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Abstract. We study information elicitation mechanisms in which a principal
agent attempts to elicit the private information of other agents using a carefully
selected payment scheme based on proper scoring rules. Scoring rules, like many
other mechanisms set in a probabilistic environment, assume that all participating
agents share some common belief about the underlying probability of events. In
real-life situations however, the underlying distributions are not known precisely,
and small differences in beliefs of agents about these distributions may alter their
behavior under the prescribed mechanism.
We propose designing elicitation mechanisms in a manner that will be robustto
small changes in belief. We show how to algorithmically design such mechanisms
in polynomial time using tools of stochastic programming and convex program-
ming, and discuss implementation issues for multiagent scenarios.

1 Introduction

We examine a scenario in which a principal agent is interested in purchasing informa-
tion about some event from some other agent (or group of agents) that has private access
to that information. The sellers are required to invest someeffort in order to learn the
information, and may be tempted to guess or report falsely ifthey expect to benefit
from doing so. The buyer of information must therefore design its payments in a way
that will induce truthfulness on the part of the sellers. This is ordinarily done using
Proper Scoring Rules[2]. With a well-designed payment scheme, the expected utility
of the sellers is maximized only when they invest the effort to learn the information and
reveal it truthfully.

To construct such a mechanism, the designer must take into account thebeliefsof
the sellers about the probabilities of events, since these affect the cost-benefit analysis
the sellers make. Unfortunately, these probabilities might not be common knowledge,
and may in fact be secret information the agents do not wish toreveal.

We propose designing information elicitation mechanisms to be robust not only
against manipulation by the participants, but also againstsmall variations in the beliefs
they may hold. The classic approach to dealing with variations in beliefs (or “type”)
of agents within mechanism design is the use of direct revelation mechanisms. These
are mechanisms in which the participants reveal everythingto the mechanism, which
in turn acts optimally on their behalf — eliminating the needto lie. This approach
is not appropriate in scenarios involving information elicitation where information is
considered a commodity that is to be sold and not revealed freely.



2 The Scenario

We model the information of agents using discrete random variables. Each selleri is as-
sumed to own a private variableXi that it can access at a cost ofci. These variables are
not necessarily independent. Once the transaction is complete, the buyer is given access
to a random variable denotedΩ. The variableΩ is assumed to be somewhat coupled
with the variablesXi, and provides a limited means of verification about their true val-
ues. We denote the governing probability distributionPr(Ω = ω,X1 = x1, . . . ,Xn =
xn) by pω,x1...xn

. Payments to the agents are made after the value ofΩ is revealed and
may thus depend on it, as well as the reports of all the agents (it is impossible to create
the incentives for truthfulness without some measure of thecorrectness of the informa-
tion provided). We denote the payment to agenti by ui

ω,x1,...,xn
. When dealing with

only one agent, we shall drop the scripti from all notations.
Our requirements from a proper payment scheme in case of a single agent are:

1. Truth Telling. Once an agent knows its variable isx, it has an incentive to reveal
it, rather than any liex′: ∀x, x′ s.t. x 6= x′

∑

ω

pω,x · (uω,x − uω,x′) > 0.

Herepω,x is the probability of what actually occurs, while the payment uω,x′ is
based only on whatthe agentreported.

2. Individual Rationality. An agent must have a positive expected utility from par-
ticipating in the game:

∑

ω,x

pω,x · uω,x > c.

3. Investment. The value of informationfor the agent must be greater than its cost.
Any guess the agent makes must be less profitable (in expectation) than an informed
action: ∀x′

∑

ω,x

pω,x · (uω,x − uω,x′) > c.

Mechanisms for multiple agents involve similar requirements. Their exact nature de-
pends on the level of cooperation possible among the sellers(transfer of utility, shared
information, etc.). They can still be described in the form of linear constraints, but the
number of constraints can sometimes be exponentially largein the number of agents.

2.1 Building Non-Robust Mechanisms

The three requirements above can all be characterized usinglinear constraints and can
thus be solved efficiently using linear programming methods. Furthermore, a solution
can be found that minimizes some target function such as the expected cost of the
mechanism to the buyer.

A great deal of insight into the design problem can be obtained when considering
the vectors defined by~px , (pω1,x . . . pωk,x) and~ux , (uω1,x . . . uωk,x). Using this
notation, the truthfulness constraints can be viewed as therequirement that the proba-
bility vectors~px, ~px′ will be linearly separated by the vector of payments~ux − ~ux′ .

The following proposition shows necessary and sufficient conditions for the exis-
tence of a proper payment scheme.

Proposition 1. In the single agent case, a proper payment scheme exists iff the proba-
bility vectors~px are pairwise independent. Furthermore, if any proper payment scheme
exists then there is one with a mean cost as close toc as desired. Such a scheme is
optimal, due to the individual rationality constraint.



3 Designing Robust Mechanisms

We now assume the probabilities forΩ,Xi are not common knowledge. From now on,
p̂ω,x shall denote the probabilities the principal agent believes in, andpω,x will denote
the beliefs of an agent. We shall assume that different beliefs are “close” to one another
according to some distance metric:p̂ω,x = pω,x + εω,x and||~ε|| < ε.
Definition 1. We shall say that a givenpayment schemeuω,x is ε-robustwith regard to
an elicitation problem with distribution̂pω,x if it is a proper solution to every elicitation
problem with distribution̂pω,x + εω,x such that‖~ε‖∞ < ε, and is infeasible for at least
one problem instance of any larger norm.
Determining the Robustness of a Given SchemeGiven a payment schemeuω,x, and
an elicitation problem with probabilitiespω,x, we can determine the robustness level
of uω,x by finding out how much the probabilities must be perturbed toviolate one of
the constraints required for a truthful mechanism. We can dothis by solving a linear
program for every constraint. For example, Program I below finds a perturbation that
violates the truth-telling constraint for a secretx and a liex′.

Program I Program II
finding the robustness of a constraint finding anε-robust mechanism

min ε

s.t.
P

ω

(p̂ω,x + εω,x)(uω,x − uω,x′) ≤ 0

∀x, ω p̂ω,x + εω,x ≥ 0
P

ω,x

εω,x = 0

∀x, ω −ε ≤ εω,x ≤ ε

min
P

ω,x

p̂ω,x · uω,x

s.t.
∀x 6= x

′
P

ω

pω,x(uω,x − uω,x′) > 0
P

ω,x

pω,x · uω,x > c

∀x
′

P

ω,x

pω,x(uω,x − uω,x′) > c

where:
∀x, ω pω,x = p̂ω,x + εω,x

pω,x ≥ 0 ;
P

ω,x

pω,x = 1

−ε ≤ εω,x ≤ ε

A solution to this program will be a small perturbationεω,x with a small normε

that violates the constraint. Once we solve a linear programfor every constraint, The
minimal value ofε that was found is the robustness level of the mechanism.
Efficiently Finding Someε-Robust Mechanism From a design point of view, we may
be interested in finding a solution that is at leastε-robust for someε and has a minimal
cost. We can do this using tools forStochastic Programming. A stochastic program is
simply a mathematical program that contains uncertainty about the exact constraints
that need to be satisfied, or the function that is optimized. The exact problem to solve is
presented in Program II. It can be solved efficiently using methods presented in [1].

Definition 2. We define therobustness levelε∗ of the problem̂p as the supremum of all
mechanism robustness levelsε for which there exists a proper mechanism:

ε∗ , sup
~u

{ε|∃~u that is anε-robust mechanism for̂p} (1)



To find the robustness level of a problem, one can simply perform a binary search.
The robustness level is certainly somewhere between 0 and 1 and can be further bounded
by examining the truthfulness constraints:

Proposition 2. The robustness levelε∗ of a problemp̂ can be bounded by the smallest
distance between a vectorp̂x and the optimal hyper-plane that separates it fromp̂x′ :
ε∗ ≤ min

x,x′

||p̂x − (p̂tr
x · ~ϕx,x′) · ~ϕx,x′ ||∞ ; ~ϕx,x′ = p̂x+p̂

x′

||p̂x+p̂
x′ ||2

In the case where|Ω| = 2, this bound is tight.

3.1 Mechanisms for Multiple Agents

When designing mechanisms for multiple agents, the designermust often resort to
mechanisms that work only in equilibrium — the good behaviorof an agent is guar-
anteed only if it believes all others will also be truthful. The designer must then account
for the beliefs of agents regarding probabilities and also for the beliefs about beliefs
of agents. For an agent to believe that some strategy is in equilibrium, it must also be
convinced that its counterparts believe that their strategies are in equilibrium, or are
otherwise optimal. This will only occur if the agent believes that they believe that it be-
lieves that its strategy is in equilibrium — and so on to infinity. Any uncertainty about
the beliefs of other agents grows with every step up the belief hierarchy. If agent A
knows that all agents have some radiusε of uncertainty in beliefs, and its view of the
world consists of some probability distributionp it assigns to events, then agent B might
believe the distribution isp′ and further believe that agent A believes the distribution is
somep′′ which is at a distance of up to2ε from p. With an infinite belief hierarchy, it is
therefore possible to reach any probability.

A possible solution to this problem is to use a mixture of solution concepts. The
mechanism can often be designed to make each agent’s paymentdepend only on a
subset of agents that precedes it. In this case it only needs to take their beliefs into
consideration when deciding on a strategy. The necessary belief hierarchy is then finite,
which limits the possible range of beliefs about beliefs. The most extreme case of this is
to design the mechanism for dominant strategies only. Naturally, a solution constructed
in such a way may be less efficient or may not exist at all. Another possibility is to
consider only bounded agents that can only consider a finite number of levels in the
belief hierarchy.
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