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Abstract. Vickrey-Clarke-Groves (VCG) mechanisms are a well-known frame-
work for finding a solution to a distributed optimization problem in systems of
self-interested agents. VCG mechanisms have received wide attentio: A th
community because they are efficient and strategy-proof; a spexsal af the
Groves family of mechanisms, VCG mechanisms areothlg direct-revelation
mechanisms that are allocatively efficient and strategy-proof. tinfately, VCG
mechanisms are only weakly budget-balanced.

We consider self-interested agents in a network flow domain, and showtha
this domain, iis possible to design a mechanism that is both allocatively-efficient
and almost completely budget-balanced. This is done by choosing aamsch
that is notstrategy-proofbut ratherstrategy-resistantinstead of using the VCG
mechanism, we propose a mechanism in which finding the most benefigial
nipulation is an NP-complete problem, and the payments from the agents to the
mechanism may be minimized as much as desired. This way, the mecHanism
virtually strongly budget-balanced: for amy> 0, we find a mechanism that is
e-budget-balanced.

1 Introduction

Mechanisms face the problem of finding a system-wide saoiutipan optimization
problem based on private information given by self-intesdsagents. As mechanism
designers, we want to build a mechanism that would encouaggats to report their
information truthfully, so that we can implement a desieatbcial choice function and
maximize social welfare. A well-known solution to this pteim in the case of quasi-
linear preferences is that of Groves mechanisms. A speass of the Groves family
of mechanisms are VCG mechanisms, which are budget-balaalbecatively-efficient
and strategy-proof.

Thus, in many cases, by using VCG we get a mechanism thattepevith no out-
side subsidy (weakly budget-balanced) and maximizes thetagutility. We maximize
the agents’ utility by choosing the outcome that maximizestotal utility according
to the agents’ reported types. Since VCG mechanisms ategjraroof, the agents re-
port their true preferences, and the mechanism maximizsastthe utility. Also, VCG
mechanisms are individually rational. Although in VCG maucisms the agents pay the



mechanism, they never pay more than they value the choseoret the agents always
have positive utility, and voluntarily participate.

A significant disadvantage of VCG mechanisms is that thepaleweaklybudget-
balanced. We would in principle preferstrongly budget-balanced mechanism, where
the total sum of payments to the mechanism is z&rgz;(#) = 0. Impossibility re-
sults ([1] and [2]) show that in a quasi-linear environmétrig impossible to achieve a
mechanism that is strategy-proof, allocatively-efficjertd strongly budget-balanced.
Given this fact, we are faced with a grim future. Giving upeadtion-efficiency means
we would no longer maximize the sum of agents’ utilities, ethwas our goal in the
first place. Giving up strategy-proofness means agents e/ dn incentive to try and
manipulate the mechanism by not reporting their true pesfezs, which may lead us
to a sub-optimal result. However, without sacrificing onéhaftwo, we will not be able
to achieve strong budget-balance.

We propose addressing this problem by relaxing the strapegyf requirement,
replacing it withstrategy-resistanceA mechanism is strategy-proof if the dominant
strategy of each agent is to reveal its true type to the meéstmarStrategy-resistance
only requires that even if an agent is given the reportedstygdethe other agents, it
still faces a computationally intractable problem to safiewishes to find a beneficial
manipulation (i.e., report a false type to the mechanisnrdeoto gain higher utility).
We here consider a scenario in which it is an NP-hard probanah agent to find a
useful manipulation. NP-hardness is a worst case notioomfpatational difficulty, in
the sense that it only indicates that a certain problensbashard instances. A stronger
notion of strategy-resistance could also require the maaijpn problem to have no
approximation methods, or require it to be in some harderpetational complexity
class. Also, a stronger sense of strategy resistance ceglite it to be hard to findny
beneficial manipulation, not just tlgtimalmanipulation. This paper constitutes a first
step in establishing the notion of strategy-resistance.

In this paper we consider the network flows domain. In this diointhe edges of a
network flow belong to several self-interested agents. Bgent reports its edges to the
mechanism. The mechanism is then required to choose a flowtfre source vertex
to the target vertex. Agents gain utility from flow units oreithedges. A reasonable
choice for the mechanism would be selecting the flow that mepes the total flow on
all of the agents’ edges. In the case of a layer graph, thigaaity be done by finding
the maximal flow, and we get a simple and tractable algoritbnmirhplementing the
mechanism, assuming each of the agémuithfully reports its subset of edges. However,
in some cases it is beneficial for these agents to hide somigeofedges. A VCG
mechanism to overcome this problem would be strategy-pbafonly weakly budget-
balanced.

We show that in the domain of network flowsigtpossible to achieve a mechanism
that is strategy-resistant (and thus agents have an imeetatibe truthfull), efficient
when agents are truthfull, and as budget-balanced as we ivenbe (i.e., we can
minimize the sum of agent paymenis,, t;(¢'), as much as we want). A mechanism
is e-budget-balanced i0 < ) .t;(§') < e. We analyze a general multiagent flow
problem, and show that for eveey> 0 we can create a strategy-resistant, allocatively
efficient, ande-budget-balanced mechanism. This result indicates tHatast for some



domains, it is possible to use the fact that agents have catiquual limitations and are
not unboundedly rational, so as to construct mechanisnisheiteficial properties.

2 Related Work

The main focus of research on bounded-rational mechanisigrdés on the problems
that computational complexity poses for mechanism desigiiéis has led to attempts
to use approximation algorithms for mechanisms whose atanithplementation is
intractable. It has also tended to highlight the advantafissategy-proof mechanisms.
In such mechanisms, an agent does not need to reason abduttiviaagents might
do, thus eliminating the need for speculation, countecsiagion, and so on.

Relatively little research has been dedicateddmgthe bounded-rationality of re-
alistic agents to build better mechanisms, with more usgfoperties. This approach
was taken in [3] (building on the work in [4]), which used camgtional complexity
to show that common voting protocols are hard to manipukatgmilar approach was
taken in [5], where coalition games were analyzed. It wasvshitere that manipu-
lating a marginal-contribution based value distributicheme, similar to the standard
solution of the Shapley value [6], is an NP-complete probl€his indicates that such
value distributions can be used even though they are maatif@ylsince agents would
find it intractable to decidBowto manipulate the mechanism that decides on the value
distribution.

[7] considered coalitions among computationally boundghés. It suggested some
bounded rational concepts for coalition games, and ineitttat computational com-
plexity considerations may lead us to extend the set of aab&pstable solutions. This
work argued that some coalitions are stable even if thesgeaisubset of the coalition
that can do better by itself, since itirgractablefor the agents in the large coalition to
find such a subset.

[8] analyzed VCG auctions, and showed that manipulating V&&@Gtions using
false name bids is NP-hard; it also analyzed approximate "@@&ons. [9] showed that
using an approximation method to find the optimal allocatibcombinatorial auctions
can lead to the loss of strategy-proofness. However, irt {8hs shown that it is possible
to take any tractable approximation algorithm and producard-to-manipulate mech-
anism. In this case, the bounded rational nature chgentshas been used to show that
an approximate mechanism is hard to manipulate, thus oveéngpthe computational
complexity problems of thenechanism

3 Preliminaries

In this article, we propose an alternative to VCG mechanisnggsiasi-linear domains.

In such domains, we have a detf agents. The mechanism needs to choose one of a set
of possible alternative&’. Each agent reports a type € ©; to the mechanism. This
type represents the agent’s preferences over the diffalemhatives ink. Each agent

has a different valuation of the mechanism’s chosen altemna € K, v;(k,6;). The
mechanism chooses the outcome according to a choicé rug x...x©; — K. Each
agent is also required to make a paymerto the mechanism. The mechanism chooses



the payment of each agent according to a paymentttule®©; x ... x Oy — R. If
the agents have quasi-linear utility functions, then thengégihave utilityw; (k, p;, ;) =
v;(k, 6;) — p;. An agent might not report its true type, but can choose a typeport
to the mechanism. Thus, agent4;) reports a typ&, = s;(6;), according to its own
strategy.

3.1 Groves and VCG Mechanisms

In Groves mechanisms, the mechanism’s choice rule givemgperted type®’ =
(01, ..., 07) maximizes the sum of the agents’ utilities, according tértheported types:

x(nl\ _ ) !
k*(0") = arg gleam%zi:vl(k, ;)
The payment rule in Groves mechanisms is

t(0') = ha(0,) = > vi(k*.0))

J#i

whereh; : ©_; — R may be any function that only depends on the reported types
of agents other thah Groves mechanisms are allocatively-efficient, and mazértiie
total utility of the agents. They are also strategy-proof] éor each agent the dom-
inant strategy is to reveal its true type (or preferenceghéomechanism, no matter
what the other agents report. Groves mechanisms are knoba ttoe only direct rev-
elation mechanisms that are allocatively-efficient andtsgy-proof. Another advan-
tage of Groves mechanisms is that in many cases they are yMeattfet-balanced:
Zi ti(6) = 0.

A special case of Groves mechanisms is that of the VCG mestmamihen

hi(0";) = Z v (kZ;(625).05)

J#i

Under quite general settings, agents would voluntarilyigipate in VCG mechanisms,
and we say that under these conditions the mechanism iddodivrational. The VCG
mechanism also achieves weak budget-balance in quiteajesstings.

3.2 Main Contribution of the Paper

We approach the problem of designing a mechanism for bouratézhal agents by
building a mechanism for a distributed flow problem. We wéhdaonstrate that for this
domain, we can find a mechanism that is allocatively-efficiebudget-balanced, and
strategy-resistant. This means that if we assume the agemtisounded-rational and
would not try to manipulate the mechanism if such manipatais an NP-complete
problem, they would all truthfully report their preferesc®©nce the mechanism gets
their true preferences, it chooses the outcome that maggnatal utility of the agents.
To achieve this truthfulness, the mechanism requires sigimpnts; however, the total
sum of these payments can be minimized as much as requiretthdnwords, for every



e > 0 we can build such a strategy-resistant, allocatively-effic mechanism, that
would also be-budget-balanced.

We restrict ourselves to the case where maximizing the ¢gdjgw also maxi-
mizes the agents’ total utility, since this allows us to chma@ tractable mechanism.
However, although the mechanism itself performs a polyabndlculation, finding the
optimal manipulation for an agent remains NP-complete. paygments we demand
from the agents to the mechanism makes finding this manipalatrd, while leaving
the mechanism’s calculation simple and tractable.

The mechanism we suggest for the self-interested layarguhgetwork flow prob-
lem indicates that for some problems we can deviaetable allocatively-efficient,
strategy-resistant, anebudget-balanced solutions. It remains an open problerhdo ¢
acterize the domains in which such a solution is achievalifm, as explained above,
this paper considers a domain in which finding a beneficialipdation is NP-hard
to be a strategy-resistant domain. It also remains an opaigm to find domains in
which we can achieve a stronger notion of strategy-resistan

4 Self-Interested Network Flow

We now present the self-interested layered-graph netwovk firoblem. Consider a
flow network on a layered graph. We have a graph=< V, E >, with source ver-
tex s and target vertex. The vertices of the graph are partitioned inte- 1 layers,
Lo = {s}, L1, ..., L, = {t}. The edges only run between consecutive layers. We have
a capacity functiorr : £ — R which is the maximal flow allowed on the edges. We
also have a sett of agents. Each agent controls a subiset- E of the graph’s edges.
No two agents control the same edgg:; £; N E; = ¢.

The mechanism chooses a valid flow fromo ¢. A valid flow is a functionf :
E — R such that the following hold¥, .)e e f(u,v) < c(u,v), Y vepf(u,v) =
—f(v,u), andVyev (543 D_yey f(u,v) = 0. We denote the positive flow as follows:
if f(u,v) > 0thenf*(u,v) = f(u,v), otherwisef™ (u,v) = 0. We denote the size of
the flow|f| = > .y f(s,v). The flow the mechanism chooses may only go through
edges that belong to some agent. The mechanism knows theityapanstraints of
the edges, but must treat edges not reported by an agent es wtgse capacity is 0.
Each agent values the flow chosen by the mechanism accoaithg total flow going
through its edges. Lef be the valid flow chosen by the mechanism, dndthe set
of edges inf through which there is a positive flowf; = {e € E | f(e) > 0}.
We denote the set ol;'s edges used in the flow by: E¢;, = E¢ N E;. The agent’s

valuation of the flow is
vilf)= > fle)
ecEy ;

A direct revelation implementation for the self-interestgetwork flow problem
would require each agent to state its valuation of all pde$itws, which is not tractable.
An alternative tractable implementation is to simply mdietype of an agent the set of
its declared edgeB’ € E;. Given this information, the mechanism could compute the
agents’ valuations of any possible flow. We will assume agjeah only declare edges
they actually own.



When the mechanism is given the agents’ true types,E, F-, ..., Er, we want it
to choose the flow that maximizes the total utility of the agefhe mechanism would
be allocatively-efficient if it chooses

4.1 Layered Graphs and Mechanisms for Network Flow

Consider a self-interested network flow problem iayeredgraph. If each agent truth-
fully declares its subset of edges, the mechanism can easitputef*(0) by running
a maximal flow algorithm, such as the Edmonds-Karp algorithm

Proof. Suppose the mechanism chooses a ffowhe total flow exitings ends up in
vertices inL;. All the flow from L, ends up in vertices i, and so on. Since flow
may only go through edges owned by some agent, the totaldhitained by the flow

fis
D= Y ffuwo)te+ > ) = |fl++Hf = (n-1)|f]

eeE u€ELq,vELy u€ELy_1,vEL,

A naive mechanism for the self-interested flow problem, withpayments to the
mechanism, is not strategy-proof. An agent may declare ardybset of the edges it
controls, to change the flow that the mechanism chooses tovdltfad the agent values
more. Figure 1 shows two agents on a certain network fldywdnd A5). A,’s edges
are marked with dashed lines, add’s edges are marked with full linegl, truthfully
declares all its edges. Assuming the mechanism favigr&nd chooses the specific
maximal that maximizesl,'s utility among all maximal flowsA; can do better by not
declaring its topmost edde, v4), gaining a utility of 2 instead of 1.

5 A Mechanism for the Self-Interested Network Flow Problem

We assume quasi-linear utility. Each agent pays the mesimaaipaymenp;, and its
utility is u;(f) = v;(f) — p;. We now show that by using a straightforward payment
rule, we make finding a beneficial manipulation NP-hard. Téygnpent rule we use is
simple: each agent pays the mechanism a constarfbokeach edge it declares it owns.
Let B/ C E; be the subset of edges an agent declares it owns. &) = c|E!|. To
make sure the mechanism is individual rational, the paymgeshould give the agent

a utility of 0 when the agent’s valuation of the given flow isdegharc|E}|. Thus, the
payment rule is:

_JelE i e(f) > o Eif;
" lwi(f*) otherwise;
Assume thatd; knows E’ for all j # i. It can easily calculate the utility it would

get by truthfully declaring all its edges. How hard is it foto find a subset of edges
it could declare to the mechanism so as to gain a highery®ilirst, note that the



Fig. 1. Manipulations in self-interested flow problems

question itself is under-constrained. Even givénfor all j, includingi, there may be
several maximal flows; the mechanism is free to choose aryeofit However, we will
show that even if4; can decidavhich maximal flow the mechanism chooses, it would
still remain an NP-hard problem for that agent to find a bedtdrset of edges.

We now define the problem @ifidingthe optimal manipulation in the self-interested
network flow domain.

FLOW-EDGE-SUBSET: We are given a layered graph flow netwaiky the ca-
pacity functionc : £ — R, E_; the declared edges of the other agents, Badhe
set of our edges. We are also given the constasftthe payment, and we know that
if we declare that we havie edges, our payment to the mechanism woulghpe: ck.
We assume the mechanism prefers a maximal flow that maximizestility: if we
report a subset of edgds, C E; the mechanism would choose the maximal fliv
to be the flow that maximizegeeEﬂ . f(e) from among all the possible maximal
flows. We are also given a constantthe target utility for4,. We are asked if there is
a subset of4;'s edgesE; C E;, such that the maximal flow chosen by the mechanism,
f*(El, B, E;, Ei+17 ey EI) giveSAi a Ut|||ty of at leastk:

wi(f*p) =vi(f)—pi= Y, fle)—cE]|>k

e€E s« ;

5.1 NP-Completeness of FLOW-EDGE-SUBSET

First, we note that FLOW-EDGE-SUBSET is in NP, because gaemnbset of edges
E! C E; we can easily compute the maximal flow. We show that FLOW-EDGE
SUBSET is NP-complete by reducing a general VERTEX-COVEs@mM to a FLOW-
EDGE-SUBSET problem. The reduction shows that FLOW-EDGIBSET is NP-



complete even if the inputs are restricted to problems wttene are only two agents,
and the graph has only 5 layers.

VERTEX-COVER: We are given a graghi =< V, £ > and a constant and are
asked if there is a subset afverticesV’ C V,|V’| = n that covers all the edges
Y(uv)ek €itheru € V' orv e V.

The reduction is done as follows. From the VERTEX-COVER inpee build inputs
for the FLOW-EDGE-SUBSET problem. Given the original VERTHEOVER graph
G, we build a layer grapli’. All the inputs to FLOW-EDGE-SUBSET are built with
this layer graphG’, and in all of them there are two agents, and we are asked #imut
utility of A;. In all of these inputs we have the same sefipk edgesF, the same list
of declared edges of the other agent, and the same paymestangn. This payment
constant is chosen such that the payment frbnto the mechanism is always less than
1, even ifA; declares all its edges.

The only difference between the inputs is the target utitirhese inputs are con-
structed such tha#l; has|V| edges, wher¢V'| is the number of vertices ify. The
inputs are constructed so that the maximal utility can achieve is obtained by declar-
ing some set of edgeg);, and in this cased;’s utility is w1 (E7) = v1(E7)—p1(E}) =
|E| — ¢|E%|, where|E| is the number of edges in the VERTEX-COVER graghand
|E | is the number of vertices in threinimal vertex-coveof G. We abuse notation a bit
here, and denote, (E}) andv, (E}) as the utility and valuatiodl; has when declaring
the F{ subset of edges, since the declared edges of all the othetsage known. Thus
the flow chosen by the mechanism only dependsl@s chosen subset of edg€s;.

The Process of the ReductionSince the payment from; to the mechanism is always
a multiple ofc, we can easily check how many vertices are used in the miniergx-
cover of G. We constructz’ from G, and use FLOW-EDGE-SUBSET to check if we
can achieve a utility of at leas¥| — |V|c, then check the possibility of achieving
|E| — (V| — 1)¢, then|E| — (JV| — 2)¢, and so on. The answer would initially be
‘yes’, since due to the constructiod; can achieve a utility ofE/| — |V'|c by declaring
all its edges.A; can decide to declare any number of edges between Qi&nd he
questions are asked regarding higher and higher requeslitids) so eventually, for
somezx € N,0 < z < |V|, the answer fofE| — xc would be ‘no’. We would then know
the best utility thatd, can achieve i$F| — (z + 1)¢, and thus the minimal vertex-cover
of G is of sizex + 1. This process involves running FLOW-EDGE-SUBSRT times,
so if FLOW-EDGE-SUBSET can be done in polynomial time, thieis fprocess can
also be performed in polynomial time.

Constructing the FLOW-EDGE-SUBSET Inputs We now describe how the inputs
for FLOW-EDGE-SUBSET are constructed from the VERTEX-CQR/igput. We build
a 5-layer network flow grapl;’. The L layer contains the single source vertgxand
the L, layer contains the single target vertex .ayer L, contains a vertex,, for each
edgee; € FE in the original VERTEX-COVER graph. Layer, contains a vertex;
for each vertex; € V in the original VERTEX-COVER graph. Laydts contains a
single vertex; , for each vertex; € V in the original VERTEX-COVER graph.



The edges between the layers are constructed as followssdlree vertex is
connected to all the vertices by, and then we mark the edde, v,) ase.,. Every
vertexv,, in L, is connected to exactly two verticesin. If edgee; € £ in G connects
verticesy; andv; in it, thenv,, is connected te,, , andv,, ; in the constructed graph
G'. Every vertex inLs is connected to exactly one vertexin. Vertexv,, , in Lo is
connected te,, , in Ls. All the vertices inL3 are connected to the sink vertein L.
All the edges betweeh, and L, and all the edges betwedn and L, have a capacity
of 1. All the other edges have capacity|df]|.

As explained above, all inputs for FLOW-EDGE-SUBSET areegiwith regard
to A;. The set ofA;’s edgesE; is (vy, b, Vy,,q), fOr all possible:. All of the other
edges belong tal,, and in the input given to FLOW-EDGE-SUBSEA; declares all
its edges. The payment constanis chosen such that < m We demonstrate
building the layer graph in Figure 2. The graph on the left igfuFe 2 is the input for
the VERTEX-COVER, while the graph on the right is the gereatafLOW-EDGE-
SUBSET layer graph.

Fig. 2. Reducing VERTEX-COVER to FLOW-EDGE-SUBSET

The intuition behind this construction is simpl,’s edges in the constructed graph
represent vertices in the original gragh A; must choose a subset of edges to report to
the mechanism. LeE; C E; be the subset of edges th&f chooses to declare. Each
such choice can also be seen as a choice of a subset of véntiGesThese vertices
cover certain edges in the original graph. We later refenése edges asCg ;. The
ve, Vertices inL; represent the edges i



The construction makes sure that the mechanism can onlyfleanfiom s to v,, if
e; is an edge covered b (e; € ECg g). In fact, a flow going through one of;’s
edges(v,, b, vy,,a) Can only originate from a., vertex that represents an edgethat
coversu;.

Thus A;’s valuation is limited by the number of edges covered by higsen set
of vertices, or in other words by?C¢ g/ |. Therefor,A; would choosé?; to be edges
representing a set of vertices which covers all the edgés ihwould choosel; such
thatE = ECq ;.

However, A; also sees that payments it must give the mechanism for deglar
his edges. Since he pays a constaper each edge he declares, would want to
minimize the number of edges he declares. This conflicts itlvish to choose”’; so
thatF = ECq g/, since fewer vertices cover fewer edges.

By choosing a low enough payment constgnve make sure thad;’s top priority
is to cover all the edges i@. It is only his second priority to minimize the number if
edges he declares. Thu$, actually wishes to choosE; so that the set of vertices;
represent is the minimal vertex cover@f

The following sections formally prove the intuitive clairabove.

Properties of the Constructed Inputs

Lemma 1 If G had|E| edges, then in the generated network flow grapts valuation
cannot exceetF|. If A; can get a valuation ofE|, its utility is in the rangg E| — 1 <
ui (f) < |E|.

Proof. The maximal flow cannot exceefl|, because there are onjlif| edges between
Ly and L, each with a capacity of 1. All ofi;'s edges are betweeh, and L3, S0
the maximal flow through them also cannot excéEfl Thus, A;’s valuation of any
flow f, v1(f), cannot exceet|. A;’s utility when a flow f is chosen is: (f, p1) =
vi(f) = p1 = vi(f) — ¢|Bj|. Due to the choice of, p1 = |Bj| - iz < 1,50
0<p; <1

Let £} C E be the subset of edges thét chooses to declare. We dendt€'; p; =
{e; € E | e; = (v, v,) and at least one of the following holds:
(Vug by Vuy.a) € B O (Vy, p,00,.0) € E7}. Similarly, we denoteECeqr g7 = {e,
e; € ECg}. Intuitively, we identify the edge., with the edge:; in the original graph.
We identify the edgév,, », v, o) € E1 With vertexv, in the original graptG, and a
subset of edgeB; C FE; with a subset of verticeB’Ei C Vin G. Such a set of vertices
in G covers a subset of the edges inAC; is the set of edges covered by these vertices
Ver, andEC is the set of edges i6” corresponding to the covered edges.

Lemma 2 LetE} C E; be an optimal choice of edges fdy to declare. TheCg gx =
E.

Proof. Let £ be an optimal choice ofl;'s edges,f be the flow chosen by the mech-
anism in this case, an#Cg g: be the subset of/, as explained above. Assume by
negation that therégs somee = (v,y) € E thate ¢ ECg g;. There cannot be
any flow one, in G, since having such a floyf(s,v.) > 0 would require having



either flow f(ve,vz5) > 0 Or f(ve,vy5) > 0, sincev, is connected only to these
two vertices. However, this would require having either avflf(v, 4, v54) > 0 oOr
f(vyp,vy.4) > 0, both of which cannot occur, sinee¢ ECq, g:, and(vep, ve,a) ¢
Ef, and(vy p,vy,4) ¢ ET. Thus, there cannot be any flow epy and the maximal flow
betweenl, and L, cannot excee{F| — 1.

Suppose we add t&; the edge(vy i, vz,q). This would allow the mechanism to
increase the flow in the following path by exactly dwe, vy 5, v4.q,, resulting in a
flow f’. The flow throughA;’s edges is exactly the same as before, except there is
now a flow of 1 throughv, i, v5,4), SOv1(f') = v1(f) + 1. Since the payment to the
mechanism is always less than 1, the total utility4gfhas increased, sB; was not an
optimal choice forA; to begin with.

Lemma 3 If A; declaresE] C F; such thatEC’QEi = F, the mechanism can choose
aflow f suchthatf| = |E|.

Proof. We can fill the capacities of all the edges betwégrandL,, having the vertices
of L; with a total incoming flow of E|. SinceEC g, = E, we also havéeCqr gy =
{ee; | e; € E}, and every vertex,, in L; is connected to at least one vertex; in
layer L, that is connected (in turn) to, ., in layer L3 by an edge: € E}. We choose
the flow f(ve,, v 5) = 1. We then continue the flow by sending the incoming flow of
vertexv, ; t0 v, 4, by choosing

f(vx,bavm,a) = Z f(vemvx,b)

Ve, €L,

We can do this since the capacity of the edges betdigemdLs is | E|, SOc(vy b, Vg,a) =
|E|, and there is no danger of having a flow coming into a vettex higher than the
total capacity of its outgoing edges. The flow is then corgthby sending all the in-
coming flow of vertexv,, , to the target vertexf (v, q,t) = (v, Vs,qa). Again, this
is possible since the capacity of the edges betweeand L, is | E|.

Therefore, the optimal subset of edges tHatcan declareE} C E,, allows the
mechanism to achieve the maximal possible flowof size|f*| = | E|.

Lemma 4 The optimal subset of edges fdn, E; C E,, givesA; a valuation of
vi(f*) = |E].

Proof. From Lemma 2 and Lemma 3 we know that4f declaresE] in the optimal
solution, the mechanism can choose a flbauch that f| = |E|. By Lemma 1 this is a
maximal flow that maximizes the utility od,. SinceA; controls all the edges between
L, and L3 and has no other edges, we have a total flo\WFdfthroughA,’'s edges.

As a private case of Lemma 4, we get tiatcan get a valuation 4| by declaring
all of its edges, sinc&Cq g, = E. This case givesl; a utility of |E| — ¢|E} |, since
we have declaref¥; | edges.

Lemma 4 shows that the optimal subset of edges4or E; C Ei, givesA; a
valuation ofv, (f*) = | E|. However, to calculatel;’s utility in this case, we must also
know the payment thatl; gives the mechanism. This payment only depends on the
number of edges i&;.



Proof of the Reduction We now prove the validity of the reduction, by showing that th
the maximal utilityA; can achieve in the constructed network flow graph is detexchin
by the size of the minimal vertex cover in the original graph.

Theorem 5 The size of the minimal vertex-cover@fis & if and only if the maximal
utility of 4, in the constructed inputs to FLOW-EDGE-SUBSEJHE— kc.

Proof. Assume the maximal utilityd; can achieve i$E| — kc. Due to Lemma 4, in
order to obtain this optimal utilityd; has to declard’; C E, a subset of edges with
size|E}| = k. Consider the séty; = {v, € V' | (vz,0,vs0) € F1}. From Lemma 2
we haveECg g, = E, so this set is a vertex-cover Of. Its size is|Vg, | = k , since
the payment4d; made to the mechanism kg. Assume by negation that this is not the
minimalvertex-cover of7. Then there exists a vertex co¥ér’” with a smaller size of
|[VC'| = K. ConsiderEy ¢ = {(vep,v24) € E1 | v, € VC'}. This is a subset of
Ay’s edges that (by definition aEC¢ x), ECq g, = E. Thus,vi(Eve) = |E|.
However, sincéV C’| = k' < k = |V |, the payment fromi; to the mechanism for
declaringEy ¢/ is only p; (Eve:) = k' < k. Thus the utility ofA; when usingEy ¢

is ul(Evc/) = Ul(EVC’) 7p1(EVC/) = ‘E| —kec> ‘E| — ke = ul(E{), and we
would have a subset of edges giving a better utility than gieral solution.

On the other hand, if we have a vertex-coV&r for G with size|V C'| = k, consider
Evc = {(Vap, ve,a) € E1 | v, € VC}. Again, this is a subset of;'s edges that (by
definition of EC¢ x) makesECq g, = E. Thus,vi(Evc/) = |E|. The utility of
A; when usingEy ¢ isui(Eve) = vi(Eve) — p1(BEve) = |E| — ke, so a utility of
|E| — kcis achievable.

It remains to show that this is theaximalutility achievable. Suppose, by negation,
that we have a choice of edgé3 C E; that givesA; a higher utility. The valuation
of E| must also be, (E]) = | E|, since a higher valuation is not possible, and a lower
valuation would result in a utility that is below, (Ey <) (since the payment to the
mechanism is less than 1). This means that the paymeijfas less than the payment
for Ey ¢, or |Ef| < |Evc|. As explained above, in order to achieve a utility|6f,
E} must be a set such th#iCq g = E, 80Vg = {v, € V | (Vep,020) € E1}
must be a vertex-cover @f. However, sincéVg, | = |E]| < |Eyc|, this would be a
vertex-cover of a size smaller than the size of the minimetexecover.

Due to Theorem 5, the process of the reduction as described ab valid, and
FLOW-EDGE-SUBSET is NP-complete.

6 Conclusions and Future Directions

We have presented a mechanism for the distributed netwarkdtoblem with self-
interested agents. With a proper choice of the payment aotstfinding a beneficial
manipulation is an NP-complete problem. If most instanddb® manipulation prob-
lem are indeed computationally intractable, we expect &geould truthfully report
their preferences. In this case, the mechanism would chihesesult maximizing the
sum of agents’ utilities, and we have an allocatively-effitimechanism.



Given some > 0, we can make the mechanisabudget-balanced, by choosing a
constantc = m so that all of the agents together pay less thahhe mech-
anism we have described is also individual rational. Thehaerism’s calculation is
tractable, and only involves a polynomial algorithm for fimglthe maximal network
flow. This indicates that the agents’ difficulty in finding anledicial manipulation is not
caused by any difficulty in simulating the mechanism, bunstéad caused by the diffi-
culty of trying exponentially many options of untruthfulaerations to the mechanism.

Therefore, in the domain of network flows, it is possible thiage an individually-
rational, allocatively-efficieng-budget-balanced, and strategy-resistant mechanism. The
standard VCG solution in this domain would be only weakly dpetebalanced, but
strategy-proof. Impossibility results [1] and [2] indieahat no direct-revelation mecha-
nism can achieve strong budget-balance without sacrifieithger allocative-efficiency
or strategy-proofness. We believe that in many cases,ngastrategy-proofness for
strategy-resistance is a fair price to pay for achievingregroudget-balance.

There has been much work dedicated to overcoming the iatséity of mecha-
nisms, since in building a real-world mechanism we cannstiae unbounded com-
putation. However, if we are not willing to accept unboundationality on themech-
anism’spart, we must also consider the implications of the bound¢idnal nature of
theagents

We believe that strategy-proofness should not be the oitigrier when consider-
ing the susceptibility of a mechanism to manipulations.dctfwe believe it is found
on one end of &caleof susceptibility. On the other end of this scale are medmsi
where there exists a poly-time algorithm for finding the oy manipulation. Such
mechanisms probably cannot be used in practice, since tieegcaeasy to manipu-
late. Between these two extremes is the region of strategigtant mechanisms. In this
paper we have implicitly defined a strategy-resistant meishaas one in which it is
NP-hard to find the optimal manipulation. As we have comntbat®ve, this is a rather
weak notion of strategy resistance. A preferable solutionld be one in which it is
computationally intractable to finany manipulation. NP-hardness is not sufficient for
a problem to be computationally intractable. For exampke can require the manipu-
lation problem to have no approximation methods, or showniast instances of the
manipulation problem are indeed hard.

In this paper we have shown that in the network flow domain, aregain budget-
balance by giving up strategy proofness, and replacingth wiir notion of strategy-
resistance. Assuming we are willing to accept strategistasce as a sufficient guar-
antee that agents would truthfully declare their types, weehimproved the results
obtained by VCG for this problem.

We have chosen the self-interested network flow domain,usecan this case we
were able to find a mechanism that was tractable in its cortipn&d properties, and
also had good results in the sense of being budget-balafbesddomain demonstrates
that by using a very simple payment scheme we can createificaghgap between the
amount of work the mechanism performs (in this case a singietime algorithm) and
the amount of work an agent is required to perform in ordemo & beneficial manip-
ulation (in this case solving an NP-hard problem). We beliewrther research can find
domains in which the mechanism is required to perform hanaek (e.g., solving an



NP-hard problem by approximation), and manipulations arapletely intractable. It
may be possible to achieve budget-balance while retaingtigoager notion of strategy-
resistance, even in this domain. Also, it may be possiblaetbdther valuable trade offs
in other domains. It remains an open problem to charactérzeomains in which us-
ing computational complexity in this way is possible, andital domains in which a
stronger sense of strategy-resistance can be achieved.
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