
Multi-Winner Elections: Complexity of

Manipulation, Control and

Winner-Determination

Ariel D. Procaccia, Jeffrey S. Rosenschein, and Aviv Zohar

School of Engineering and Computer Science
Hebrew University of Jerusalem

Jerusalem, Israel
{arielpro,jeff,avivz}@cs.huji.ac.il

Abstract. Although recent years have seen a surge of interest in the
computational aspects of social choice, no attention has previously been
devoted to elections with multiple winners, e.g., elections of an assembly
or committee. In this paper, we fully characterize the worst-case com-
plexity of manipulation and control in the context of four prominent
multi-winner voting systems. Additionally, we show that several tailor-
made multi-winner voting schemes are impractical, as it is NP-hard to
select the winners in these schemes.

1 Introduction

Computational aspects of voting have been the focus of much interest, in a
variety of fields. In multiagent systems, the attention has been motivated by
applications of well-studied voting systems1 as a method of preference aggrega-
tion. For instance, Ghosh et al. designed an automated movie recommendation
system, in which the conflicting preferences a user may have about movies were
represented as agents, and movies to be suggested were selected according to a
voting scheme [14] (in this example there are multiple winners, as several movies
are recommended to the user). In general, the candidates in a virtual election
can be entities such as beliefs or joint plans [12].

Different aspects of voting rules have been explored by computer scientists.
An issue which has been particularly well-studied is manipulation. The cele-
brated Gibbard-Satterthwaite Theorem [15, 21] implies that under any reason-
able voting scheme, there always exist elections in which a voter can improve its
utility by lying about its true preferences. Nevertheless, it has been suggested
that bounded-rational agents may find it hard to determine exactly which lie
to use, and thus may give up on manipulations altogether. The first to address
this point were Bartholdi, Tovey and Trick [2]; Bartholdi and Orlin [1] later
showed that manipulating Single Transferable Vote (STV) is an NP-complete

1 We use the terms “voting schemes”, “voting rules”, “voting systems”, and “voting
protocols” interchangeably.

problem. More recently, it has been shown that voting protocols can be tweaked
by adding an elimination preround, in a way that makes manipulation hard [10].
Conitzer and Sandholm [9, 8] studied a setting where there is an entire coalition
of manipulators. In this setting, the problem of manipulation by the coalition is
NP-complete in a variety of protocols, even when the number of candidates is
constant. The setting was further explored in [11].

Another related issue that has received some attention is the computational
difficulty of controlling an election. Here, the authority that conducts the elec-
tions attempts to achieve strategic results by adding or removing registered
voters or candidates. Bartholdi, Tovey and Trick [4] analyzed the computational
complexity of these (and other) methods of controlling an election in the Plural-
ity and Condorcet protocols.

The above discussion implies that computational complexity should be con-
sidered when contemplating voting systems that are seemingly susceptible to
manipulation or control. On the other hand, taking into account computational
costs can also lead to negative results. Some sophisticated voting systems, de-
signed to satisfy theoretical desiderata, may in practice be too difficult to use.
In other words, there are voting systems where even determining who won the
election is an NP-complete problem. Previously known examples include voting
schemes designed by Charles Dodgson2 and Kemeny [3]. It is important to note
that a protocol in which it is NP-hard to determine the winners will not be
likely to be used in real-life settings, even though the hardness is worst-case: it
is enough to imagine an election for President that takes centuries to be resolved.

Settings where there are multiple winners are inherently different from their
single-winner counterparts. A major concern when electing an assembly, for ex-
ample, might be proportional representation: the proportional support enjoyed
by different factions should be accurately represented in the structure of the as-
sembly (this is a system used by many countries). In practice, this usually means
that the percentage of votes secured by a party is roughly proportional to the
number of seats it is awarded.

Some simple multi-winner rules do not guarantee proportional results; these
rules include Single Non-Transferable Vote (SNTV), Bloc voting, Approval, and
Cumulative voting (see Section 2 for more details). More recently, intriguing
theoretical voting schemes have been devised with the goal of guaranteeing pro-
portional representation. Two such schemes that have received attention were
proposed, respectively, by Monroe [18], and by Chamberlin and Courant [7]
(which will be described in detail in Section 2.1).

Another setting, relevant only in the multi-winner context, is choosing a
governing coalition (or a committee) in an assembly (or some larger body), after
its members have been elected. One way to do this is by using Yes-no voting,
a system proposed by Brams and Fishburn [5]. A simpler version of this system
was suggested by Merrill [17].

In this paper, we augment the classical problems of manipulation and con-
trol by introducing multiple winners, and study these problems with respect

2 Better known as Lewis Carroll, author of “Alice’s Adventures in Wonderland”.

to four simple but important multi-winner voting schemes: SNTV, Bloc voting,
Approval, and Cumulative voting. We find that Cumulative voting is computa-
tionally resistant to both manipulation and control. In addition, we characterize
the computational complexity of winner determination in some of the intriguing
voting schemes that have been suggested in recent years by political scientists.

The paper proceeds as follows. In Section 2, we describe the multi-winner
voting schemes that we analyze. In Sections 3, 4, and 5, we study the complex-
ity of manipulation, control, and winner determination, respectively. Finally, in
Section 6 we present our conclusions.

2 Multi-Winner Voting Schemes

In this section we discuss several multi-winner voting systems of significance.
For a comprehensive survey, readers are urged to consult [6].

Let the set of voters be V = {v1, v2, . . . vn}; let the set of candidates be
C = {c1, c2, . . . cm}. Furthermore, assume that k ∈ N candidates are to be
elected.

We first present four simple voting schemes; in all four, the candidates are
given points by the voters, and the k candidates with the most points win the
election. The schemes differ in the way points are awarded to candidates.

– Single Non-Transferable Vote (SNTV): each voter gives one point to a fa-
vorite candidate.

– Bloc voting : each voter gives one point to each of k candidates.
– Approval voting : each voter can approve or disapprove any candidate; an

approved candidate is awarded one point, and there is no limit to the number
of candidates a voter can approve.

– Cumulative voting : allows voters to express intensities of preferences, by
asking them to distribute a fixed number of points among the candidates.
Cumulative voting is especially interesting, since it encourages minority rep-
resentation and maximizes social welfare [6].

2.1 Fully Proportional Representation

We now describe two theoretical voting schemes, which attempt to achieve the
ideal of fully proportional representation.

We begin by specifying Monroe’s pure scheme [18]. For each voter v and
candidate c, a misrepresentation value µvc is known;3 this value characterizes
the degree to which candidate c misrepresents voter v.

Let S = {S ⊆ C : |S| = k}, the set of all possible subsets of k winners.
Let S ∈ S, and let fS : V → S be a function that assigns voters to candidates

3 The misrepresentation values µvc may be naturally derived from ballots cast by the
electorate, but we do not go into details as to exactly how this can be done. In any
case, it is logical to assume that µvc ∈ {0, 1, . . . , m}, and we make this assumption
throughout the paper.

in S. The misrepresentation score of voter v under fS is µvfS(v). The total
misrepresentation of assignment fS is

∑

v∈V µvfS(v).
Monroe requires that fS be restricted so that a similar number of voters

is assigned to each candidate in S. In other words, each candidate in S must
be assigned at least bn/kc voters. We say that such an assignment is balanced.
The misrepresentation score of S is the misrepresentation score of fS , where
fS : V → S is the assignment with the minimal misrepresentation, subject
to the above restriction. The k winners are the set S ∈ S with the lowest
misrepresentation score.

Chamberlin and Courant [7] adopt a similar approach; as before, one consid-
ers sets S ∈ S and assignments fS . However, Chamberlin and Courant impose
no restrictions on the assignments. Therefore, each set S is associated with the
assignment fS : V → S that minimizes misrepresentation among all possible
assignments. To maintain proportionality, Chamberlin and Courant compensate
by using weighted voting in the assembly.

2.2 Choosing a Governing Coalition

Yes-no voting was originally proposed in [5], as a method to choose a governing
coalition in an assembly, after the seating of its members. In general, it can
also be used to choose a committee from a larger body. It is assumed that the
members of the assembly are partitioned into parties; let P be the set of parties.
Each member v votes (Yv,Nv), where Yv (Yes) and Nv (No) are disjoint subsets
of P. The set of coalitions that are supported by v is:

Gv = {C ⊆ P : Yv ⊆ C ∧ Nv ∩ C = ∅}.

The number of members that support the coalition C is:

ν(C) = |{v ∈ V : C ∈ Gv}|.

The coalition C ⊆ P which is selected is argmaxC⊆Pν(C). In practice, the gov-
erning coalition must often be a majority coalition. In this case, we simply let
M be the set of coalitions which together hold a majority of seats, and choose
argmaxC∈Mν(C).

Merrill [17] has proposed that Yv = ∅, or in other words, that members only
be allowed to exclude parties from the coalition. In this setting, it clearly holds
that the empty coalition maximizes the number of supportive voters. Therefore,
it is only logical to restrict ourselves to coalitions of size at least k, for some
k ∈ N.

3 Manipulation

A voter is considered to be a manipulator, or is said to vote strategically, if
the voter reveals false preferences in an attempt to improve his outcome in the
election. Settings where manipulation is possible are to be avoided, as many

voting protocols are designed to maximize social welfare, under the assumption
that voters reveal their intentions truthfully. Therefore, computational resistance
to manipulation is considered an advantage.

In the classical formalization of the manipulation problem [2], we are given a
set C of candidates, a set V of voters, and a distinguished candidate p ∈ C. We
also have full knowledge of the voters’ votes. We are asked whether it is possible
to cast an additional vote, the manipulator’s ballot, in a way that makes p win
the election.

When generalizing this problem for the k-winner case, several formulations
are possible. For example, one can ask whether some candidate can be one of the
k-winners, or whether it is possible to ensure that a complete set of k winners
be elected. We adopt a more general formulation.

Definition 1. In the Manipulation problem, we are given a set C of candi-
dates, a set V of voters that have already cast their vote, the number of winners
k ∈ N, a utility function u : C → Z, and an integer t ∈ N. We are asked
whether the manipulator can cast his vote such that in the resulting election:
∑

c∈W u(c) ≥ t, where W is the set of winners, |W | = k.

Remark 1. We make the standard assumption that tie-breaking is adversarial to
the manipulator [9, 8], i.e., if there are several candidates that perform equally
well in the election, the ones with the lower utility will be elected.

Proposition 1. Manipulation in SNTV, Bloc voting, and Approval is in P.

Proof. Simple and efficient algorithms exist for Manipulation in these three
protocols; omitted due to lack of space. ut

Proposition 2. Manipulation in Cumulative voting is NP-complete.

The proof relies on a reduction from one of the most well-known NP-complete
problems, the Knapsack problem.

Definition 2. In the Knapsack problem, we are given a set of items A =
{a1, . . . , an}, for each a ∈ A a weight w(a) ∈ N and a value υ(a), a capacity
b ∈ N, and t ∈ N. We are asked whether there is a subset A′ ⊆ A such that
∑

a∈A′ υ(a) ≥ t while
∑

a∈A′ w(a) ≤ b.

Proof (of Proposition 2). The problem is clearly in NP.
To see that Manipulation in cumulative voting is NP-hard, we prove that

Knapsack reduces to this problem. We are given an input 〈A,w, υ, b, t〉 of
Knapsack, and construct an instance of Manipulation in Cumulative vot-
ing as follows.

Let n=|A|. There are 2n voters: V = {v1, . . . , v2n}, 3n candidates: C =
{c1, . . . , c3n}, and n winners. In addition, each voter may distribute b points
among the candidates. We want the voters in V to cast their votes in a way that
the following three conditions are satisfied:

1. For j = 1, . . . , n, cj has b − w(aj) + 1 points.

2. For j = n + 1, . . . , 2n, cj has at most b points.
3. For j = 2n + 1, . . . , 3n, cj has exactly b points.

This can easily be done. Indeed, for i = 1, . . . , n, voter vi awards b−w(ai)+1
points to candidate ci, and awards his remaining w(ai) − 1 points to candidate
cn+i. Now, for i = 1, . . . , n, voter n+i awards all his b points to candidate 2n+i.

We define the utility u of candidates as follows:

u(cj) =

{

υ(aj) j = 1, . . . , n

0 j = n + 1, . . . , 3n

The transformation is clearly polynomial, so it only remains to verify that it
is a reduction. Assume that there is a subset A′ ⊆ A with total weight at most
b and total value at least t. Let C = {cj : aj ∈ A′}. The manipulator awards
w(aj) points to each candidate c ∈ C ′, raising the total score of these candidates
to b+1. Since initially all candidates have at most b points, all candidates c ∈ C ′

are among the n winners of the election. The total utility of these candidates is:
∑

c∈C′ u(c) =
∑

a∈A′ υ(a) ≥ t (since for all j = 1, . . . , n, u(cj) = υ(aj)).
In the other direction, assume that the manipulator is able to distribute b

points in a way that the winners of the election have total utility at least t.
Recall that there are initially at least n candidates with b points and utility 0,
and that ties are broken adversarially to the manipulator. Therefore, there must
be a subset C ′ ⊆ C of candidates that ultimately have a score of at least b + 1,
such that their total utility is at least t. Let A′ be the corresponding items in
the Knapsack instance, i.e., aj ∈ A′ iff cj ∈ C ′. The total weight of items in
A′ is at most b, as only b points were distributed among the candidates in C ′

by the manipulator, and each cj ∈ C ′ initially has b − w(aj) + 1 points. It also
holds that the total utility of the items in A′ is exactly the total utility of the
candidates in C ′, namely at least t. ut

4 Control

Some voting protocols can be controlled by the authority conducting the election
(which we refer to as the chairman), in the sense that the chairman can change
the election’s results. Some types of control available to the chairman are adding
“spoiler” candidates, disqualifying candidates, registering new voters, or remov-
ing voters that were already registered. A study of these issues in the context of
two well-known voting protocols was reported by Bartholdi, Tovey and Trick [4],
who found that control by adding and deleting candidates is NP-hard even in
the simple Plurality4 protocol. Moreover, in most cases the complexity of delet-
ing voters is identical to that of adding voters. Therefore, we focus hereafter on
control by adding voters.

The following formulation of the control (by adding voters) problem appeared
in [4]: we are given a set C of candidates and a distinguished candidate p ∈ C;

4 The Plurality protocol is identical to SNTV, when there is a single winner.

a set V of registered voters, and a set V ′ of voters that could register in time
for the election. We are also given r ∈ N, and have full knowledge of the voters’
votes. We are asked whether it is possible to register at most r voters from V ′

in a way that makes p win the election.
As in the case of manipulation, we generalize this definition for our multi-

winner setting:

Definition 3. In the Control problem, we are given a set C of candidates, a
set V of registered voters, a set V ′ of unregistered voters, the number of winners
k ∈ N, a utility function u : C → Z, the number of winners we are allowed
to register r ∈ N, and an integer t ∈ N. We are asked whether it is possible to
register at most r voters from V ′ such that in the resulting election,

∑

c∈W u(c) ≥
t, where W is the set of winners, |W | = k.

Remark 2. Again, we assume that ties are broken adversarially to the chairman.

Proposition 3. Control in Bloc voting, Approval, and Cumulative voting is
NP-complete.

Proof. By reduction from Max k-Cover;5 omitted due to lack of space.

Proposition 4. Control in SNTV is in P.

Proof. We describe an algorithm, Control-SNTV, which efficiently decides
Control in SNTV. Informally, the algorithm works as follows. The algorithm
first calculates the number of points awarded to candidates by voters in V . Then,
at each stage, the algorithm analyzes an election where the l top winners in the
original election remain winners, and attempts to select the other k − l winners
in a way that maximizes utility. This is done by setting the threshold to be one
point above the score of the (l + 1)-highest candidate; the algorithm pushes the
scores of potential winners to this threshold (see Figure 1 for an illustration).

A formal description of Control-SNTV is given as Algorithm 1. The pro-
cedure Push works as follows: its first parameter is the threshold thr, and its
second parameter is the number of candidates to be pushed, pushNum. The
procedure also has implicit access to the input of Control-SNTV, namely the
parameters of the given Control instance. Push returns a subset V ′′ ⊆ V ′ to
be registered. We say that the procedure pushes a candidate c to the thresh-
old if exactly thr − s[c] voters v ∈ V ′ that vote for c are registered. In other
words, the procedure registers enough voters from V ′ in order to ensure that c’s
score reaches the threshold. Push finds a subset C ′ of candidates of size at most
pushNum that maximizes

∑

c∈C u(c), under the restriction that all candidates
in C ′ can be simultaneously pushed to the threshold by registering a subset
V ′′ ⊆ V ′ s.t. V ′′ ≤ r. The procedure returns this subset V ′′.

Now, assume we have a procedure Push which is always correct (in maxi-
mizing the utility of at most k − l candidates it is able to push to the threshold
s[cl+1]+1, while registering no more than r voters) and runs in polynomial time.
Clearly, Control-SNTV also runs in polynomial time. Furthermore:

5 See [13] for a definition and analysis of this problem.

0

1

3

4

6 03 22

22

0

2

5

1

03 22

22

0

2

5

1

Fig. 1. The left panel illustrates an input of the Control problem in SNTV. Each
candidate is represented by a circled number — the utility of the candidate. The
location of the circle determines the score of the candidate, based on the voters in V .
Let k = 5; the winners are blackened. Now, assume that there are 6 voters in V ′, 3
voting for each of the two bottom candidates, and that r = 3. The chairman can award
3 points to the candidate with utility 5 and score 0, but that would not change the
result of the election. Alternatively, the chairman can award 3 points to candidate with
utility 2 and score 1, thus improving the utility by 2, as can be seen in the right panel.
This election is considered by the algorithm when l = 4, s[ci5] = 3, and the threshold
is 4.

Lemma 1. Control-SNTV correctly decides the Control problem in SNTV.

Proof. Let W = {cj1 , . . . , cjk
} be the k winners of the election which does not

take into account the votes of voters in V ′ (the original election), sorted by
descending score, and for candidates with identical score, by ascending utility.
Let W ∗ = {c∗j1 , . . . , c

∗
jk
} be the candidates that won the controlled election with

the highest utility, sorted by descending score, then by ascending utility; let
s∗[c] be the final score of candidate c in the optimal election. Let min be the
smallest index such that cjmin

/∈ W ∗. It holds that for all candidates c ∈ W ∗,
s∗[c] ≥ s[cjmin

]. Now, we can assume w.l.o.g. that if c ∈ W ∗ and s∗[c] = s[cjmin
]

then c ∈ W (and consequently, c = cjq
for some q < min). Indeed, it must

hold that u[c] ≤ u[cjmin
] (as tie-breaking is adversarial to the chairman), and

if indeed c /∈ W even though c ∈ W ∗, then the chairman must have registered
voters that vote for c, although this can only lower the total utility.

It is sufficient to show that one of the elections which is considered by the
algorithm has a set of winners with utility at least that of W ∗. Indeed, let
W ′ = {cj1 , . . . , cjmin−1

} ⊆ W ; all other k−min+1 candidates c ∈ W ∗ \W ′ have
s[c] ≥ s[cjmin

] + 1. The algorithm considers the election where the first min− 1

Algorithm 1 Decides the Control problem in SNTV.

1: procedure Control-SNTV(C, V, V ′, k, u, r, t)
2: s[c]← |{v ∈ V : v votes for candidate c}|
3: Sort candidates by descending score . Break ties by ascending utility
4: Let the sorted candidates be {ci1 , . . . , cim}
5: for l = 0, . . . , k do . Fix l top winners
6: V ′′ ←Push(s[cl+1] + 1, k − l) . Select other winners; see details below
7: ul ← utility from election where V ′′ are registered
8: end for

9: if maxl ul ≥ t then return true

10: else

11: return false

12: end if

13: end procedure

winners, namely W ′, remain fixed, and the threshold is s[cjmin
] + 1. Surely, it

is possible to push all the candidates in W ∗ \ W ′ to the threshold, and in such
an election, the winners would be W ∗. Since Push maximizes the utility of the
k −min + 1 candidates it pushes to the threshold, the utility returned by Push

for l = min − 1 is at least as large as the total utility of the winners in W ∗. ut

It remains to explain why the procedure Push can be implemented to run
in polynomial time. Recall the Knapsack problem; a more general formulation
of the problem is when there are two resource types. Each item has two weight
measures, w1(ai) and w2(ai), and the knapsack has two capacities: b1 and b2. The
requirement is that the total resources of the first type used do not exceed b1,
and the total resources of the second type do not exceed b2. This problem, which
often has more than two dimensions, is called Multidimensional Knapsack.
Push essentially solves a special case of the two-dimensional knapsack problem,
where the capacities are b1 = r (the number of voters the chairman is allowed
to register), and b2 = pushNum (the number of candidates to be pushed).
If the threshold is thr, for each candidate cj which is supported by at least
thr − s[cj] voters in V ′, we set w1(aj) = thr − s[cj], w2(aj) = 1, and υ(aj) =
u(cj). The Multidimensional Knapsack problem can be solved in time which
is polynomial in the number of items and the capacities of the knapsack [16]
(via dynamic programming, for example). Since in our case the capacities are
bounded by m and |V ′|, Push can be designed to run in polynomial time. ut

5 Winner Determination

Some complex voting schemes are designed to be theoretically appealing in the
sense that they satisfy some strict desiderata. Unfortunately, it might be the
case that an attractive voting scheme is so complicated that even identifying the
winners is an NP-hard problem. This is a major problem, especially when one
considers using such a protocol for real-life elections, as elections of this kind
must be resolved within a reasonable time frame.

5.1 Fully Proportional Representation

In this subsection we define and analyze the winner determination problem in
the two voting schemes described in Subsection 2.1.

Definition 4. In the Winner-Determination problem, we are given the set
of voters V , the set of candidates C, the number of winners k ∈ N, misrepresen-
tation values µvc ∈ {0, 1, . . . ,m}, and t ∈ N. We are asked whether there exists
a subset S ⊆ C such that |S| = k, with misrepresentation at most t.

Remark 3. Determining the set of winners is clearly harder than the above de-
cision problem, as the set of winners minimizes misrepresentation.

Remark 4. For ease of exposition, we shall assume that n/k is an integer. This
does not limit the generality of our results, as otherwise it is possible to pad the
electorate with voters v such that µvc = 0 for all c ∈ C.

Theorem 1. The Winner-Determination problem in Monroe’s scheme and
in the Chamberlin-Courant scheme is NP-complete, even when the misrepresen-
tation values are binary.

Proof. By reduction from Max k-Cover; omitted due to lack of space.

Our hardness results relied on the implicit assumption that the number of
winners k is not constant (in the previous sections as well). In the context of the
Winner-Determination problem, we are also interested in a setting where the
number of winners is constant, as this is sometimes the case in real-life elections:
the electorate grows, but the size of the parliament remains fixed.

Proposition 5. When k = O(1), the Winner-Determination problem in
Monroe’s scheme and in the Chamberlin-Courant scheme is in P.

Proof. Clearly Winner-Determination in the Chamberlin-Courant scheme
can be solved efficiently when k = O(1), as the size of the set S, the set of
subsets of candidates with size k, is polynomial in m. For a given S ∈ S, finding
the assignment fS that minimizes misrepresentation in this scheme is simple:
each voter v is assigned to argminc∈Cµvc.

In Monroe’s scheme, by a similar consideration, it is sufficient to produce a
procedure that efficiently computes the misrepresentation score of every S ∈ S,
i.e., finds a balanced assignment that minimizes misrepresentation in polynomial
time.

We analyze a procedure that maintains at each stage a balanced assignment,
and iteratively decreases misrepresentation. Changes in the assignment are in-
troduced by cyclically right-shifting (c.r.s.) sets of voters: each voter in a set
A = {vi1 , vi2 , . . . , vil

} is shifted to the candidate which is assigned to his suc-
cessor; the assignment remains balanced as the last voter is assigned to the first
candidate. In more detail, if the current assignment is fS , the algorithm singles

out a set of voters A = {vi1 , vi2 , . . . , vil
}, l ≤ k, and modifies the assignment by

defining the next assignment f ′
S as follows:

f ′
S(vi) =

{

fS(vid+1(mod l)
) vi = vid

∈ A

fS(vi) vi /∈ A
(1)

The procedure is formally described in Algorithm 2.

Algorithm 2 Finds a balanced assignment that minimizes misrepresentation.

1: procedure Assign(S)
2: fS ← arbitrary assignment of n/k voters to each candidate in S
3: loop

4: if ∃A ⊆ V s.t. |A| ≤ k ∧ c.r.s. A strictly decreases misrepresentation then

5: update fS by performing the shift . According to Equation (1)
6: else

7: return fS

8: end if

9: end loop

10: end procedure

The procedure terminates after at most nm repetitions of the iterative step:
at each iteration, the total misrepresentation decreases by at least 1, since the
µvc are integers. On the other hand, the total misrepresentation cannot decrease
below 0, and is initially at most n ·maxv,c µvc ≤ nm. Moreover, the iterative step
of the algorithm can be calculated efficiently: since k is constant, the number of
possible cycles of length at most k is polynomial in n. We have that the com-
plexity of Winner-Selection in Monroe’s scheme is polynomial — provided
we are able to show that the procedure works!

Lemma 2. Assign returns an optimal assignment.

Proof. Consider a scenario where the procedure reaches the iterative step, but
the current assignment is not optimal. We must show that the algorithm does not
terminate at this point. Indeed, let f∗

S : V → S be a fixed optimal assignment.
We consider the voters v such that fS(v) = f∗

S(v) to be placed, and the other
voters to be misplaced. Assume without loss of generality that f∗

S minimizes the
number of misplaced voters among all optimal assignments.

We claim that there is a set of l ≤ k voters which can be cyclically right-
shifted in a way that places all l voters. Let vi1 be a misplaced voter. In order to
place it, it has to be assigned to the candidate f∗

S(vi1). Thus, one of the voters
that fS assigns to f∗

S(vi1) must be misplaced, otherwise fS is not balanced; call
this voter vi2 . vi2 can be placed by uprooting a voter vi3 assigned to f∗

S(vi2).
Iteratively repeating this line of reasoning, there must at some stage be a voter
vid′

, d′ ≤ k, such that f∗
S(vid′

) = fS(vid
) for some d < d′; this is true, since there

are only k distinct candidates in S. Hence, the voters {vid
, vid+1

, . . . , vid′
} can

be cyclically right-shifted in a way that places all d′ − d + 1 = l ≤ k voters.
For any set of voters that can be placed by cyclic right-shifting, the shift

must strictly decrease misrepresentation. Otherwise, by cyclically left-shifting
the same set in f∗

S , we can obtain a new optimal and balanced assignment, in
which more voters are placed compared to f∗

S ; this is a contradiction to our
assumption that f∗

S minimizes the number of misplaced voters.
It follows that there must be a set of at most k voters such that cyclically

right-shifting the set strictly decreases the misrepresentation. Therefore, the pro-
cedure does not terminate prematurely. ut

The proof of Proposition 5 is completed. ut

5.2 Choosing a Governing Coalition

In this subsection we analyze the complexity of choosing a governing coalition
(or a committee). For this purpose, we define a decision problem which is similar
to the Winner-Determination problem.

Definition 5. In the Coalition-Determination problem, we are given the
set of voters V , the set of parties P , the vote (Yv,Nv) of each voter v, and
t ∈ N. We are asked whether there exists a coalition which is supported by at
least t voters.

This formulation is appropriate for Yes-no voting in a general setting. It is
also possible to consider two additional formulations:

1. The governing coalition must be a majority coalition.
2. For all voters v ∈ V , Yv = ∅, and the size of the governing coalition must be

at least k [17].

Proposition 6. The Coalition-Determination problem in all three formu-
lations is NP-complete.

Proof. By reductions from the problems Max Constraint-Satisfaction and
Max k-Intersection;6 omitted due to lack of space. ut

6 Conclusions

Table 1 summarizes the complexity of manipulation and control,7 with respect
to four protocols: SNTV, Bloc voting, Approval voting, and Cumulative voting.
Of the four protocols, the only one which is computationally resistant to both
manipulation and control is Cumulative voting. This protocol also has other
advantages: it allows voters to express the intensities of their preferences, and
encourages proportional results (albeit, without guaranteeing them). Therefore,
cumulative voting seems especially suitable as a method to aggregate agents’
preferences.

6 See [22] for a definition and analysis of this problem.
7 Specifically, control by adding voters.

In... Manipulation Control

SNTV P P
Bloc P NP-c
Approval P NP-c
Cumulative NP-c NP-c

Table 1. The computational difficulty of Manipulation and Control in multi-winner
protocols.

One must remember in this context that NP-hardness may not be a good
enough guarantee of resistance to manipulation or control: an NP-hard problem
has an infinite number of hard instances, but it may have many more easy
instances. Indeed, Procaccia and Rosenschein [20] show that a specific family of
voting protocols is susceptible to coalitional manipulation in the average-case,
although the problem is hard in the worst-case. Nevertheless, NP-hardness of
manipulation or control should certainly be a consideration in favor of adopting
some voting protocol.

While high complexity of manipulation or control in a voting scheme is in-
terpreted positively, high complexity of winner determination is a major con-
sideration against the scheme, and may in fact prevent it from being used in
real-life settings. Winner determination is NP-complete with respect to the the-
oretical voting schemes proposed by Monroe, and by Chamberlin and Courant.
Monroe’s scheme has received some attention in recent years. In particular, it
has been shown that an election can be resolved with integer programming [19].
Unfortunately, solving an integer program is still difficult; this formulation does
not even guarantee an efficient solution when the number of winners is constant.
Such a solution is, however, given by Proposition 5. This implies that it is per-
haps possible to use the scheme in settings where the size of the assembly is very
small compared to the size of the electorate.

The complexity of winner determination in several variations on the Yes-no
voting scheme is also NP-complete. This is problematic, as the issue of electing
a committee, which is tackled by these schemes, can well arise in multiagent
systems. Therefore, it seems desirable to find a simple scheme for electing a
governing coalition, or in general for electing a committee.

7 Acknowledgment

This work was partially supported by grant #039-7582 from the Israel Science
Foundation.

References

1. J. Bartholdi and J. Orlin. Single transferable vote resists strategic voting. Social

Choice and Welfare, 8:341–354, 1991.

2. J. Bartholdi, C. A. Tovey, and M. A. Trick. The computational difficulty of ma-
nipulating an election. Social Choice and Welfare, 6:227–241, 1989.

3. J. Bartholdi, C. A. Tovey, and M. A. Trick. Voting schemes for which it can be
difficult to tell who won the election. Social Choice and Welfare, 6:157–165, 1989.

4. J. Bartholdi, C. A. Tovey, and M. A. Trick. How hard is it to control an election.
Mathematical and Computer Modelling, 16:27–40, 1992.

5. S. J. Brams and P. C. Fishburn. Yes-no voting. Social Choice and Welfare,
10(1):35–50, 1993.

6. S. J. Brams and P. C. Fishburn. Voting procedures. In K. J. Arrow, A. K. Sen, and
K. Suzumura, editors, Handbook of Social Choice and Welfare, chapter 4. North-
Holland, 2002.

7. J. R. Chamberlin and P. N. Courant. Representative deliberations and representa-
tive decisions: Proportional representation and the Borda rule. American Political

Science Review, 77(3):718–733, 1983.
8. V. Conitzer, J. Lang, and T. Sandholm. How many candidates are needed to make

elections hard to manipulate? In Proceedings of the International Conference on

Theoretical Aspects of Reasoning about Knowledge, pages 201–214, Bloomington,
Indiana, 2003.

9. V. Conitzer and T. Sandholm. Complexity of manipulating elections with few
candidates. In Proceedings of the National Conference on Artificial Intelligence,
pages 314–319, Edmonton, Canada, July 2002.

10. V. Conitzer and T. Sandholm. Universal voting protocol tweaks to make manip-
ulation hard. In Proceedings of the International Joint Conference on Artificial

Intelligence, pages 781–788, Acapulco, Mexico, August 2003.
11. E. Elkind and H. Lipmaa. Small coalitions cannot manipulate voting. In Interna-

tional Conference on Financial Cryptography, Lecture Notes in Computer Science.
Springer-Verlag, Roseau, The Commonwealth of Dominica, 2005.

12. Eithan Ephrati and Jeffrey S. Rosenschein. A heuristic technique for multiagent
planning. Annals of Mathematics and Artificial Intelligence, 20:13–67, Spring 1997.

13. U. Feige. A threshold of lnn for approximating set cover. Journal of the ACM,
45(4):634–652, 1998.

14. S. Ghosh, M. Mundhe, K. Hernandez, and S. Sen. Voting for movies: the anatomy
of a recommender system. In Proceedings of the Third Annual Conference on

Autonomous Agents, pages 434–435, 1999.
15. A. Gibbard. Manipulation of voting schemes. Econometrica, 41:587–602, 1973.
16. H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.
17. S. Merrill. Private communication to S. J. Brams, 1990.
18. B. L. Monroe. Fully proportional representation. American Political Science Re-

view, 89(4):925–940, 1995.
19. R. F. Potthoff and S. J. Brams. Proportional representation: Broadening the op-

tions. Journal of Theoretical Politics, 10(2), 1998.
20. A. D. Procaccia and J. S. Rosenschein. Junta distributions and the average-case

complexity of manipulating elections. In Proceedings of the Fifth International

Joint Conference on Autonomous Agents and Multiagent Systems, 2006. To appear.
21. M. Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and cor-

respondence theorems for voting procedures and social welfare functions. Journal

of Economic Theory, 10:187–217, 1975.
22. S. A. Vinterbo. Maximum k-intersection, edge labeled multigraph max capacity

k-path, and max factor k-gcd are all NP-hard. Technical Report DSG-TR-2002/12,
Decision Systems Group/Harvard Medical School, 2002.

