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Abstract. Teams of agents may not always be developed in a planned, coordi-
nated fashion. Rather, as deployed agents become more commoanrnmegecce

and other settings, there are increasing opportunities for previoustygjuaeted
agents to cooperate in ad hoc team settings. In such scenarios, it isfosefdi-
vidual agents to be able to collaborate with a wide variety of possible teammates
under the philosophy that not all agents are fully rational. This papesiders

an agent that is to interact repeatedly with a teammate that will adapt to this in-
teraction in a particular suboptimal, but natural way. We formalize this setting
in game-theoretic terms, provide and analyze a fully-implemented algofithm
finding optimal action sequences, prove some theoretical results fregtéorthe
lengths of these action sequences, and provide empirical results pertainhe
prevalence of our problem of interest in random interaction settings.

1 Introduction

As agents proliferate in the world, both in software and tabsettings, they will in-
creasingly need to band together for cooperative actdtigh previously unknown or
unfamiliar teammates. For example, consider a disasteneescenario in which robots
developed by many different people in different parts of weeld converge to work
together to locate and extract victims from places that atetgo dangerous for hu-
man rescue teams to enter. These robots can be thought of@adateam they are
fully cooperative with no notion whatsoever of individualfsinterest separate from the
team’s interest. They all aim to act so as to maximize thdiiked of finding survivors,
even if it means risking their own safety.

However, unlike most team settings considered so far (&.9]), the robots are not
all programmed by the same people, and may not all have the sammunication
protocols or world models. Furthermore, they are likely &aodnheterogeneous sensing
and acting capabilities that may not be fully known to eadhientAs a result, team
strategies cannot be developed a priori. Rather, a robbtgha succeed in such an
ad hoc teansetting must be prepared to cooperate with many types ofntedes:
those with which it can communicate and those with which itra#; those that are
more mobile and those that are less mobile; those with bettesing capabilities and
those with worse capabilities. A good team player's besoastare likely to differ
significantly depending on the characteristics of its teates

In this paper, we consider the case of such a good team plagent Athat is
interacting with a teammatégent B with whom it cannot communicate directly, but



that is capable of adapting to its teammate’s behavior. iBpalty, Agent Bobserves
its teammate’s actions and acts according to the best regspgonsome fixed history
window of Agent As past movesAgent As goal is to find the sequence of moves that
will lead to the highest (expected) payoff in a fully coogem setting. In this paper,
we abstract this setting to a game-theoretic formalism iiclvthe agents interact in a
fully cooperative iterative normal form game.

The remainder of the paper is organized as follows. FirsGeuation 2, we pro-
vide an example game-theoretic setting and formalize tvatsdn of study. Then, in
Section 3, we present some analytical results, followeddmgesempirical results in
Section 4. Section 5 situates our problem of interest wittdth the game theory and
agent modeling literature, and Section 6 concludes.

2 Formalism and Example

In this paper, we represent the multiagent interaction tfrést as a fully cooperative
iterative normal-form game between two ageiigent AandAgent B Throughout the
paper, we will consideAgent Ato be the agent that is within our contréigent B
which reacts in a fixed way, is given by the environment.

Let thex actions available té\gent Abe ag, a1, ..., a,_1 and they actions avail-
able to its teammateédgent B be by, b1, . .., b,—1. The immediate payoff wheA and
B select actions,; andb;, m;_ ; is stored in row; and column; of the payoff matrix
M: M[i, j] = m, ;. In addition we define the value of the highest payoff in the ma
trix, which could be realized by multiple entries, to f&. Without loss of generality,
throughout this paper, we assume that_; ,—1 = m*.

For example, consider the payoff matiix1 for a scenario in

which agentsA and B each have three possible actions. If both M1 gg b11 bo2
agents select action 0 (i.e., th@iint actionis (ao, bo)), then the ZO 10 30 10
joint team payoff ismg o = 25. Similarly if their joint action is a; 0 33 40

(a2, bp) their joint payoff is 0. In this case, there is a unique joint
action that leads tev*: mg 5 = m* = 40.

Assume thabt, is Agent Bs default action or that, for whatever reason, the agents
have been playingao, bo) in the past. This could be, for example, becadgent B
is not fully aware ofAgent As payoffs so that its best strategy is cannot unilaterally
identify the best joint action. The question we examine itwdequence of actions
shouldAgent Atake so as to maximize the team’s undiscounted long-terrafpayer
iterative interactions using the identical payoff matrikRe answer to this question
depends orAgent Bs strategy. For example, iAgent Bis non-adaptive and always
selectshy, then the bestgent Acan do is always seleat.

However, ifAgent Bis adaptive Agent Acan lead it towards the optimal joint action
by taking a sequence of actions the responses to which wile?dgent Bto abandon
by and choose other actions. In order to do so, it may need tgpashert-term losses
with respect to the current payoffs (e.g., immediate payofiess than 25); however in
the long run these losses will be offset by the repeated aagaaus payoff ofas, bo ).

Y1n principle, it is possible that the game will not continue long enough tebffese losses.
In this paper, we assume that the game will be repeated a large enaugkmef times that it



In this paper, we consider a particular class of stratediasAgent Bcould be
using. Though they may not be the most sophisticated imbtgrstrategies, they are
reasonable and often studied in the literature. The fatthieg are possibly suboptimal
represents the philosophy thagient Amust be able to adapt to its teammates as they
are, not as they should be. That is, we assume that we havelconly overAgent A
not overAgent B

In particular, we specifyAgent Bas being a bounded-memory best response agent
with an e-greedy action strategy. That is, the agent’'s behavior fserdened by two
parameters: a memory sireéem and a random action rate The agent considers the
most recentnemactions taken by its teammatadent A, and assumes that they have
been generated by the maximum likelihood policy that assigred probabilities to
each action. For example nfem= 4 andAgent As last four actions were; , ag, a1, a1,
thenAgent Bassumes thatgent As next action will bexy with probability 0.25 and;
with probability 0.75. It then selects the action that isltlest response to this assumed
policy with probabilityl —e; with probabilitye it chooses a random action. For example,
for payoff matrix M 1 in this situation, it would seledt; with probability 1 — . We
denote thidest responsaction aBR(a1, ag, a1,a1) = b1. Note that wher = 1, the
agent acts completely randomly.

To illustrate, we begin by considering the casem@m= 1 ande = 0. For the
remainder of this section, we consider the same case, itwv#Agent Balways selects
the action that is the best responsé\ggent As previous actionby, by, or by depending
on whetherA’s last action wasi, a1, Or as respectively.

Now considerAgent As possible action sequences starting from the joint action
(ap, bp) with payoff mg o = 25. Because its last action wag, it knows thatB will
selectby on the next play. It could immediately jump to actieg, leading to the joint
action (az, bp). This action will lead to an immediate payoff @i, = 0, but then
will cause Agent Bto selectb, next, enabling a payoff of 40 on the next turn and
thereafter (assuming continues to seleat; as it should). The resulting sequence of
joint actions would be&5y = [(aq, by), (a2, bo), (az,b2), (az,bs),...] leading to payoffs
[25,0, 40,40, ...].

Alternatively,Agent Acould move more gradually through the matrix, first selegtin
ay for a joint payoff of 10 and leadin® to selectb; on its next turn. It could then
shift to ay for a payoff of 33, followed by 40 thereafter. The resultiregsence of
joint actions would beS; = [(ag, bo), (a1,bo), (az,b1), (a2, b2), (az,bs),...] leading
to payoffs[25, 10, 33, 40, 40, .. .].

We define theostC'(S) of a joint action sequencg to be the loss from playing
when compared to always playing the joint acti@n_+, b,—1), which leads to payoff
m* — in the case of\/ 1, 40. Thus

C(So) = (40—25)+(40—0)+(40—40) +(40—40) +- - - = 154404040+ -- =55
and
C(S1) = (40—25)+(40—10)+(40—33)+(40—40)+- - - = 15+30+7+0+0+- - - = 52

will not terminate before the agents reach the best joint action in the wawthspecify. In a
setting where this is not the case, one would need to include the numbeiatibiterleft as a
part of the state.



In this caseS; is preferable taSy, and is in fact the optimal (lowest cost) sequence
starting from(ag, bo).

We define thdength L(.S) of a joint action sequencé to be the number of joint
actions prior to the first instance of the infinite sequenceiot actions that yieldn*.
ThusL(Sy) = 2 andL(S1) = 3. Note thatS; has lower cost even though it is longer.
Note also that sequences that begin with a joint actionb;) such thatn, ; = m*
have both length 0 and cost 0.

For a given payoff matrix, we defing* (a;, ;) to be the lowest cost sequence of
lengthn or less starting from joint actiofu;, b;). S*(a;, b;) is the lowest cost such
sequence of any length. Thus, for matfif1, S5 (ag,bp) = So and S5 (ag,bo) =
S*(ao,bo) = Sl.

For the special case that no sequence of a given length égigts ifn = 0 or
n = 1), we defineS*(a;,b;) = w andC(w) = oo. Thus, foriM 1, C(Sf(ao,bo)) =
C(Sf(ao, bo)) = 00, bUtC(Sf (ag, bl)) =7 andC(Sé(ag, bg)) =0.

Finally, for a given payoff matrix\/, we are interested in the length of the longest
optimal sequence over all the possible starting points. &fiae this value ag (M) =
max; ; L(5*(ai,b;)). For example, in matrid/1, L(S*(ao, b)) = L(S1) = 3, and
there is no optimal sequence longer than 3 starting from #rsr@ell of the matrix (as
we will prove below). Thug.(M1) = 3.

3 Finding Optimal Sequencesand Analysis

In this section, we develop algorithms for findisg(a,, b;) given a payoff matrix\/,
and we examine the question of how long thésé can be. We divide the analysis
based orAgent Bs strategy. First, in Section 3.1 we assume thgént Bhasmem= 1
ande = 0 as in Section 2. Next in Section 3.2 we consider the more difftase of
mem> 1. Then, in Section 3.3 we allogent Bs actions to be non-deterministic by
considering: > 0.

3.1 Deterministic Teammate with 1-Step Memory

We begin by presenting an efficient algorithm for finding dlklwe S*’s for a matrix
M when interacting with a deterministic teammate=( 0) that always selects the best
response to our most recent actiomefn= 1). Detailed in pseudocode as Algorithm 1,
it uses dynamic programming, using tBg_,’s to compute thes}’s.

The algorithm takes as input anx y dimensional payoff matrid/ and begins by
initializing the optimal sequence of length O for every delthe matrix according to
the definition (lines 1-5). It then enters the main loop (7+Rat successively finds the
best sequences of increasingly longer lengths (as indidat¢he variablden).

A key insight that aids efficiency is that for a giver, the optimal sequences for
b1-b, are the same as the optimal sequence starting {iqnd, ), other than the first
joint action. The reason is that determinegAgent Bs next action independently from
Agent Bs current action: in all cases, its next action will bigy,,). Thus,Agent As
task is to select its actiofy, that leads to the best possible joint action of the form

(aacb bBR(ai))'



Algorithm 1 Find S*'s (M) ‘This very compu-
1T fori=0tox — 1do tation is carried out
2. forj=0toy—1do in lines 10-16, specifi-

, . [(as, b:), (@i, bi),...] if m;; =m* cally for Agent Bs ac-
3. S() (ai,bi) = . * . . I

w if mi; <m tion by. First, it is pos-

4. end for sible that the optimal
S end for sequence of lengtken,
(;j Ien:to Sit(ai, bo) is the same

 reped as that of lengthlen
8. len=len+1 A
9 fori—0tox— 1do 1. Thus it is initialized

10: Sicn(ai, bo) = Sy (az, bo) as such (line 1_0). Then

11: for act = 0tox — 1 do for each possible next

12- 5" = Siin_1(aact, berea,)) action on the part of

13: if m* —mso+ C(S") < C(Sen(as,bo)) then Agent A denotedascs,

14: Sien(ai, bo) = PREPENQ(a;, bo), S") the cost of the resulting

15: end if sequence is simply the

16: end for cost of the current joint

17: forj=1toy —1do

18: - (assby) — REPLACEHEAD(Stn(as, bo), (as,by))  Conon(ei: bo), whichis
19 englt;ggalv ]) = I:Xslen(alv 0)7 (alv J)) m* — m; 0, p|us the

j cost of the best possi-
20: epd for — ble sequence of length
21: until len = UPPERBOUNDL(M))
len — 1 that starts from
(aact, berea;))- If that cost is less than the cost of the best sequence offiésgfound
so far, then the running best sequence is updated accordipgirepending joint action
(ai, bo) to the sequencsiy,_ (aact; ber(a,)) (lines 14-16).

The resulting optimal sequence is then used to determineptiraal sequence start-
ing from all other values ofa;,b;) for 1 < j < y by simply replacing the first joint
action in the sequencs;, (a;, bo) with the joint action(a;, b;) (lines 17-19). At the end
of this loop, the optimal sequence of lendgm starting from any joint actiofia;, b;)
(Sin(as, b)) is known and stored.

The computational complexity of the main loop of Algorithm(lines 7-21) is
quadratic inxz and linear iny. Assumingz andy are of similar dimension (Agents
A andB have roughly the same number of possible actions), we cathealimension-
ality of M to bed = max(z,y). In that case, the main loop has complexityd?).
Note that sequence cost§.S) can be calculated incrementally in constant time as the
sequences are constructed.

The only thing left to determine is how many times this maiogdmeeds to be run.

In particular, for what value denis it no longer possible to find a better sequence than
the best of lengtlen— 1. We denote this value UPPERBOUND( M )). The following

two theorems prove that this value is exaatlin(z, y). Thus the overall computational
complexity of algorithm 1 i€ (d?).

First, in Theorem 1, we prove that there is no need to consielgnences of length
greater thamin(z, y): UPPERBOUNDIL(M)) < min(z,y). Then, in Theorem 1, we
show that itis necessary to to consider sequences up to lemgiiz, y):
UPPERBOUNDL(M)) > min(x,y).




Theorem 1. When interacting with a teammate withem= 1 ande = 0 based on an
x x y dimensional payoff matrix/, L(M) < min(z, y)

Proof. We argue that/M, L(M) < min(x,y) by first showing that..(M) < z and
then showing that. (M) < y. Intuitively, both cases hold because an optimal sequence
can visit every row and column in the matrix at most once. éf¢hwere multiple visits
to the same row or column, any steps in between could be ekfriem the sequence
to get a lower-cost sequence. The formal arguments for theases are quite similar,
though with a couple of subtle differences.

Casel: L(M) < z.Thisis equivalent to provingn > z, andvi, j, S (a;, b;) =
S*(a;,b;). Suppose not. TheBk and a corresponding sequengesuch thatsS’ =
Sfl_,_l(ai, bj) = PREPENQ(CL?7 bj)7 S;(ak, bBR(Z))) with C(S/) < C’(S:‘L(a,, b])) Since
S?(ai, b;) is the optimal sequence of lengthor less,L(S') = n+1.n+1 > z, SO
by the pigeonhole principlélg such thatAgent Aselects:, more than once %’ prior
to the first instance of the terminal joint action with value. Assume tha{ag, b;)
appears earlier in the sequence tlap b,-). In both casesAgent Bs next action in the
sequence must d8R(a,). Thus after joint actioria,, b.), Agent Acould have contin-
ued as it actually did aftdi,, b, ). This revised sequence would have cost less fHan
violating the assumption th&t' = S, (a;, b;). ThereforeL(M) < z.

Case 2: L(M) < y. Similarly, this case is equivalent to proving that > y, and
Vi, j, Sy 1(ai,b;) = Sy (a;, b;). Suppose not. Thefk and a corresponding sequence
S" such thatS” = S, (ai, b;) = PREPEND)(a;, b;), Sy (ax, ber(?))) with C(S') <
C(S;(as,b5)). SinceS;: (a;, b;) is the optimal sequence of lengthor less,L(S’) =
n+1.n+ 1 > y, so by the pigeonhole principl@r such thatAgent Bselects),. more
than once inS’ after the first entry(a;, b;) and up to and including the first instance
of the terminal joint action with value:*.2 Assume thata,, b,) appears earlier in the
sequence thafu,, b,). Then at the point wheAgent Aselected:, leading to(a,, b,),
it could have instead selecteg, and then finished the sequence as fr@m, b,) in
S’. Again, this revised sequence would have cost less $aviolating the assumption
thatS’ = S, (a;, b;). ThereforeL(M) < y.

ThereforevM, L(M) < min(z, y). O

Theorem 2. Vz,y,3 x x y dimensional matrix\/ such that, when interacting with a
teammate witmem= 1 ande = 0, L(M) = min(z, y).

Proof. To prove existence, we construct such a matrix.

Case 1: © = y. Consider the matri¥/2 whereé = 10/x. All cells on the diagonal
arel00 — ¢ except for the bottom right corner,,_; ,—1 = m* = 100. All cells below
this diagonal ar@00 — 24, and all other cells are O.

We show that foM/ 2, L(S*(ag,bo)) = . Specifically,

S*(ao,bo) = [(ao, bo), (a1, bo), (az,b1), ..., (az—2,by—3), (az—1,by—2), (az—1,by—1)].

To see that this sequence is optimal, note that its castisc — 1) %26 < 2zd = 20.
Note further, that/i, BR(a;) = b;. Now working backwards, in order to reach the opti-
mal joint action(a;—1, by,—1), Agent Amust have selected actian_; in the iteration

2 This portion of the sequence still includes+ 1 elements, since we are ignoring the first
element(a;, b;), but then including the first instance of the terminal joint action.



bo

by

[

by,3

by72

by,1

100 — 0

0

100 — 26 100 — ¢

0

0

0

100 — 26 100 — ¢

0

0

aw_z| 0 “L100-8 0 0
as_2| O 0 100 — 25 100—6 0
as—1| O 0 0 0 100 —25 100

prior to the first appearance ¢f,_1,b,_1) in the sequence. When that happened, if
Agent Bhad selected anything other thig., (b, is not an option since we are con-
sidering the iteration prior to thiérst appearance df,_; in the sequence), then there
would have been a payoff of 0, leading to a sequence cost 0. Thus joint ac-
tion (a,—1, by—2) must appear in the optimal sequence. Similarly, considetig first
appearance of this joint action, fégent Bto have selected,_,, Agent Amust have
selectedn,_» on the prior iteration. Again, any joint action other than,_», b,_3)
(hereb,_» is not an option for the same reason as above) leads to a pafydfand

a sequence cost of 100. Continuing this line of reasoning, we can see that all the
cells under the diagonal must appear in the optimal sequetading from joint action
(ag, bo). Furthermore, adding any additional joint actions (in@hgcthose on the diag-
onal) only raise the cost. Therefore the sequence presehteg, of length:, is indeed
S*(ap, by). It is easy to see that no optimal sequence from any otheiscehger®
ThusVz, 3z x  dimension matrix\/ such thatL.(M) = x = min(z,y).

Case 2: z < y. If z < y we can construct a matrix/2’ that includes the: x x
dimensional version o/2 as a submatrix and contains an additiopal = columns
of all 0’s. By the same argument as abo%é(ao, by) is the same sequence as above,
which is of lengthz: L(M?2') = x = min(z,y).

Case 3: > y. In this case, we can construct a matfix2’ based on thg x y
dimensional version of/2 that addsc — y rows of all 0's. Again,S*(ag, bp) is the
same as above ald M2') = y = min(z, y).

ThereforeVz,y, 3 anz x y dimensional matrix\/ such thatL(M) = min(z,y). O

Theorems 1 and 2 establish that the value of the call to theibmUPPERBOUND
in line 21 of Algorithm 1 ismin(z, y).

Note that in our analysis of this case in whiglgent Bhasmem= 1 ande = 0,
all of the arguments hold even if there are multiple cellshia payoff matrixA/ with
valuem*. Furthermore, Algorithm 1 computes the optimal sequencieiof actions
from all starting points, not just a particular starting point, alpolynomial time in the
dimensionality of the matrix.

3.2 Longer Teammate Memory

In this section we extend our analysis from the previous@edtb consider interacting
with teammates wititmnem> 1. This case presents considerably more difficulty than the

% To be preciseYi, 5, L(S* (a:, b;)) = = — i with one exceptionZ (S* (az—1,by—1)) = 0.



previous one in two ways. First, though the algorithm candtenally extended, it is no
longer polynomial, but rather exponentialiimem Second, it is no longer straightfor-
ward to compute UPPERBOUND(M)), the maximum value of.(S*(a;,b;)). We
identify a lower bound on this maximum value, but can onlyjeoture that it is a tight
bound.

Since the algorithm and analysis is so similar to that in iBac8.1, rather than
presenting them fully formally, we discuss how they diffiarh the previous case.

To begin with, we need an added bit of notation for indicaBequences. Because
Agent Bs actions are now no longer determined by jagent As previous action, but
rather byAgent As history of previouamemactions, we keep track of these actions in
the sequence, indicating a step(as b;)[ho; h1; . . . ; hmem-1] Wherehg = q; is Agent
A’'s most recent action,; is its prior action, etc. Thegent Bs next action in the
sequence must lig = BR(ho, 1, ..., hmem-1) @nd if Agent As next action isi,, then
the next element in the sequencgds, b, )[a,; ai; h1; - . - ; Pmem-2]-

For example, returning to matrix/1 from Section 2, consider the case in which
Agent Bhasmem= 3 (and stille = 0 throughout this section). A valid sequence
starting from(ag, bo)[ao; ao; ag] is

Sy = [(ao, bo)[ao; ao; ao), (az, bo)[asz; ao; agl, (a2, bo)[az; az; acl, (az, b2)las; as; as)]

Note that becausBR(as, ag, ag) = by, Agent Aneeds to seleat, twice beforeAgent
B will shift to bs. C'(S2) = 15 4 40 + 40 = 95. As in Section 2, there is another valid
sequences in which Agent AleadsAgent Bthrough joint actiongay, by) and(az, by)
on the way td(as, b2). But now,Agent Amust select;; twice beforeB will switch to b,
and themu, three times befor8 will switch to by. ThusC(S5) = 25+2%30+3%7 =
106. Hence, unlike in Section 2, whégent Bhasmem= 3, Agent Ais best off jumping
straight toas.

The first necessary alteration to Algorithm 1 in this casehi it is no longer
sufficient to simply calculates;;,, for every joint action(a,,b;) on each loop of the
algorithm. Rather, we must now calculate such values foh gaint action-history
(@i, b5)[ho; - . . ; hmem-1. Sincehy is constrained to be the same@sthere aregmem-1
such histories for each joint action, leading to a totat®8f™, optimal sequences com-
puted on each main loop of the algorithm. To accommodateattésation, we simply
need to nest addition&dbr loops after lines 2 and 10 of Algorithm 1 that iterate over the
(exponential number of) possible histories.

The second necessary alteration to Algorithm 1 in this cadkait it is no longer
sufficient to simply arrive at a joint actiof;, b;) such thatn;, j = m*. Rather, the
agents must arrive at such an action with a histonAgént As actions such that if it
keeps playing:;, Agent Bwill keep selecting);. We define such a joint action-history
to bestable

To see why the concept of stability is necessary, considaima [M3]bo b1 bo
M 3. A valid sequence starting frofas, bo)[az; a1; ag] proceedsto | ao [0 30 50
(az,b2)]az; az; a1] if Agent Aselectsi,. However from thereAgent | a1 [4120 0
B's best response is, notb,. Thus the agents do not remain stably a2 [99 20 100
at joint action(as, b2).

To accommodate this situation, the only change to Algorithitmat is needed is that
in line 3, only stable joint-action histories such that; = m* should be initialized




to the sequence of repeated terminal joint actions. Ursstaiés should be initialized
to w (along with all instances such that; ; < m*, no matter what the history). We
can check stability by computing the best response to dties that result from re-
peating actiom; until the entire history window is full of actioa;. If any of these best
responses is ndt;, then the joint action-history is not stable.

Third, the main loop of Algorithm 1 needs to be altered to amsmwdate the inclu-
sion of histories. In particular, in line 12, care needs ttaen to computé’ correctly,
with Agent Bs action being based on the best response to the currentyhiahd the
history being the result of taking action from the current history. Furthermore the
PREPEND and REPLACEHEAD operators must manipulate thetést (and incre-
mental cost computations) in the appropriate, obvious ways

Finally, and most significantly, the value of UPPERBOUNDiIeI21 of Algorithm
1 must be altered. Unfortunately, we only can prove a lowemioof this value. We
conjecture, but have not proven, that this bound is tight @sm Section 3.1.

Theorem 3. Vz,y,3 = x y dimensional matrix\/ such that, when interacting with a
teammate witmem> 1 ande = 0, L(M) = (min(z,y) — 1) * mem + 1.

Proof. (sketch This theorem, which is the analog of Theorem 2, can be progam
a similar construction. In particular, redefinibgasé = 10/((z — 1) * mem+ 1), the
same matrix}/2 serves as our existence proof. Consider the optimal segigtaring
from (ap, by) with history full of ag’s. In that caseAgent Aneeds to select actiany
memtimes beforeAgent Bwill switch to b,. Similarly, it then needs to seleet mem
times beforeB will switch to by, and so on untiA has selected each of the actiens-
az—1 memtimes. The additional one is for the initial actiom (by) which appears only
once in the sequence. As before, any joint actions with gayefill lead to a higher
sequence cost than this entire sequence, and any addijdmahctions also increase
the cost.

Also as before, the cases of # y are covered by simply adding extra rows or
columns of O’s talM 2 as needed. O

Conjecture 1.When interacting with a teammate withem> 1 ande = 0 based on an
z x y dimensional payoff matrid/, L(M) < (min(z,y) — 1) * mem4 1.

Proving or disproving this conjecture is left as an importdinection for future
work. An additional important direction for future work igekeloping a more efficient
algorithm for finding theS*’'s whenmem> 1. The exponential runtime imemis of
practical significance. Our algorithm finds all the best seqes for &0 x 60 matrix
in less than 30 seconds of user time on a 1GHz laptop (caéculag the Unixt i me
command) whemem= 1, but it can only handle a8 x 18 matrix in that time when
mem= 2, a9 x 9 matrix whenmem= 3, 6 x 6 whenmem= 4, and4 x 4 whenmem
= 5. For larger matrices than those listed, java ran out of heapeswith the default
settings, often after running for more than 10 minutes.

3.3 Teammate Non-Deter minism

Until this point, we have assumed thatjent Bacts deterministicallyAgent Acould
predictAgent Bs next action with certainty based on its own previous axgidn this
section we relax that assumption by allowiBg ¢ to be greater than O.
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Once again, Algorithm 1 needs to be changed minimally tomoeodate this case,
so we just describe the changes. In fact, here, the only ehaegessary is that costs
of joint actions be computed as expected values in compatisthe expected value of
the optimal joint action.

The expected value of a joint acti®V(a;,b;) = (1 — €)m; ; + i(zz;l My k)
m* is then defined to be the maximum expected value of a joinbaati M/. The cost
of a sequencé€’(S) is then the sum of the differences betweeh and the expected
values of the joint actions in the sequence. After thesegdsim notation, which sim-
ply generalize our previous notation (all prior definitidredd for the case when= 0),
the only change necessary to Algorithm 1 is in line 13: theter; o must be replaced
by EV(a;, bp). The notion of stable joint action-histories remains umgjead from Sec-
tion 3.2.

Note that as: changes, both the optimal sequence of joindZ4|bo b1 ba bs
actions and the “target” joint actions (the ones that leadxto | a0 |25 0 0 0
pected value ofn*) can change. For example, considerdhe4 | a1 [88 90 99 80
matrix, M 4. If Agent Bs mem= 3, then if itse = 0, the opti- | a2 |70 98 99 80
mal sequence frorfug, by ) starting with historyja; ag; ag] ends | as |70 70 98 100
at (as, bs) and has length 1@ (S* (ag, bo)[0; 0; 0]) = 10. When
e = 0.1, ande = 0.3 the optimal lengths are 8 and 3 respectively, still endin@atbs).
Whene = 0.4, the optimal sequence is of length 3, but now endaath,). All of these
sequences have different costs.

The intuitive reason for these changes is thatiasreases, it is no longer sufficient
to reach a good cell in the matrix, but rategent Amust aim for a good row: any value
in the row is possible to be the payoff of the joint action. Hads reason, with higla,
the row corresponding ta, is preferable to that correspondingde (the sum of the
values is higher).

The analysis of the algorithmic runtime remains mostly @amged. For efficiency,
the expected values of joint actions can be cached so thaibthlg need to be com-
puted once. However does have some effects on the value of UPPERBOUND in
line 21 of the algorithm. Foe < 1, Theorems 1-3 all hold, though the construc-
tion of the example matri¥/2 becomes more complicatédHowever where = 1,
UPPERBOUNDL(M)) = 1: Agent Acan always jump immediately to the action that
leads to the row with the highest expected value, which véllditained by all joint
actions in that row. It is not clear whethehas any effect on Conjecture 1.

4 Empirical Results

All variations of the algorithm presented in Section 3 arlyfimplemented. In this
section, we present some brief empirical results from nugptihem in various settings
that shed some light on the nature and prevalence of ourgarobf interest.

In particular, we consider how frequently action sequenégarious lengths appear
in random matrices. At first blush, it may seem that when a&dng with an agent with
mem= 1, matrices for which theré&(a;, b;) such thatL (S*(a;, b;)) > 2 (such as\1
in Section 2) would be relatively rare in practice.

4 Similarly to mem ase approaches 1 (increase§yeeds to be decreased.
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To test this hypothesis, we generated randory matrices such that, 1,1 =
100 and all other values:; ; are generated uniformly randomly froji 100]. Table 1
shows the distribution of. (M) for x x = matrices whem\gent Bs mem= 1 or 3. For
matrices larger thaf x 7, themem= 3 case takes more than a day to run on a modern

laptop, so we stop at that point. Matrices such that y did not show any interestingly
different patterns.

menFl|1 2 3 4 5678910mem=3[1 2 3 4 5 6 7 8 91011

3x3 |104 852 44 3x3 (9817834434028 8 4 0 0 010
4x4 |12 825158 5 4x4 (15 76 266428134 60 21 0 0 0|0
5x5 3 662316 19 O 5x5 |1 19 115408234145 71 7 0 0|0
6 x6 0 465489 45 1 0 6x6 [0 0 22 2822722221642711 0|0
TxT7 0 349565 81 500 7x7 |0 0 5 116293282220551710|1
8§ x 8 0 236596159 8 100

9x9 0 145640193202000

10 x 10 0 72 636263290000 D

Table 1. Distribution of L (M) for 1000 randomly generated matrices of various sieds Agent
B's mem= 1. No entries are shown for values that we know to be impossible fromréhea.
right: mem= 3. No values greater than 11 were found.

From these results we see that ever8in 3 matrices withmem= 1, it is not
uncommon forAgent Ato need to reason about the cost of various sequence lengths:
In 44 of 1000 cases, there is at least one joint action frontivAigent Ais best off
not jumping immediately to action,. In 104 of the cases, all optimal sequences are
of length 1, which occurs exactly whéen is the best response to all 8fs actions:

V0 < i < z,BR(a;) = by—1 (as expected, this occurrence becomes less common as
the matrix size increases). In the other 852 caAgent Ais best off switching tai
immediately, leading to longest sequences of length 2.

Though matrices such tha M) > 2 are not uncommon, it is also noticeable that
matrices with optimal sequences of lengths close to therd¢tieal maximum do not
occur naturally as the matrix size increases. A carefulkgcted construct such dg2
in Section 3 is required to find such sequences.

5 Redated Work

Our work builds existing research in game theory and in oppbmodeling. Game
theory [12] provides a theoretical foundation for multing@teraction, and though
originally intended as a model for human encounters (orglvddfuman institutions or
governments) has become much more broadly applied oveashsedveral decades.
There is a vast research literature covering iterated phayasmal form game ma-
trices, the overall framework that we explore in this papany of these papers have
examined the specific questions of what, and how, agentseean when repeatedly
playing a matrix game; special emphasis has been given &lajsug learning algo-
rithms that guarantee convergence to an equilibrium inalf, or that converge to

playing best response against another player that is usiagba fixed set of known
strategies.
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For example, Powers and Shoham [17] considered multiaganhihg when an
agent plays against bounded-memory opponents that carsé¢ihers adapt to the ac-
tions taken by the first agent. They presented an algorithah dbhieved are-best
response against that type of opponent, and guaranteed imuminpayoff against
any opponent. A small selection of other research on muatiadearning includes
Conitzer and Sandholm’s work [4] on a learning algorithnt ¢@nverges in self-play,
Hu and Wellman’s multiagent reinforcement learning aldpon [11], and Chakraborty
and Stone’s [2] presentation of an algorithm that aims famoeglity against any learn-
ing opponent that can be modeled as a memory-bounded adversa

There are also a large number of articles in the economicgam theory litera-
ture on repeated matrix games, also often focused on isslasd to reaching equilib-
ria. Hart and Mas-Colell [10] presented an adaptive procethat leads to a correlated
equilibrium among agents playing a repeated game, whiledeyand Okada [15] con-
sidered two-player repeated games in which one agent, wittacted set of strategies,
plays against an unrestricted player (and considered {hemsetic behavior of the set
of equilibrium payoffs).

Much of the research above focused specifically on autonzaedt repeated play;
similar questions have been taken up by researchers whabags@&lered repeated play
among humans. For example, a seminal paper by Nyarko andt&icli®] investigated
the beliefs that humans have as they repeatedly play a ¢ttt two-person game;
the authors elicited the players’ beliefs during play, aactdred those beliefs into the
model of how players chose their moves.

All of the research mentioned above differs in fundamentaysvfrom the work
presented in this paper. First, our model assumes that #mtsagre cooperative; we
are not considering general payoff matrices that model npporewards, nor zero sum
games. Second, we are not examining the learning behaviarrafgent (or agents), but
rather are assuming that one agent is playing some variaatast-response strategy,
and its partner is fashioning its play accordingly, for threutual benefit.

More closely related to our current work is research by Clang Boutilier [3]
that, first of all, considers cooperative agents with ideitpayoffs, and then considers
how (using reinforcement learning) these agents can cgaverthe maximal payoff.
That research considers tgnamicsof the convergence (e.g., speed of convergence),
and the sliding average rewards that agents accrue as thyexheir payoffs. What
distinguishes our work is its emphasis on the path througtixnaayoffs imposed by
a reasoninghgent A faced with a best-responsgent Bas its partner. The process of
movement through the matrix is deliberate and optimal, tité fsearched-for,” based
on knowledge of partner behavior.

Indeed, the algorithms in this paper make an explicit assiomghat the teammate
observing the agent is playing a best-response policy twliserved actions of the
agent. In doing so, the agent is actually planning its astintendingfor them to be
observed and interpreteltitended plan recognitiofin contrast tkeyhole recognition
is the term used when the observed agent knows that it is lobiserved, and is acting
under the constraints imposed by this knowledge [1].

Much of the work on planning for intended recognition sejtirhas focused on
natural language dialogue systems. Here, one agent ptanidtances or speech acts
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intending for them to be interpreted and understood in §ipegays. Seminal work in
this area was carried out by Sidner [18] and later Lochbal8h {¢ho have focused on
collaborative dialogue settings. However, unlike our wdheir focus is on the inter-
pretation (the recognition), rather than on the planninghsferved actions.

The SharedPlans framework for collaboration is concerniglal ehoosing actions
in collaborative settings [7]. However, while SharedPlaravides a logical framework
which provides guidelines informing agent design, it doesprovide detailed algo-
rithms for specific cases, such as the cases covered in {hs.pa

Because our algorithm is—to a limited extent—reasoning atiuteammate rea-
soning about itself, it is in fact engaged in a special caseairsive modeling20].
Indeed, one question that remains open is what happens Wwaeéeammate is also try-
ing to select actions that would cause the agent to shiftiasli In this case, our agent
would have to address 3-level recursive modeling.

6 Conclusion and Future Work

In this paper, we have introduced a novel game theoreticdtation of an important
problem in multiagent teamwork. Specifically, we focus oa tlase in which an in-
telligent agent interacts repeatedly in a fully coopemtetting with a teammate that
responds by selecting its best response to a fixed historgtiofs, possibly with some
randomness. Based on its teammate’s behavior, the imetlEgent can lead it to take
a series of joint actions that is optimal for their joint leteym payoff.

The main contributions of this paper are a precise formaedif the problem (Sec-
tion 2); an algorithm for finding optimal sequences of adi@amd a set of theoretical
results regarding the maximal lengths of optimal actioruseges (Section 3); and the
results of some empirical results based on our fully-imm@etad algorithm (Section 4).

A few directions for future work have been mentioned thraughthe paper. In
particular, our proposed algorithm is exponential in tlememate’s memory size, mak-
ing solutions to interaction scenarios with more than a fessfble actions per agent
intractable. Analysis enabling a streamlining of this aidon would be very useful.
Similarly, Conjecture 1 regarding the maximal possibleueadf L (1) is left open, as
is the effect of on this bound.

One limiting assumption of the work presented in this papeéhatAgent Aknows
Agent Bs action policy with certainty. Looking forward, this wosdets the stage for
developing strategies for interacting with teammatestiase unknown values afiem
and/ore. In this more complex setting, it will be necessary to reasloout the costs of
action sequences as a function of teammate strategy in rdievelop strategies that
are robust to various possible teammate responses. Udliynate view this continuing
work as a step towards the large, multi-faceted challengieéloping agents that are
capable of interacting with a wide variety of possible teaaten inad hoc teansettings.
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