
Achieving Allocatively-Efficient and Strongly
Budget-Balanced Mechanisms in the Network Flow

Domain for Bounded-Rational Agents

Yoram Bachrach and Jeffrey S. Rosenschein

School of Engineering and Computer Science
Hebrew University, Jerusalem, Israel
{yori, jeff}@cs.huji.ac.il
http://www.cs.huji.ac.il/

Abstract. Vickrey-Clarke-Groves (VCG) mechanisms are a well-known frame-
work for finding a solution to a distributed optimization problem in systems of
self-interested agents. VCG mechanisms have received wide attention in the AI
community because they are efficient and strategy-proof; a special case of the
Groves family of mechanisms, VCG mechanisms are theonly direct-revelation
mechanisms that are allocatively efficient and strategy-proof. Unfortunately, VCG
mechanisms are only weakly budget-balanced.
We consider self-interested agents in a network flow domain, and show that in
this domain, itis possible to design a mechanism that is both allocatively-efficient
and almost completely budget-balanced. This is done by choosing a mechanism
that is notstrategy-proofbut ratherstrategy-resistant. Instead of using the VCG
mechanism, we propose a mechanism in which finding the most beneficialma-
nipulation is an NP-complete problem, and the payments from the agents to the
mechanism may be minimized as much as desired. This way, the mechanismis
virtually strongly budget-balanced: for anyǫ > 0, we find a mechanism that is
ǫ-budget-balanced.

1 Introduction

Mechanisms face the problem of finding a system-wide solution to an optimization
problem based on private information given by self-interested agents. As mechanism
designers, we want to build a mechanism that would encourageagents to report their
information truthfully, so that we can implement a desirable social choice function and
maximize social welfare. A well-known solution to this problem in the case of quasi-
linear preferences is that of Groves mechanisms. A special case of the Groves family
of mechanisms are VCG mechanisms, which are budget-balanced, allocatively-efficient
and strategy-proof.

Thus, in many cases, by using VCG we get a mechanism that operates with no out-
side subsidy (weakly budget-balanced) and maximizes the agents’ utility. We maximize
the agents’ utility by choosing the outcome that maximizes the total utility according
to the agents’ reported types. Since VCG mechanisms are strategy-proof, the agents re-
port their true preferences, and the mechanism maximizes their true utility. Also, VCG
mechanisms are individually rational. Although in VCG mechanisms the agents pay the

mechanism, they never pay more than they value the chosen outcome; the agents always
have positive utility, and voluntarily participate.

A significant disadvantage of VCG mechanisms is that they areonly weaklybudget-
balanced. We would in principle prefer astronglybudget-balanced mechanism, where
the total sum of payments to the mechanism is zero:

∑

i ti(θ) = 0. Impossibility re-
sults ([1] and [2]) show that in a quasi-linear environment,it is impossible to achieve a
mechanism that is strategy-proof, allocatively-efficient, and strongly budget-balanced.
Given this fact, we are faced with a grim future. Giving up allocation-efficiency means
we would no longer maximize the sum of agents’ utilities, which was our goal in the
first place. Giving up strategy-proofness means agents may have an incentive to try and
manipulate the mechanism by not reporting their true preferences, which may lead us
to a sub-optimal result. However, without sacrificing one ofthe two, we will not be able
to achieve strong budget-balance.

We propose addressing this problem by relaxing the strategy-proof requirement,
replacing it withstrategy-resistance. A mechanism is strategy-proof if the dominant
strategy of each agent is to reveal its true type to the mechanism. Strategy-resistance
only requires that even if an agent is given the reported types of the other agents, it
still faces a computationally intractable problem to solveif it wishes to find a beneficial
manipulation (i.e., report a false type to the mechanism in order to gain higher utility).
We here consider a scenario in which it is an NP-hard problem for an agent to find a
useful manipulation. NP-hardness is a worst case notion of computational difficulty, in
the sense that it only indicates that a certain problem hassomehard instances. A stronger
notion of strategy-resistance could also require the manipulation problem to have no
approximation methods, or require it to be in some harder computational complexity
class. Also, a stronger sense of strategy resistance could require it to be hard to findany
beneficial manipulation, not just theoptimalmanipulation. This paper constitutes a first
step in establishing the notion of strategy-resistance.

In this paper we consider the network flows domain. In this domain, the edges of a
network flow belong to several self-interested agents. Eachagent reports its edges to the
mechanism. The mechanism is then required to choose a flow from the source vertex
to the target vertex. Agents gain utility from flow units on their edges. A reasonable
choice for the mechanism would be selecting the flow that maximizes the total flow on
all of the agents’ edges. In the case of a layer graph, this caneasily be done by finding
the maximal flow, and we get a simple and tractable algorithm for implementing the
mechanism, assuming each of the agentstruthfully reports its subset of edges. However,
in some cases it is beneficial for these agents to hide some of their edges. A VCG
mechanism to overcome this problem would be strategy-proof, but only weakly budget-
balanced.

We show that in the domain of network flows, itis possible to achieve a mechanism
that is strategy-resistant (and thus agents have an incentive to be truthfull), efficient
when agents are truthfull, and as budget-balanced as we wantit to be (i.e., we can
minimize the sum of agent payments,

∑

i ti(θ
′), as much as we want). A mechanism

is ǫ-budget-balanced if0 ≤
∑

i ti(θ
′) < ǫ. We analyze a general multiagent flow

problem, and show that for everyǫ > 0 we can create a strategy-resistant, allocatively
efficient, andǫ-budget-balanced mechanism. This result indicates that atleast for some

domains, it is possible to use the fact that agents have computational limitations and are
not unboundedly rational, so as to construct mechanisms with beneficial properties.

2 Related Work

The main focus of research on bounded-rational mechanism design is on the problems
that computational complexity poses for mechanism designers. This has led to attempts
to use approximation algorithms for mechanisms whose standard implementation is
intractable. It has also tended to highlight the advantagesof strategy-proof mechanisms.
In such mechanisms, an agent does not need to reason about what other agents might
do, thus eliminating the need for speculation, counter-speculation, and so on.

Relatively little research has been dedicated tousingthe bounded-rationality of re-
alistic agents to build better mechanisms, with more usefulproperties. This approach
was taken in [3] (building on the work in [4]), which used computational complexity
to show that common voting protocols are hard to manipulate.A similar approach was
taken in [5], where coalition games were analyzed. It was shown there that manipu-
lating a marginal-contribution based value distribution scheme, similar to the standard
solution of the Shapley value [6], is an NP-complete problem. This indicates that such
value distributions can be used even though they are manipulable, since agents would
find it intractable to decidehowto manipulate the mechanism that decides on the value
distribution.

[7] considered coalitions among computationally bounded agents. It suggested some
bounded rational concepts for coalition games, and indicated that computational com-
plexity considerations may lead us to extend the set of acceptable stable solutions. This
work argued that some coalitions are stable even if there exists a subset of the coalition
that can do better by itself, since it isintractablefor the agents in the large coalition to
find such a subset.

[8] analyzed VCG auctions, and showed that manipulating VCGauctions using
false name bids is NP-hard; it also analyzed approximate VCGauctions. [9] showed that
using an approximation method to find the optimal allocationin combinatorial auctions
can lead to the loss of strategy-proofness. However, in [8] it was shown that it is possible
to take any tractable approximation algorithm and produce ahard-to-manipulate mech-
anism. In this case, the bounded rational nature of theagentshas been used to show that
an approximate mechanism is hard to manipulate, thus overcoming the computational
complexity problems of themechanism.

3 Preliminaries

In this article, we propose an alternative to VCG mechanismsin quasi-linear domains.
In such domains, we have a setI of agents. The mechanism needs to choose one of a set
of possible alternativesK. Each agent reports a typeθi ∈ Θi to the mechanism. This
type represents the agent’s preferences over the differentalternatives inK. Each agent
has a different valuation of the mechanism’s chosen alternative k ∈ K, vi(k, θi). The
mechanism chooses the outcome according to a choice rulek : Θ1×...×ΘI → K. Each
agent is also required to make a paymentpi to the mechanism. The mechanism chooses

the payment of each agent according to a payment ruleti : Θ1 × ... × ΘI → R. If
the agents have quasi-linear utility functions, then the agents have utilityui(k, pi, θi) =
vi(k, θi) − pi. An agent might not report its true type, but can choose a typeto report
to the mechanism. Thus, agenti (Ai) reports a typeθ′i = si(θi), according to its own
strategy.

3.1 Groves and VCG Mechanisms

In Groves mechanisms, the mechanism’s choice rule given thereported typesθ′ =
(θ′1, ..., θ

′
I) maximizes the sum of the agents’ utilities, according to their reported types:

k∗(θ′) = arg max
k∈K

∑

i

vi(k, θ′i)

The payment rule in Groves mechanisms is

ti(θ
′) = hi(θ

′
−i) −

∑

j 6=i

vj(k
∗, θ′j)

wherehi : Θ−i → R may be any function that only depends on the reported types
of agents other thani. Groves mechanisms are allocatively-efficient, and maximize the
total utility of the agents. They are also strategy-proof, and for each agent the dom-
inant strategy is to reveal its true type (or preferences) tothe mechanism, no matter
what the other agents report. Groves mechanisms are known tobe the only direct rev-
elation mechanisms that are allocatively-efficient and strategy-proof. Another advan-
tage of Groves mechanisms is that in many cases they are weakly budget-balanced:
∑

i ti(θ) ≥ 0.
A special case of Groves mechanisms is that of the VCG mechanism, when

hi(θ
′
−i) =

∑

j 6=i

vj(k
∗
−i(θ

′
−i), θ

′
j)

Under quite general settings, agents would voluntarily participate in VCG mechanisms,
and we say that under these conditions the mechanism is individual-rational. The VCG
mechanism also achieves weak budget-balance in quite general settings.

3.2 Main Contribution of the Paper

We approach the problem of designing a mechanism for boundedrational agents by
building a mechanism for a distributed flow problem. We will demonstrate that for this
domain, we can find a mechanism that is allocatively-efficient, ǫ-budget-balanced, and
strategy-resistant. This means that if we assume the agentsare bounded-rational and
would not try to manipulate the mechanism if such manipulation is an NP-complete
problem, they would all truthfully report their preferences. Once the mechanism gets
their true preferences, it chooses the outcome that maximizes total utility of the agents.
To achieve this truthfulness, the mechanism requires side payments; however, the total
sum of these payments can be minimized as much as required. Inother words, for every

ǫ > 0 we can build such a strategy-resistant, allocatively-efficient mechanism, that
would also beǫ-budget-balanced.

We restrict ourselves to the case where maximizing the graph’s flow also maxi-
mizes the agents’ total utility, since this allows us to choose a tractable mechanism.
However, although the mechanism itself performs a polynomial calculation, finding the
optimal manipulation for an agent remains NP-complete. Thepayments we demand
from the agents to the mechanism makes finding this manipulation hard, while leaving
the mechanism’s calculation simple and tractable.

The mechanism we suggest for the self-interested layered-graph network flow prob-
lem indicates that for some problems we can devisetractable allocatively-efficient,
strategy-resistant, andǫ-budget-balanced solutions. It remains an open problem to char-
acterize the domains in which such a solution is achievable.Also, as explained above,
this paper considers a domain in which finding a beneficial manipulation is NP-hard
to be a strategy-resistant domain. It also remains an open problem to find domains in
which we can achieve a stronger notion of strategy-resistance.

4 Self-Interested Network Flow

We now present the self-interested layered-graph network flow problem. Consider a
flow network on a layered graph. We have a graphG =< V,E >, with source ver-
tex s and target vertext. The vertices of the graph are partitioned inton + 1 layers,
L0 = {s}, L1, ..., Ln = {t}. The edges only run between consecutive layers. We have
a capacity functionc : E → R which is the maximal flow allowed on the edges. We
also have a setI of agents. Each agent controls a subsetEi ⊂ E of the graph’s edges.
No two agents control the same edge:∀i6=jEi ∩ Ej = φ.

The mechanism chooses a valid flow froms to t. A valid flow is a functionf :
E → R such that the following hold:∀(u,v)∈Ef(u, v) ≤ c(u, v), ∀(u,v)∈Ef(u, v) =
−f(v, u), and∀u∈V −{s,t}

∑

v∈V f(u, v) = 0. We denote the positive flow as follows:
if f(u, v) > 0 thenf+(u, v) = f(u, v), otherwisef+(u, v) = 0. We denote the size of
the flow |f | =

∑

v∈V f(s, v). The flow the mechanism chooses may only go through
edges that belong to some agent. The mechanism knows the capacity constraints of
the edges, but must treat edges not reported by an agent as edges whose capacity is 0.
Each agent values the flow chosen by the mechanism according to the total flow going
through its edges. Letf be the valid flow chosen by the mechanism, andEf the set
of edges inf through which there is a positive flow:Ef = {e ∈ E | f(e) > 0}.
We denote the set ofAi’s edges used in the flowf by: Ef,i = Ef ∩ Ei. The agent’s
valuation of the flow is

vi(f) =
∑

e∈Ef,i

f(e)

A direct revelation implementation for the self-interested network flow problem
would require each agent to state its valuation of all possible flows, which is not tractable.
An alternative tractable implementation is to simply make the type of an agent the set of
its declared edgesE′

i ∈ Ei. Given this information, the mechanism could compute the
agents’ valuations of any possible flow. We will assume agents can only declare edges
they actually own.

When the mechanism is given the agents’ true types,θ = E1, E2, ..., EI , we want it
to choose the flow that maximizes the total utility of the agents. The mechanism would
be allocatively-efficient if it chooses

f∗(θ) = arg max
f

∑

i

∑

e∈Ef,i

f(e)

4.1 Layered Graphs and Mechanisms for Network Flow

Consider a self-interested network flow problem in alayeredgraph. If each agent truth-
fully declares its subset of edges, the mechanism can easilycomputef∗(θ) by running
a maximal flow algorithm, such as the Edmonds-Karp algorithm.

Proof. Suppose the mechanism chooses a flowf . The total flow exitings ends up in
vertices inL1. All the flow from L1 ends up in vertices inL2, and so on. Since flow
may only go through edges owned by some agent, the total utility obtained by the flow
f is
∑

e∈E

f+(e) =
∑

u∈L1,v∈L2

f+(u, v)+...+
∑

u∈Ln−1,v∈Ln

f+(u, v) = |f |+...+|f | = (n−1)|f |

A naive mechanism for the self-interested flow problem, withno payments to the
mechanism, is not strategy-proof. An agent may declare onlya subset of the edges it
controls, to change the flow that the mechanism chooses to a flow that the agent values
more. Figure 1 shows two agents on a certain network flow (A1 andA2). A1’s edges
are marked with dashed lines, andA2’s edges are marked with full lines.A2 truthfully
declares all its edges. Assuming the mechanism favorsA1 and chooses the specific
maximal that maximizesA1’s utility among all maximal flows,A1 can do better by not
declaring its topmost edge(v1, v4), gaining a utility of 2 instead of 1.

5 A Mechanism for the Self-Interested Network Flow Problem

We assume quasi-linear utility. Each agent pays the mechanism a paymentpi, and its
utility is ui(f) = vi(f) − pi. We now show that by using a straightforward payment
rule, we make finding a beneficial manipulation NP-hard. The payment rule we use is
simple: each agent pays the mechanism a constant ofc for each edge it declares it owns.
Let E′

i ⊂ Ei be the subset of edges an agent declares it owns. Thenpi(E
′
i) = c|E′

i|. To
make sure the mechanism is individual rational, the paymentpi should give the agent
a utility of 0 when the agent’s valuation of the given flow is less thanc|E′

i|. Thus, the
payment rule is:

pi =

{

c|E′
i| if vi(f

∗) > c|E′
i|;

vi(f
∗) otherwise;

Assume thatAi knowsE′
j for all j 6= i. It can easily calculate the utility it would

get by truthfully declaring all its edges. How hard is it fori to find a subset of edges
it could declare to the mechanism so as to gain a higher utility? First, note that the

Fig. 1. Manipulations in self-interested flow problems

question itself is under-constrained. Even givenE′
j for all j, includingi, there may be

several maximal flows; the mechanism is free to choose any of them. However, we will
show that even ifAi can decidewhichmaximal flow the mechanism chooses, it would
still remain an NP-hard problem for that agent to find a bettersubset of edges.

We now define the problem offindingthe optimal manipulation in the self-interested
network flow domain.

FLOW-EDGE-SUBSET: We are given a layered graph flow network,with the ca-
pacity functionc : E → R, E−i the declared edges of the other agents, andEi, the
set of our edges. We are also given the constantc of the payment, and we know that
if we declare that we havek edges, our payment to the mechanism would bepi = ck.
We assume the mechanism prefers a maximal flow that maximizesour utility: if we
report a subset of edgesE′

i ⊂ Ei the mechanism would choose the maximal flowf∗

to be the flow that maximizes
∑

e∈Ef∗,i′
f(e) from among all the possible maximal

flows. We are also given a constantk, the target utility forAi. We are asked if there is
a subset ofAi’s edgesE′

i ⊂ Ei, such that the maximal flow chosen by the mechanism,
f∗(E1, ..., Ei−1, E

′
i, Ei+1, ..., EI) givesAi a utility of at leastk:

ui(f
∗, pi) = vi(f

∗) − pi =
∑

e∈Ef∗,i

f(e) − c|E′
i| ≥ k

5.1 NP-Completeness of FLOW-EDGE-SUBSET

First, we note that FLOW-EDGE-SUBSET is in NP, because givena subset of edges
E′

i ⊂ Ei we can easily compute the maximal flow. We show that FLOW-EDGE-
SUBSET is NP-complete by reducing a general VERTEX-COVER problem to a FLOW-
EDGE-SUBSET problem. The reduction shows that FLOW-EDGE-SUBSET is NP-

complete even if the inputs are restricted to problems wherethere are only two agents,
and the graph has only 5 layers.

VERTEX-COVER: We are given a graphG =< V,E > and a constantn and are
asked if there is a subset ofn verticesV ′ ⊂ V, |V ′| = n that covers all the edges
∀(u,v)∈E eitheru ∈ V ′ or v ∈ V ′.

The reduction is done as follows. From the VERTEX-COVER input, we build inputs
for the FLOW-EDGE-SUBSET problem. Given the original VERTEX-COVER graph
G, we build a layer graphG′. All the inputs to FLOW-EDGE-SUBSET are built with
this layer graphG′, and in all of them there are two agents, and we are asked aboutthe
utility of A1. In all of these inputs we have the same set ofA1’s edgesE1, the same list
of declared edges of the other agent, and the same payment constant,c. This payment
constant is chosen such that the payment fromA1 to the mechanism is always less than
1, even ifA1 declares all its edges.

The only difference between the inputs is the target utilityk. These inputs are con-
structed such thatA1 has|V | edges, where|V | is the number of vertices inG. The
inputs are constructed so that the maximal utilityA1 can achieve is obtained by declar-
ing some set of edges,E∗

1 , and in this case,A1’s utility is u1(E
∗
1) = v1(E

∗
1)−p1(E

∗
1) =

|E| − c|E∗
1 |, where|E| is the number of edges in the VERTEX-COVER graphG, and

|E∗
1 | is the number of vertices in theminimal vertex-coverof G. We abuse notation a bit

here, and denoteu1(E
′
1) andv1(E

′
1) as the utility and valuationA1 has when declaring

theE′
1 subset of edges, since the declared edges of all the other agents are known. Thus

the flow chosen by the mechanism only depends onA1’s chosen subset of edges,E′
1.

The Process of the ReductionSince the payment fromA1 to the mechanism is always
a multiple ofc, we can easily check how many vertices are used in the minimalvertex-
cover ofG. We constructG′ from G, and use FLOW-EDGE-SUBSET to check if we
can achieve a utility of at least|E| − |V |c, then check the possibility of achieving
|E| − (|V | − 1)c, then |E| − (|V | − 2)c, and so on. The answer would initially be
‘yes’, since due to the construction,A1 can achieve a utility of|E| − |V |c by declaring
all its edges.A1 can decide to declare any number of edges between 0 and|V |. The
questions are asked regarding higher and higher requested utilities, so eventually, for
somex ∈ N, 0 ≤ x ≤ |V |, the answer for|E|−xc would be ‘no’. We would then know
the best utility thatA1 can achieve is|E|− (x+1)c, and thus the minimal vertex-cover
of G is of sizex + 1. This process involves running FLOW-EDGE-SUBSET|V | times,
so if FLOW-EDGE-SUBSET can be done in polynomial time, then this process can
also be performed in polynomial time.

Constructing the FLOW-EDGE-SUBSET Inputs We now describe how the inputs
for FLOW-EDGE-SUBSET are constructed from the VERTEX-COVER input. We build
a 5-layer network flow graph,G′. TheL0 layer contains the single source vertexs, and
theL4 layer contains the single target vertext. LayerL1 contains a vertexvei

for each
edgeei ∈ E in the original VERTEX-COVER graph. LayerL2 contains a vertexvi,b

for each vertexvi ∈ V in the original VERTEX-COVER graph. LayerL3 contains a
single vertexvi,a for each vertexvi ∈ V in the original VERTEX-COVER graph.

The edges between the layers are constructed as follows. Thesource vertexs is
connected to all the vertices inL1, and then we mark the edge(s, vei

) aseei
. Every

vertexvei
in L1 is connected to exactly two vertices inL2. If edgeei ∈ E in G connects

verticesvi andvj in it, thenvei
is connected tovvi,b andvvj ,b in the constructed graph

G′. Every vertex inL2 is connected to exactly one vertex inL3. Vertexvvi,b in L2 is
connected tovvi,a in L3. All the vertices inL3 are connected to the sink vertext in L4.
All the edges betweenL0 andL1 and all the edges betweenL1 andL2 have a capacity
of 1. All the other edges have capacity of|E|.

As explained above, all inputs for FLOW-EDGE-SUBSET are given with regard
to A1. The set ofA1’s edgesE1 is (vvi,b, vvi,a), for all possiblei. All of the other
edges belong toA2, and in the input given to FLOW-EDGE-SUBSET,A2 declares all
its edges. The payment constantc is chosen such thatc < 1

|V |+|E| . We demonstrate
building the layer graph in Figure 2. The graph on the left of Figure 2 is the input for
the VERTEX-COVER, while the graph on the right is the generated FLOW-EDGE-
SUBSET layer graph.

Fig. 2. Reducing VERTEX-COVER to FLOW-EDGE-SUBSET

The intuition behind this construction is simple.A1’s edges in the constructed graph
represent vertices in the original graphG. A1 must choose a subset of edges to report to
the mechanism. LetE′

1 ⊂ E1 be the subset of edges thatA1 chooses to declare. Each
such choice can also be seen as a choice of a subset of verticesin G. These vertices
cover certain edges in the original graph. We later refer to these edges asECG,E′

1
. The

vei
vertices inL1 represent the edges inG.

The construction makes sure that the mechanism can only sendflow from s to vei
if

ei is an edge covered byE′
1 (ei ∈ ECG,E′

1
). In fact, a flow going through one ofA1’s

edges(vvi,b, vvi,a) can only originate from avej
vertex that represents an edgeej that

coversvi.
ThusA1’s valuation is limited by the number of edges covered by his chosen set

of vertices, or in other words by|ECG,E′

1
|. Therefor,A1 would chooseE′

1 to be edges
representing a set of vertices which covers all the edges inG; it would chooseE′

1 such
thatE = ECG,E′

1
.

However,A1 also sees that payments it must give the mechanism for declaring
his edges. Since he pays a constantc per each edge he declares,A1 would want to
minimize the number of edges he declares. This conflicts withA1 wish to chooseE′

1 so
thatE = ECG,E′

1
, since fewer vertices cover fewer edges.

By choosing a low enough payment constantc, we make sure thatA1’s top priority
is to cover all the edges inG. It is only his second priority to minimize the number if
edges he declares. Thus,A1 actually wishes to chooseE′

1 so that the set of verticesE′
1

represent is the minimal vertex cover ofG.
The following sections formally prove the intuitive claimsabove.

Properties of the Constructed Inputs

Lemma 1 If G had|E| edges, then in the generated network flow graph,A1’s valuation
cannot exceed|E|. If A1 can get a valuation of|E|, its utility is in the range|E| − 1 ≤
u1(f) ≤ |E|.

Proof. The maximal flow cannot exceed|E|, because there are only|E| edges between
L0 andL1, each with a capacity of 1. All ofA1’s edges are betweenL2 andL3, so
the maximal flow through them also cannot exceed|E|. Thus,A1’s valuation of any
flow f , v1(f), cannot exceed|E|. A1’s utility when a flowf is chosen isu1(f, p1) =
v1(f) − p1 = v1(f) − c|E′

1|. Due to the choice ofc, p1 = |E′
1| ·

1
|V |+|E| < 1, so

0 ≤ pi ≤ 1.

LetE′
1 ⊂ E1 be the subset of edges thatA1 chooses to declare. We denoteECG,E′

1
=

{ei ∈ E | ei = (vx, vy) and at least one of the following holds:
(vvx,b, vvx,a) ∈ E′

1 or (vvy,b, vvy,a) ∈ E′
1}. Similarly, we denoteECG′,E′

1
= {eei

|
ei ∈ ECG}. Intuitively, we identify the edgeeei

with the edgeei in the original graph.
We identify the edge(vvx,b, vvx,a) ∈ E1 with vertexvx in the original graphG, and a
subset of edgesE′

1 ⊂ E1 with a subset of verticesVE′

1
⊂ V in G. Such a set of vertices

in G covers a subset of the edges in it.ECG is the set of edges covered by these vertices
VE′

1
, andECG′ is the set of edges inG′ corresponding to the covered edges.

Lemma 2 LetE∗
1 ⊂ E1 be an optimal choice of edges forA1 to declare. ThenECG,E∗

1
=

E.

Proof. Let E∗
1 be an optimal choice ofA1’s edges,f be the flow chosen by the mech-

anism in this case, andECG,E∗

1
be the subset ofE, as explained above. Assume by

negation that thereis somee = (x, y) ∈ E that e /∈ ECG,E∗

1
. There cannot be

any flow onee in G′, since having such a flowf(s, ve) > 0 would require having

either flow f(ve, vx,b) > 0 or f(ve, vy,b) > 0, sinceve is connected only to these
two vertices. However, this would require having either a flow f(vx,b, vx,a) > 0 or
f(vy,b, vy,a) > 0, both of which cannot occur, sincee /∈ ECG,E∗

1
, and(vx,b, vx,a) /∈

E∗
1 , and(vy,b, vy,a) /∈ E∗

1 . Thus, there cannot be any flow onee, and the maximal flow
betweenL0 andL1 cannot exceed|E| − 1.

Suppose we add toE∗
1 the edge(vx,b, vx,a). This would allow the mechanism to

increase the flow in the following path by exactly 1:s, ve, vx,b, vx,a, t, resulting in a
flow f ′. The flow throughA1’s edges is exactly the same as before, except there is
now a flow of 1 through(vx,b, vx,a), sov1(f

′) = v1(f) + 1. Since the payment to the
mechanism is always less than 1, the total utility ofA1 has increased, soE∗

1 was not an
optimal choice forA1 to begin with.

Lemma 3 If A1 declaresE′
1 ⊂ E1 such thatECG,E′

1
= E, the mechanism can choose

a flowf such that|f | = |E|.

Proof. We can fill the capacities of all the edges betweenL0 andL1, having the vertices
of L1 with a total incoming flow of|E|. SinceECG,E′

1
= E, we also haveECG′,E′

1
=

{eei
| ei ∈ E}, and every vertexvei

in L1 is connected to at least one vertexvx,b in
layerL2 that is connected (in turn) tovx,a in layerL3 by an edgee ∈ E′

1. We choose
the flowf(vei

, vx,b) = 1. We then continue the flow by sending the incoming flow of
vertexvx,b to vx,a, by choosing

f(vx,b, vx,a) =
∑

vei
∈L1

f(vei
, vx,b)

We can do this since the capacity of the edges betweenL2 andL3 is |E|, soc(vx,b, vx,a) =
|E|, and there is no danger of having a flow coming into a vertexvx,b higher than the
total capacity of its outgoing edges. The flow is then continued by sending all the in-
coming flow of vertexvx,a to the target vertex:f(vx,a, t) = f(vx,b, vx,a). Again, this
is possible since the capacity of the edges betweenL3 andL4 is |E|.

Therefore, the optimal subset of edges thatA1 can declare,E∗
1 ⊂ E1, allows the

mechanism to achieve the maximal possible flowf∗, of size|f∗| = |E|.

Lemma 4 The optimal subset of edges forA1, E∗
1 ⊂ E1, givesA1 a valuation of

v1(f
∗) = |E|.

Proof. From Lemma 2 and Lemma 3 we know that ifA1 declaresE′
1 in the optimal

solution, the mechanism can choose a flowf such that|f | = |E|. By Lemma 1 this is a
maximal flow that maximizes the utility ofA1. SinceA1 controls all the edges between
L2 andL3 and has no other edges, we have a total flow of|E| throughA1’s edges.

As a private case of Lemma 4, we get thatA1 can get a valuation of|E| by declaring
all of its edges, sinceECG,E1

= E. This case givesA1 a utility of |E| − c|E1|, since
we have declared|E1| edges.

Lemma 4 shows that the optimal subset of edges forA1, E∗
1 ⊂ E1, givesA1 a

valuation ofv1(f
∗) = |E|. However, to calculateA1’s utility in this case, we must also

know the payment thatA1 gives the mechanism. This payment only depends on the
number of edges inE∗

1 .

Proof of the Reduction We now prove the validity of the reduction, by showing that the
the maximal utilityA1 can achieve in the constructed network flow graph is determined
by the size of the minimal vertex cover in the original graph.

Theorem 5 The size of the minimal vertex-cover ofG is k if and only if the maximal
utility of A1 in the constructed inputs to FLOW-EDGE-SUBSET is|E| − kc.

Proof. Assume the maximal utilityA1 can achieve is|E| − kc. Due to Lemma 4, in
order to obtain this optimal utilityA1 has to declareE′

1 ⊂ E1, a subset of edges with
size|E′

1| = k. Consider the setVE′

1
= {vx ∈ V | (vx,a, vx,b) ∈ E′

1}. From Lemma 2
we haveECG,E′

1
= E, so this set is a vertex-cover ofG. Its size is|VE′

1
| = k , since

the paymentA1 made to the mechanism iskc. Assume by negation that this is not the
minimalvertex-cover ofG. Then there exists a vertex coverV C ′ with a smaller size of
|V C ′| = k′. ConsiderEV C′ = {(vx,b, vx,a) ∈ E1 | vx ∈ V C ′}. This is a subset of
A1’s edges that (by definition ofECG,X), ECG,EV C′

= E. Thus,v1(EV C′) = |E|.
However, since|V C ′| = k′ < k = |VE′

1
|, the payment fromA1 to the mechanism for

declaringEV C′ is only p1(EV C′) = k′ < k. Thus the utility ofA1 when usingEV C′

is u1(EV C′) = v1(EV C′) − p1(EV C′) = |E| − k′c > |E| − kc = u1(E
′
1), and we

would have a subset of edges giving a better utility than the optimal solution.
On the other hand, if we have a vertex-coverV C for G with size|V C| = k, consider

EV C = {(vx,b, vx,a) ∈ E1 | vx ∈ V C}. Again, this is a subset ofA1’s edges that (by
definition of ECG,X) makesECG,EV C

= E. Thus,v1(EV C′) = |E|. The utility of
A1 when usingEV C is u1(EV C) = v1(EV C) − p1(EV C) = |E| − kc, so a utility of
|E| − kc is achievable.

It remains to show that this is themaximalutility achievable. Suppose, by negation,
that we have a choice of edgesE′

1 ⊂ E1 that givesA1 a higher utility. The valuation
of E′

1 must also bev1(E
′
1) = |E|, since a higher valuation is not possible, and a lower

valuation would result in a utility that is belowu1(EV C) (since the payment to the
mechanism is less than 1). This means that the payment forE′

1 is less than the payment
for EV C , or |E′

1| < |EV C |. As explained above, in order to achieve a utility of|E|,
E′

1 must be a set such thatECG,E′

1
= E, soVE′

1
= {vx ∈ V | (vx,b, vx,a) ∈ E′

1}
must be a vertex-cover ofG. However, since|VE′

1
| = |E′

1| < |EV C |, this would be a
vertex-cover of a size smaller than the size of the minimal vertex-cover.

Due to Theorem 5, the process of the reduction as described above is valid, and
FLOW-EDGE-SUBSET is NP-complete.

6 Conclusions and Future Directions

We have presented a mechanism for the distributed network flow problem with self-
interested agents. With a proper choice of the payment constantc, finding a beneficial
manipulation is an NP-complete problem. If most instances of the manipulation prob-
lem are indeed computationally intractable, we expect agents would truthfully report
their preferences. In this case, the mechanism would choosethe result maximizing the
sum of agents’ utilities, and we have an allocatively-efficient mechanism.

Given someǫ > 0, we can make the mechanismǫ-budget-balanced, by choosing a
constantc = ǫ

n(|E|+|V |) , so that all of the agents together pay less thanǫ. The mech-
anism we have described is also individual rational. The mechanism’s calculation is
tractable, and only involves a polynomial algorithm for finding the maximal network
flow. This indicates that the agents’ difficulty in finding a beneficial manipulation is not
caused by any difficulty in simulating the mechanism, but is instead caused by the diffi-
culty of trying exponentially many options of untruthful declarations to the mechanism.

Therefore, in the domain of network flows, it is possible to achieve an individually-
rational, allocatively-efficient,ǫ-budget-balanced, and strategy-resistant mechanism. The
standard VCG solution in this domain would be only weakly budget-balanced, but
strategy-proof. Impossibility results [1] and [2] indicate that no direct-revelation mecha-
nism can achieve strong budget-balance without sacrificingeither allocative-efficiency
or strategy-proofness. We believe that in many cases, trading strategy-proofness for
strategy-resistance is a fair price to pay for achieving strong budget-balance.

There has been much work dedicated to overcoming the intractability of mecha-
nisms, since in building a real-world mechanism we cannot assume unbounded com-
putation. However, if we are not willing to accept unbounded-rationality on themech-
anism’spart, we must also consider the implications of the bounded-rational nature of
theagents.

We believe that strategy-proofness should not be the only criteria when consider-
ing the susceptibility of a mechanism to manipulations. In fact, we believe it is found
on one end of ascaleof susceptibility. On the other end of this scale are mechanisms
where there exists a poly-time algorithm for finding the optimal manipulation. Such
mechanisms probably cannot be used in practice, since they are so easy to manipu-
late. Between these two extremes is the region of strategy-resistant mechanisms. In this
paper we have implicitly defined a strategy-resistant mechanism as one in which it is
NP-hard to find the optimal manipulation. As we have commented above, this is a rather
weak notion of strategy resistance. A preferable solution would be one in which it is
computationally intractable to findanymanipulation. NP-hardness is not sufficient for
a problem to be computationally intractable. For example, we can require the manipu-
lation problem to have no approximation methods, or show that most instances of the
manipulation problem are indeed hard.

In this paper we have shown that in the network flow domain, we can gain budget-
balance by giving up strategy proofness, and replacing it with our notion of strategy-
resistance. Assuming we are willing to accept strategy-resistance as a sufficient guar-
antee that agents would truthfully declare their types, we have improved the results
obtained by VCG for this problem.

We have chosen the self-interested network flow domain, because in this case we
were able to find a mechanism that was tractable in its computational properties, and
also had good results in the sense of being budget-balanced.This domain demonstrates
that by using a very simple payment scheme we can create a significant gap between the
amount of work the mechanism performs (in this case a simple poly-time algorithm) and
the amount of work an agent is required to perform in order to find a beneficial manip-
ulation (in this case solving an NP-hard problem). We believe further research can find
domains in which the mechanism is required to perform harderwork (e.g., solving an

NP-hard problem by approximation), and manipulations are completely intractable. It
may be possible to achieve budget-balance while retaining astronger notion of strategy-
resistance, even in this domain. Also, it may be possible to find other valuable trade offs
in other domains. It remains an open problem to characterizethe domains in which us-
ing computational complexity in this way is possible, and tofind domains in which a
stronger sense of strategy-resistance can be achieved.

References

1. Green, J., Laffont, J.J.: Characterization of satisfactory mechanisms for the revelation of
preferences for public goods. Econometrica45 (1977) 427–38

2. Hurwicz, L.: On the existence of allocation systems whose manipulativeNash equilibria are
pareto-optimal. In: 3rd World Congress of the Econometric Society (Unpublished). (1975)

3. Conitzer, V., Sandholm, T.: Universal voting protocol tweaks to make manipulation hard.
In: Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence
(IJCAI), Acapulco, Mexico (2003)

4. Bartholdi, J.J.: The computational difficulty of manipulating an election.Social Choice and
Welfare6 (1989) 227–241

5. Conitzer, V., Sandholm, T.: Computing shapley values, manipulating value division schemes,
and checking core membership in multi-issue domains. In: Proceedingsof the 19th National
Conference on Artificial Intelligence (AAAI), San Jose, California, USA (2004) 219–225

6. Shapley, L.S.: A value for n-person games. Contributions to the Theory of Games (1953)
31–40

7. Sandholm, T., Lesser, V.R.: Coalitions among computationally bounded agents. Artificial
Intelligence94 (1997) 99–137

8. Sanghvi, S., Parkes, D.C.: Hard-to-manipulate combinatorial auctions. Technical report,
Harvard University (2004)

9. Lavi, R., Mu’alem, A., Nisan, N.: Towards a characterization of truthful combinatorial auc-
tions (extended abstract). In: Proceedings of the 44th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS). (2003)

