

∑

i

st,i ≤
∑

i

wt,i = n.

Let ε, δ > 0. We must show that it is possible to choose T large enough such
that for all t ≥ 2T and all i ∈ N , Pr[

st,i

wt,i
≥ 1 − ε] ≥ 1 − δ.

Assume that at time t it holds that:
∑

i st,i

n
< 1 − ε/2. (1)

Let It = {i ∈ N :
st,i

wt,i
≥ 1 − ε/4}, w(It) =

∑

i∈It
wt,it

. It holds that:

n(1 − ε/2) ≥
∑

i∈N

st,i

≥
∑

i∈It

st,i

≥
∑

i∈It

wt,i · (1 − ε/4)

= w(It)(1 − ε/4)

It follows that w(It) ≤ n · 1−ε/2
1−ε/4 . The total weight of agents in N \ It is at

least n − w(It). There must be an agent it ∈ N \ It with at least a 1/n-fraction
of this weight:

wt,it
≥

n − w(It)

n
≥

ε

4 − ε
. (2)

In order for the choice of it to be well-defined, assume it is the minimal index
that satisfies Equation (2).

Now, let s′t,im be the manipulator’s sum had it updated it according to the
protocol, i.e., s′t,im =

∑

l ŝl for all messages l sent to im. With probability 1/n
(and independently of other stages), ft(it) = im; if this happens, it holds that:

s′t+1,im ≤ (wt+1,im − 1/2 · wt,it
) + 1/2 · st,it

≤ (wt+1,im − 1/2 · wt,it
) + 1/2 · wt,it

· (1 − ε/4).
(3)



For all stages t it holds that
∑

i st+1,i −
∑

i st,i = st+1,im − s′t+1,im , as the
manipulator is the only agent that might change

∑

i st,i. Therefore, in the con-
ditions of Equation (3),

∑

i

st+1,i −
∑

i

st,i = st+1,im − s′t+1,im

= wt+1,im − st+1,im

≥ 1/2 · wt,it
·

ε

4

≥
ε2

32 − 8ε

= ∆(w)

So far, we have shown that for each stage t where Equation (1) holds and
ft(it) = im, it is the case that

∑

i st+1,i −
∑

i st,i ≥ ∆(w). This can happen at

most n(1−ε/2)
∆(w) times before Equation (1) no longer holds, or to put it differently,

before
P

i
st,i

n ≥ 1 − ε/2.
Let Xt be i.i.d. binary random variables, which are 1 iff ft(it) = im. It holds

that for all t where Equation (1) is true, E[Xt] = 1/n. By Chernoff’s inequality,
it holds that:

Pr[
1

T1

T1
∑

t=1

Xt ≤
1

2n
] ≤ e−

T1

2n2 .

It is possible to choose T1 to be large enough such that this expression is at

most δ/2, and in addition 1
2n · T1 ≥ n(1−ε/2)

∆(w) . Therefore, at time T1, the average
P

i
ST1,i

n ≥ 1 − ε/2 with probability 1 − δ/2.
Recall that after T stages (where im deviated from the protocol), it still holds

that
∑

i wT,i = n. Assume that indeed
P

i
ST1,i

n ≥ 1−ε/2. By modifying the proof
of Theorem 3.1 from [15], it is possible to show that after another T2 = T2(n, δ, ε)
stages where all agents observe the protocol, it holds with probability 1 − δ/2

that for all i,
∣

∣

∣

sT1+T2,i

wT1+T2,i
−

P

i
ST1,i

n

∣

∣

∣
< ε/2, and thus for all i and t ≥ T1 + T2:

st,i

wt,i
> 1 − ε with probability 1 − δ.

The proof is completed by simply choosing T = max{T1, T2}. ut

Proposition 2 implies that Strategy 2 poses a provably acute problem, when
Push-Sum is run a large number of turns. Fortunately, Push-Sum converges
exponentially fast, and thus it is usually the case that the manipulator is not
able to significantly affect the average reputation, as the following proposition
demonstrates.

Proposition 3. Let T1 ≤ T . Under Strategy 2, E

[
P

i
ST1,i

n − r̄j
]

≤ T1

2n .

Proof. Let {ŝl, ŵl} be the messages which the manipulator received at time t+1.
The manipulator sets st+1,im = wt+1,im =

∑

l ŵl. Essentially, this is equivalent



to setting for all l ŝl = ŵl, or in other words, raising each ŝl by ŵl − ŝl. At turn
t it was already true that st,im = wt,im (w.l.o.g. this is also true for t = 0), so it
is enough to consider messages at time t from all i 6= im.

Therefore, for all stages t, it holds that:

E

[

∑

i

st+1,i −
∑

i

st,i

]

=
∑

i6=im

(

Pr[ft(i) = im] · (
1

2
wt,i −

1

2
st,i)

)

=
1

2n

∑

i6=im

(wt,i − st,i)

≤
1

2n

∑

i6=im

wt,i

≤
1

2n

∑

i∈N

wt,i

=
1

2
.

The last equality follows from the fact that for all t,
∑

i wt,i = n.

As r̄j =
P

i
s0,i

n , and from the linearity of expectation, we obtain that

E

[∑

i sT1,i

n
− r̄j

]

=
1

n
E

[

T1−1
∑

t=0

(

∑

i

st+1,i −
∑

i

st,i

)]

=
1

n

T1−1
∑

t=0

E

[

∑

i

st+1,i −
∑

i

st,i

]

≤
1

n
T1 ·

1

2
.

ut

In particular, since U(n, δ, ε) = O(log n+log 1
δ +log 1

ε ), Push-Sum is executed

O(log n) stages, and thus the difference in the average is at most O( log n
n ), which

is quite insubstantial.

Remark 5. It is not guaranteed at time T1 that each
st,i

wt,i
is close to r̄j , because

the inputs were dynamically changed during the execution of Push-Sum.

Remark 6. The above discussion focused on a setting where the manipulator
attempts to increase the average reputation of an agent. It is likewise possible
for a manipulator to decrease an agent’s average reputation, or indeed set it
eventually to any value it wants.

Remark 7. Jelasity, Montreso and Babaoglu [14] propose a general method to
completely prevent malicious agents from deviating in gossip-based algorithms,
by augmenting the protocol with exchange of certificates. However, the authors
describe their approach in a very general manner, and so this approach was not
implemented here.



6 Related Work

The main focus of research on trust and reputation systems has been on the
semantic aspects of these systems, and their effect on social welfare. Previous
work has highlighted the advantages of reputation systems in overcoming so-
cial pitfalls in several domains. Akerlof [4], for instance, has considered markets
where information asymmetry exists between buyers and sellers, in the sense
that buyers can only guess the quality of goods; in such a setting, a reputation
system can improve social welfare.

Several works have analyzed manipulations of general reputation mecha-
nisms. Friedman and Resnick [12] have discussed the effects of cheap pseudonyms.
When agents can enter the system using pseudonyms, and the cost of recreat-
ing an identity is cheap, agents who have a stained reputation may easily shed
it. The authors have considered several solutions to this problem: disallowing
anonymity, entry fees (which make pseudonyms more expensive), and using a
central authority for irreplaceable (“once-in-a-lifetime”) pseudonyms. However,
each approach has major drawbacks. Dellarocas [9] has studied a setting where
agents manipulate a reputation system by providing unfair ratings to some of
their peers, and suggests several solutions.

The next few paragraphs survey previous work on distributed reputation
systems. An early work is that of Abdul-Rahman and Hailes [1], which relied
on the results of Marsh [17] to design a model of trust in online environments.
In this framework, each agent must maintain and update large data structures,
which contain knowledge about the entire system. Updating this data may be
inefficient, and in particular it is not certain that the scheme scales well when
the number of agents grows.

P2PRep [6] and Xrep [8] are P2P reputation systems that can be piggybacked
on existing P2P protocols (such as Gnutella). P2PRep allows peers to estimate
trustworthiness of other peers by polling; XRep takes another step forward: each
peer keeps trust evaluations both of other peers and of resources. No guarantees
are given with respect to computational efficiency and scalability.

Aberer and Despotovic [3] introduce a reputation system that consists of
both a semantic model and a data management scheme. The latter relies on
P-Grid [2], and uses distributed data structures for storing trust information;
the associated algorithms scale gracefully as the number of agents increases. In
addition, a limited resistance to manipulation and failure is achieved through
replication of data. This approach suffers from several shortcomings compared
to ours. Agents in this scheme assess others’ reputation only on the basis of
complaints filed in the past; the framework is generally limited to such binary
trust information. In addition, trust is evaluated only according to referrals from
neighbors, whereas in our scheme the evaluation is based on all the information
in the system.

Xiong and Liu [20] introduced a sophisticated framework specifically appli-
cable in peer-to-peer networks, where the decision whether to trust a peer is
based on five metrics: satisfaction, number of transactions, credibility of feed-
back, transaction context, and community context. This work was extended



in [19]. Both papers concentrate on the trust model, and generally do not elab-
orate on the data management scheme. Specifically, in [20] a P-Grid [2] is used.
Therefore, this work is in a sense orthogonal but complementary to ours. Dewan
and Dasgupta [11] propose self-certification and IP-Based safeguards as ways of
inducing trust; this work also complements ours.

Finally, gossip-based algorithms7 have many applications in other domains,
for instance replicated database maintenance [10].

7 Conclusions and Future Research

We have presented a data management scheme which is based on gossip-based
algorithms, and have demonstrated that it possesses the following features:

– Decentralization: no central database, and further, applicability in networks
where point-to-point communication cannot be assumed.

– Scalability: the time to evaluate an agent’s average reputation with confi-
dence 1 − δ and accuracy ε is O(log n + log 1

δ + log 1
ε ).

– Robustness to failure.
– Globality: evaluation of trust is based on all relevant information in the

system, rather than local information.
– Extremely simple data structures: each agent merely keeps an assessment of

the agents with which it personally interacted.
– Motivates absolute truthfulness, as the time to close deals may decrease as

reputation increases.
– Resistance to some attacks, such as carefully tampering with the updates

performed by Push-Sum.

We have focused on the data management scheme, and have largely ignored
the trust model (with the exception of Section 4). However, we believe that many
existing trust models can be integrated with our framework. A very simple ex-
ample is the binary trust model of [3], where agents can file complaints against
other agents. In our framework, each agent i sets its value rj

i to be 0 if it wishes
to file a complaint against j; otherwise, the value is 1. More sophisticated mod-
els may require tweaks in the framework. Consider the trust model presented
in [20], where five factors are taken into account. Three of the factors mentioned
simply determine the way an agent updates its own values ri

j , and our framework
of course supports any update formula. The “number of transactions” factor is
already taken into account, as we compute the average reputation. The “cred-
ibility of feedback” factor requires a small change: given credibility ratings ci

for agents, a weighted average can be computed; the initial inputs of agents are
xi = s0,i = ci · r

j
i , and their weights are w0,i = ci.

An interesting direction for future research is augmenting the framework with
an option to efficiently choose among service providers:8 agent i requires a spe-
cific service, and there are m other agents that offer to service i’s request. Agents

7 Also called epidemic algorithms.
8 In a sense similar to [6].



can be matched to service providers using a matchmaking service, but this prob-
lem has been dealt with [7]. We are concerned with the following question: once
an agent is given a list M of m-service providers, which one should it choose?
The obvious answer is, the one with the highest reputation: argmaxj∈M r̄j . How-
ever, as the size of M may approach n, it is difficult to estimate the reputation
of all agents in M .

One possible solution is to hold an election: the voters are the n agents,
and the candidates are the m service providers. It is possible, for instance, to
determine the winner using the simple plurality rule: each agent votes for one
candidate; the winner is the candidate that secured the largest number of votes.
It is also possible to resolve this election in our framework, using Push-Sum.
Denote M = {j1, j2, . . . , jm}. The input xi of each agent for Push-Sum is (con-
ceptually) a base n + 1 number with m coordinates; the l’th coordinate of xi is
n if i votes for jl, and 0 otherwise. The average is calculated by using Push-

Sum with an absolute error ε = 1/3, and some confidence 1 − δ > 0 (the xi are
translated to base 10). After the average

st,i

wt,i
is calculated, the result is rounded

to the nearest integer and again translated to base n + 1; the agent jl such that
the l′th coordinate is largest wins the election.

Unfortunately, since in this case the inputs xi are large, obtaining such a
small absolute error requires a large number of iterations of Push-Sum, and
furthermore, the message size is large. Is there a way of holding an election
(using some other voting rule, perhaps) in our framework in a way that scales
well with respect to both the running time and message size?

A different direction is using our framework to prevent attacks based on
cheap pseudonyms [12]. This is made possible due to the fast aggregation of
information and its globality. If an agent cheats, all other agents will soon know.
It is possible to restrict newcomers, with an unestablished reputation, to only
one transaction in every period of length O(log n). This way, each identity would
be good for only a single deceitful transaction, since after the period is over, the
information could have already been obtained by any agent. Granted, it would
still be possible to shed stained identities, but the flow of transactions a cheater
would be able to complete would be severely diminished.
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