
Strategyproof Peer Selection using
Randomization, Partitioning, and Apportionment

Haris Aziz

UNSW Sydney and Data61 CSIRO, Sydney 2052, Australia

Omer Lev

Ben-Gurion University of the Negev, Beersheba 8410501, Israel

Nicholas Mattei

Tulane University, New Orleans, LA 70115, USA

Jeffrey S. Rosenschein

Hebrew University of Jerusalem, Jerusalem 91904, Israel

Toby Walsh

UNSW Sydney and Data61 CSIRO, Sydney 2052, Australia

Abstract

Peer reviews, evaluations, and selections are a fundamental aspect of modern
science. Funding bodies the world over employ experts to review and select the
best proposals from those submitted for funding. The problem of peer selection,
however, is much more general: a professional society may want to give a subset
of its members awards based on the opinions of all members; an instructor
for a Massive Open Online Course (MOOC) or an online course may want
to crowdsource grading; or a marketing company may select ideas from group
brainstorming sessions based on peer evaluation.

We make three fundamental contributions to the study of peer selection, a
specific type of group decision-making problem, studied in computer science,
economics, and political science. First, we propose a novel mechanism that is
strategyproof, i.e., agents cannot benefit by reporting insincere valuations. Sec-
ond, we demonstrate the effectiveness of our mechanism by a comprehensive

Email addresses: haris.aziz@data61.csiro.au (Haris Aziz), omerlev@bgu.ac.il (Omer
Lev), nsmattei@tulane.edu (Nicholas Mattei), jeff@cs.huji.ac.il (Jeffrey S.
Rosenschein), toby.walsh@data61.csiro.au (Toby Walsh)

This is a significantly revised and expanded version of our conference paper from AAAI
2016 [3]. This version introduces the exact version of Dollar Partition along with new proofs
and a new experiment.

Preprint submitted to Elsevier May 1, 2019

ar
X

iv
:1

60
4.

03
63

2v
4

 [
cs

.G
T

]
 3

0
A

pr
 2

01
9

simulation-based comparison with a suite of mechanisms found in the litera-
ture. Finally, our mechanism employs a randomized rounding technique that is
of independent interest, as it solves the apportionment problem that arises in
various settings where discrete resources such as parliamentary representation
slots need to be divided proportionally.

Keywords: peer review; crowdsourcing; algorithms; allocation

1. Introduction

Since the beginning of civilization, societies have been selecting small groups
from within. Athenian society, for example, selected a random subset of citizens
to participate in the Boule, the council of citizens that ran daily affairs in Athens.
Peer review, evaluation, and selection has been the main process by which sci-
entific conferences have selected a subset of papers for publication. Increasingly,
peer evaluation is becoming popular and necessary to scale grading in MOOCs
(Massive Open Online Courses, e.g., Coursera and EdX) [47, 38, 14]. In all of
these peer selection settings, however, we do not wish to select an arbitrary sub-
set of size k, but the “best k”, and we need, therefore, a procedure in which the
candidates are rated according to the opinions of the group. In peer selection
problems we are not seeking an external, “independent” agent to make choices,
but desire a crowdsourced approach, in which participants are those making the
selection. Mechanisms for peer selection and the properties of these mechanisms
receive considerable attention within economics, political science, and computer
science [2, 34, 24, 19, 26, 25, 33, 52].

Our initial motivation comes from the recent U.S. National Science Foun-
dation (NSF) “mechanism design pilot,” which was an attempt to spread the
review load amongst all submitters of proposals [25, 45]. The program uses “re-
viewers assigned from among the set of PIs whose proposals are being reviewed.”
Reviewers’ own proposals get “supplemented with ‘bonus points’ depending upon
the degree to which his or her ranking agrees with the consensus ranking ([56],
Page 46).” This mechanism employed by the NSF is not strategyproof; reviewers
are incentivized to guess what others are thinking, not to provide their honest
feedback. Hence the mechanism induces a type of Keynesian “Beauty Contest”
[30] where the incentives are misaligned and humans have been shown to not be-
have truthfully [17]. Removing the bonus may be worse, as reviewers would then
be able to increase the chance of their own proposal being accepted by rating
other proposals lower [46]. In either case, reviewers can benefit from reporting
something other than their true values. When agents have the incentive to mis-
represent their truthful reports, the effect on the results of the aggregation or
selection mechanism can be problematic. Indeed, in a comprehensive evaluation
of the peer review process, Wenneras and Wold [59] wrote, “. . . the development
of peer-review systems with some built-in resistance to the weakness of human
nature is therefore of high priority.”

2

We propose a novel strategyproof, (which we shall also call impartial) mecha-
nism2 where agents can never gain by being insincere. There are many reasons to
prefer a strategyproof mechanism: first, the mechanism does not favor “sophis-
ticated” agents who have the expertise to behave strategically. Second, agents
with partial or no knowledge of other agents’ rankings are not at a disadvan-
tage when using a strategyproof mechanism. Third, normative properties of a
mechanism typically assume sincere behavior on the part of the agents. If agents
act strategically, we may lose some desirable normative properties. Fourth, it
is, in general, easier to persuade people to use a strategyproof mechanism than
one that can be (easily) manipulated. Note that while strategyproofness does
not handle all potential biases of agents, it eliminates an obvious “weakness in
human nature.”

To achieve strategyproofness we could use a lottery (as in the Athenian
democracy). However, this method does not select based on merit. A different
option is to use a mechanism based on a voting rule. However, following Gibbard
and Satterthwaite [21, 53], any “reasonable” mechanism based on voting will
not be strategyproof unless it is a dictatorship. Another option is to employ a
mechanism like the Page Rank algorithm that uses Markov chains to compute
a ranking of agents [58]. However, such mechanisms are also not strategyproof.

Contributions. First, we propose a novel peer selection mechanism, ExactDol-
larPartition, that satisfies several desirable axiomatic properties including
strategyproofness and two natural monotonicity properties. Second, we conduct
a detailed experimental comparison with other strategyproof mechanisms with
regard to their ability to recover the “ground truth”. Our experiments demon-
strate that ExactDollarPartition selects more high-quality agents more of-
ten, selects more high-quality agents in the worst case, and has more consistent
quality than any other strategyproof mechanism in the literature. Third, our
mechanism uses a novel randomized apportionment subroutine to fairly round
selected fractional group sizes to integers. This subroutine is interesting in its
own right as it provides a compelling solution to the fundamental problem of
apportionment: allocating representatives or resources in proportion to group
size or strength of demand. Young [61] motivates the problem as follows: “This
surprisingly difficult problem has concerned statesmen, political analysts and
mathematicians for over two hundred years.”

2. Discussion and Related Work

Peer review is the cornerstone of modern science and hence, the quality,
veracity, and accuracy of peer review and peer evaluation is a topic of inter-
est across a broad set of disciplines. Most empirical studies of peer review and
peer selection focus on the effectiveness and limits of the system, typically by

2Strategyproof in the peer selection setting differs from the voting setting. In peer selection
impartial means one cannot make themselves be selected if they wish to do so.

3

assembling large corpora of peer-reviewed proposals and cross-examining them
with new panels or review processes [16, 35]. Questions of bias, nepotism, sex-
ism, cronyism, among other issues, have received extensive coverage, and have
been substantiated to varying degrees, in the literature [16, 44, 59]. However,
a consistent conclusion in the meta-research on peer review is that, in order to
decrease the role of chance and/or any systematic bias, the community needs
to broaden the base of reviewers. Indeed, one way for the results of the review
process to reflect the views of the entire scientific constituency and provide more
value to the community is to increase the number of reviewers [28, 49]. The key
scientific question lies in finding a mechanism that allows for crowdsourcing the
work of reviewing, without compromising the incentives and quality of the peer
review and selection process.

The criticism that prominent peer selection mechanisms such as those un-
der consideration by American and European funding bodies [45, 25] are not
strategyproof [46] has underscored the need to devise mechanisms with bet-
ter incentive properties. The literature most directly relevant to this article is
a series of papers on strategyproof (impartial) selection [26, 2] and more re-
cently impartial ranking [29]. The explosive growth in computer science and
machine learning conference submissions in the past years has led to more work
in the computer science and machine learning fields are using data from large
conferences [54] and even performing human experiments [31] to analyze the
assignment [36, 55] and outcomes of various novel mechanisms for peer review.
We survey and provide details of these mechanisms in the next section. Most of
the work on strategyproof peer selection focuses on the setting in which agents
simply approve (nominate) a subset of agents [2, 12, 19, 26], with the latter
three of these restricting attention to the setting in which exactly one agent is
selected (k = 1).3 A popular class of strategyproof peer selection mechanisms
are Partition based mechanisms, as presented in Alon et al. [2], where agents are
divided into non-intersecting groups. Kurokawa et al. [33] present an interesting
strategyproof mechanism (Credible Subset) that performs well when each agent
reviews a very small number of agents relative to the total number of agents.
Other recent work focuses on tradeoffs between different axioms concerning peer
selection [7, 39].

Both Alon et al. [2] and Holzman and Moulin [26] examine the selection
problem in which agents simply approve (nominate) a subset of agents. Holz-
man and Moulin [26], Fischer and Klimm [19], and Bousquet et al. [12] restrict
their attention to a setting in which exactly one agent is selected (k = 1). Fischer
and Klimm [19] also present the Permutation mechanism that achieves the same
bound as the Partition mechanisms when only one agent is selected (k = 1).
Alon et al. [2] and Holzman and Moulin [26] showed that for the peer selection

3In Alon et al. [2] and Kurokawa et al. [33] the letter k is used to denote the number of
partitions, in our paper and many others, k designates the number of agents selected. Therefore
we use ` to denote the number of partitions in this paper and k to denote the number of agents
selected.

4

problem, deterministic impartial mechanisms are extremely limited, and must
sometimes select an agent with zero nominations even though other agents re-
ceive nominations, or an agent with one nomination when another agent receives
n−1 nominations [19]. Bjelde et al. [9] built on this work to show that allowing a
mechanism where agents simply approve of some subset of agents to select fewer
than k agents allows the mechanism to guarantee some bounds on the selected
items—they are within about 1− 1

e from the optimal selection. Kurokawa et al.
[33] present a more general mechanism called Credible Subset that is strate-
gyproof but may select no winners with non-zero probability. Credible Subset
performs well when each agent reviews a few other agents, and this number is
considerably smaller than k.

There are a number of practical application areas that are related to and/or
use peer selection. The peer selection problem is closely related to peer-based
grading/marking [1, 28, 32, 47, 51, 58, 60] especially when students are graded
based on percentile scores. For peer grading, mechanisms have been proposed
that make a student’s grade slightly dependent on the student’s grading accu-
racy (see e.g., Walsh [58] and Merrifield and Saari [45]). However such mecha-
nisms are not strategyproof as one may alter one’s reviews to obtain a better
personal grade. Finally, as an additional and recent application area, economists
have studied mechanisms and the strategic issues that arise in using peer evalua-
tion for micro-financing and other reputation based resource allocation problems
[6, 10, 27].

3. Setup and Survey of Existing Mechanisms

Given a set N of agents {1, . . . , n} where each agent, depending on the
setting, evaluates some m of the other agents where 0 ≤ m ≤ n− 1. Each agent
reports a valuation (review) over the other agents (proposals). These reports
could be cardinal valuations vi(j) for agent i’s valuations of agent j, or they
could be a weak order reported by agent i of agents in N \ {i}, which may be
transformed to cardinal valuations using a scoring rule. Based on these reported
evaluations, around k agents are selected. Some mechanisms, such as Credible
Subset, may not always return a size of exactly k even if the target size is k.

A particular family of mechanisms with which we will deal are based on
partitioning. The general idea of partitioning-based mechanisms is to divide the
agents into a set of clusters C = {C1, . . . , C`}. This partition can be done using
either a random process or some predetermined process that does not include
randomization. We will assume that cluster sizes are such that selection from
them is not a problem: for all 1 ≤ i ≤ `, k ≤ |Ci|. If N

` is not an integer then

we assume that k ≤
⌊
N
`

⌋
, the smallest cluster size.

3.1. Mechanisms

There are three prominent mechanisms for peer selection that appear in the
literature.

5

Vanilla: Select the k agents with the highest total value based on their reviews
by other agents (as done today, for example, in many scientific conferences).
Vanilla is not strategyproof; unselected agents have an incentive to lower their
reported valuations of selected agents.

Partition: Divide the agents into ` clusters and select a preset number of agents
from each cluster, typically k/` (rounded in some way if k/` is not an integer),
according to the valuations of the agents not in that cluster. This class of
mechanisms is a straightforward generalization of the Partition mechanism
[2, 19] (and in an early version of Kurokawa et al. [33]) which is strategyproof.

Credible Subset [33]: Let T be the set of agents who have the top k scores,
as in Vanilla. Let P be the set of agents who do not have the top k scores
but will make it to the top k if they do not contribute any score to other
agents (hence |P | ≤ m). With probability (k + |P |)/(k +m), Credible Subset
selects a set of k agents uniformly at random from T ∪P , and with probability
1− (k + |P |)/(k +m), it selects no one. The mechanism is strategyproof.

There are a number of other mechanisms that are tailor-made for k = 1 and
when agents only mark approval of a subset of agents: Partition [26]; Permu-
tation [19]; and Slicing [12]. When designing our mechanism, we were inspired
by mechanisms for dividing a continuous resource from the economics litera-
ture [18, 57]. In particular, we use ideas from the following mechanism.

Dividing a Dollar: Each agent i reports a value vi(j) that is his estimation of
how much of the resource agent j should receive. These values are normalized
so that

∑
j∈N\{i} vi(j) = 1/n. Hence, the Dollar share of each agent i is

xi =
∑
j∈N\{i} vj(i).

3.2. Properties of Mechanisms

We consider some basic axioms of peer selection mechanisms. When algo-
rithms involve randomization, these properties are with regard to the probability
of selection.

Anonymity: For some permutation of n agents π, if W is the outcome of the
mechanism for agents N , with each agent i giving a valuation on agents
i1, . . . im, then π(W) is the outcome of the mechanism for agents N where
each agent π(i) gives valuations on agents π(i1), . . . , π(im).

Non-imposition: For any target set W , there is a valuation profile and a
randomization seed that achieves W .

Strategyproofness (Impartiality): Agents cannot affect their own selection.

Monotonicity: If agent i is selected, and some other agent j reinforce it, in-
creasing i’s relative position in her ranking without changing the relative

6

position of other agents, then agent i will still be selected. 4

Committee Monotonicity: If W is the outcome when the target set size is
k, then all the agents in W are still selected if the target set size is k+ 1.

4. ExactDollarPartition

The algorithm ExactDollarPartition is formally described in Algorithm
1. Broadly, it works as follows: agents are partitioned into ` clusters such that
the sizes of clusters are equal or as near as possible, with difference at most
1. Each agent i ∈ N assigns a value vi(j) to each agent i′ that is among the
m agents that i reviews, none of which are in i’s cluster. Agent i may directly
give a cardinal value to the agents they review or the cardinal value may be
obtained by a scoring function that converts an ordinal ranking given by i to
cardinal values. In either case, the values that i gives are normalized so that
agent i assigns a total value of 1 to the m agents they are to review outside
their own cluster. Based on the values from agents outside the cluster we assign
the normalized weight (Dollar Share) xj to each cluster Cj . Based on each
Dollar Share xj , each cluster has a quota sj = xj · k (possibly real but not
rational). If all sj ’s are integers, then each sj is the quota of cluster Cj , i.e.,
the top graded sj agents are selected from cluster Cj . If not all sj are integers,
then we use the function AllocationFromShares in line 7 (detailed in the
next section) to enumerate discrete cluster allocations in which each cluster gets
an allocation of either bsjc or dsje. AllocationFromShares then computes
a probability distribution over these discrete allocations, requiring at most `
such allocations, so that the expected quota for each cluster will be exactly sj .
We draw a discrete allocation (t1, . . . , t`) using the distribution computed in
AllocationFromShares and select exactly the tj agents from each cluster
Cj with the highest score. The agents who have a higher score will be referred
to as having a higher ranking. We note that the algorithm gracefully handles
the case where an agent is absent, i.e., does not submit their reviews, or if she
gives zero score to every other agent that she is responsible for reviewing. The
algorithm handles this case by forcing the agent to give equal score to all the
other agents reviewed, i.e., 1

m .
We illustrate the working of our algorithm with the following example.

Example 1. Suppose we want to select k = 5 winners from our agents, which
are divided into four clusters, each with 2 agents, giving us n = 8, each agent
being responsible for reviewing m = 2 other agents. Table 1 shows the initial
grades, on a scale of 0 − 100 given by the row agent to their peers listed in the
columns. Table 2 shows these grades following normalization so that each agent
distributes 1.0 point to the m = 2 agents they review.

4When scores are used instead of ordinal rankings, we are, in a sense, converting them
to ordinal rankings by looking at normalized scores, in which the sum of all scores is 1. The
property states that if only agent i’s normalized score is raised, it will still be selected.

7

Algorithm 1 ExactDollarPartition

Input: Set of agents N , valuations (v1, . . . , vn) of the agents, m the number
of reviews per agent, and ` the number of clusters.

Output: Set of winning agents W .

1 Initialize W ← ∅
2 Generate a partition {C1, . . . , C`} of N where the difference between the

sizes of any two clusters is at most 1.
3 Each i ∈ N reviews m agents outside C(i), where C(i) is the cluster of agent
i, so that any reviewed agent j is assigned a valuation vi(j).

4 Ensure
∑
j /∈C(i) vi(j) = 1 by normalizing. If vi(j) = 0 for all j, then we

vi(j) = 1/m for each j reviewed by i.
5 xi, the value of a cluster Ci, is defined as:

xi ←
1

n
×

∑
j∈Ci,j′ /∈Ci

vj′(j).

{Using the xi values, we now compute the number of agents ti to be chosen
from each cluster Ci.}

6 Let each share si ← xi · k for each i ∈ {1, . . . , `}.
7 (t1, . . . , t`) ← AllocationFromShares (s1, . . . , s`) where (t1, . . . , t`) are

the number of agents to be allocated from each cluster.
8 For each i ∈ C(i), the score of agent i is

∑
i′ /∈C(i) vi′(i).

9 Select tj agents with the highest scores from each cluster Cj and place them
in set W .

10 return W

This means the overall scores are:

Cluster 1: x1 =

∑
j∈C1,j′ /∈C1

vj′(j)

n
=

1.9526

8
= 0.244075⇒

Therefore, s1 = x1 · k = 1.220375

Cluster 2: x2 =
1.9484

8
= 0.24355⇒ s2 = 1.21775

Cluster 3: x3 =
1.6266

8
= 0.203325⇒ s3 = 1.016625

Cluster 4: x4 =
2.4724

8
= 0.30905⇒ s4 = 1.54525

This process leaves us with a share vector of

~s = (1.220375, 1.21775, 1.016625, 1.54525).

While
∑
~s = k observe that not all the numbers are integers, leaving us the

need to apportion the remainders. The function AllocationFromShares is
explored further in Example 2, but for now, it suffices to know that since the

8

Table 1: Example grades of row agent for column agent.

A B C D E F G H

A [cluster 1] 0 100
B [cluster 1] 80 30
C [cluster 2] 83 42
D [cluster 2] 77 50
E [cluster 3] 65 65
F [cluster 3] 56 98
G [cluster 4] 29 62
H [cluster 4] 75 29

Table 2: Example grades following normalization.

A B C D E F G H

A [cluster 1] 0 1.00
B [cluster 1] 0.7272 0.2728
C [cluster 2] 0.664 0.336
D [cluster 2] 0.6063 0.3937
E [cluster 3] 0.50 0.50
F [cluster 3] 0.3636 0.6364
G [cluster 4] 0.3187 0.6813
H [cluster 4] 0.7212 0.2788

number of agents for each cluster is rounded up or down, from one of the clus-
ters we need to choose 2 agents, and 1 agent from the others. The highest prob-
ability is given to the event in which cluster 4 is the only one that will select 2
agents, giving us our allocation ~t = (1, 1, 1, 2). This allocation vector leads to the
selection of the agents A,C, F,G,H, which are the top-ranked agent in clusters
1, 2, and 3, and both agents of cluster 4.

We defer our proofs and analysis of the properties of the apportionment
method— function AllocationFromShares—to the next section. For the
analysis of the overall mechanism, it is enough to assume it chooses an alloca-
tion of size k from a probability space constructed so that the expected share
of each cluster j is sj . As no agent is treated differently in the mechanism,
ExactDollarPartition is anonymous and satisfies non-imposition.

Theorem 1. ExactDollarPartition is strategyproof.

Proof. Suppose agent i is in cluster Cj of the generated partition. Agent i will
be selected in W if and only if its score is among the top tj scores from agents
in Cj . Therefore agent i can manipulate either by increasing tj or by increasing

9

its score relative to other agents in Cj given by agents outside Cj . Since agent
i cannot affect the latter, the only way it can manipulate is by increasing tj .
We argue that agent i cannot change its expected tj by changing its valuation
vi for agents outside the cluster. Note that i contributes a probability weight of
1/n to agents outside Cj and zero probability weight to agents in Cj . Hence it
cannot affect the value xj of cluster Cj . As sj is derived from xj , agent i cannot
affect sj .

As we will show in our analysis of AllocationFromShares, specifically
Theorem 6, the expected value of tj will be sj (and its value is either bsjc or
dsje, in the unique probabilities that make the expected value sj). Since any
agent in cluster Cj that changes its report does not affect sj , it does not affect
the expected tj , nor the respective probabilities of getting bsjc and dsje. Hence,
agent i cannot manipulate by either increasing the tj of his cluster or by increas-
ing his score relative to the agents in Cj . Therefore, ExactDollarPartition
is strategyproof.

Remark 1. ExactDollarPartition is not just strategyproof but even group-
strategyproof if manipulating coalitions involve agents from the same cluster (so
potentially colluding agents, e.g., with conflict of interest, can be put in the same
cluster).

Theorem 2. ExactDollarPartition is monotonic.

Proof. Let us compare the valuation profile v when i is not reinforced and v′

when i is reinforced. The relative ranking of i is at least as good when i is
reinforced. Since any decrease in valuation that an agent j in C(i) receives
translates into the same increase in the valuation received by agent i, the total
valuation that C(i) receives does not decrease and hence the number of agents
selected from C(i) is at least as high as before.

Theorem 3. ExactDollarPartition is committee monotonic.

Proof. The only difference between running the algorithm for different target k
values is when calculating the quota vector ~s. However, if agent i in cluster Cj
was selected, that means its ranking in the cluster Cj was above tj . When k
increases, sj will only increase (as xj remains the same), and hence so will tj ,
ensuring that i will be selected again.

5. A Randomized Apportionment Rule

The randomized allocation technique we call AllocationFromShares used
for ExactDollarPartition is of independent interest since it addresses the
classic apportionment problem in a randomized way. Consider the problem in
which n agents divided into ` disjoint groups are to be allocated a given num-
ber of slots k < n in proportion to the group sizes. The problem is ubiquitous
in apportionment settings such as proportional representation of seats in the

10

U.S. congress, European Parliament, and the German Bundestag as well as
various other committee selection settings [4, 5, 8, 43, 50]. This problem has
been studied in political science, economics, operations research, and computer
science for over 200 years [61].

In these settings, each group i has a quota si with
∑n
i=1 si = k, which

we call its target quota. Since si may not be an integer, we have to resort to
apportionment, which means that in order to allocate exactly k slots, some group
may be assigned an integer quota slightly more or less that its target quota.

Numerous apportionment procedures have been introduced in the literature
including the methods of Hamilton, Jefferson, Webster, Adams, and Hill [4];
each with its own drawbacks. In fact, Balinski and Young [4] proved that no
deterministic apportionment procedure can satisfy a group of three minimal
axioms: (1) Quota Rule, each group should get quota that is the result of the
target quota being rounded up or down; (2) Committee Monotonicity, if k in-
creases then the quotas do not decrease; and (3) Monotonicity, if si < sj and
the quotas are perturbed such that the percentage increase of si is more than
the percentage increase of sj , then i should not lose a slot to j. We call discrete
quota allocations that satisfy the quota rule and allocate exactly k slots as nice
allocations.

5.1. Curse of Determinism: The Need for Randomization

We first demonstrate that randomization is a necessary feature of an appor-
tionment mechanism in order to select exactly k agents and strategyproofness.
Therefore, any deterministic and strategyproof method of using fractional quo-
tas to derive integer quotas can result in outcomes that are not of the target
size (e.g., [3]).

Theorem 4. No Partition-based method, which assigns non-integer quotas to
each cluster can select exactly k agents by rounding the quotas in a determinis-
tically strategyproof way.

We first prove the following lemma.

Lemma 1. In a deterministic strategyproof allocation mechanism that selects k
agents from ` clusters, the number of agents chosen from cluster i with a share
si will not change, regardless of the rest of the shares.

Proof. Let s = (s1, . . . , s`) be the shares for each cluster, under which a mecha-
nism allocates y agents from cluster i. Now, let s′ = (s′1, . . . , s

′
i−1, si, s

′
i+1, . . . , s

′
`)

be a different share allocation. We wish to show that the number of agents se-
lected from cluster i remains y.

We know
∑
j 6=i sj =

∑
j 6=i s

′
j . If

∑
j 6=i |(sj − s′j)| ≤

2
n , this means a single

agent can cause the change from s to s′. As the share values do not contain
data on actual agents votes, that single agent could be in cluster i (since si did
not change at all). Thanks to strategyproofness, this means there is no change
in the number of agents selected from cluster i—it is still y agents.

11

If
∑
j 6=i |(sj − s′j)| >

2
n , we make the move from s to s′ using intermediary

steps, s0, . . . , sh such that aj = (sj1, . . . , s
j
`) a share allocation where sji = si,

s0 = s, sh = s′, and for 1 ≤ t ≤ h,
∑
j 6=i |(stj − st−1j)| ≤ 2

n . Thanks to the
argument in the previous paragraph, the number of agents selected from cluster
i stays y in s1. Now we can look at s1 and s2 by themselves, and due to the
same argument, the number of agents from cluster i needs to be the same in s1

and s2, hence it is still y in s2. We apply this argument again and again, until
we reach the point where the number of agents selected from cluster i in sh = s′

is y as well.

Proof of Theorem 4. Suppose there is a rounding of quotas that guarantees the
selection of k agents. Let us assume k clusters and k > 3 is odd. Using Lemma 1,
we know that each cluster’s slot allocation is fixed according to its share, re-
gardless of other clusters’ share. Hence, for each cluster with a share of 1.5, it
receives an allocation of either 1 slot or 2.

Case I: There are 2 clusters that are allocated 2 slots when their share is 1.5.
Suppose these 2 clusters have a share of 1.5, some other cluster has share 0, and
all remaining clusters have share 1. Hence we had k shares, but received k + 1
slot allocations.

Case II: There are 2 clusters that are allocated 1 slot when their share is 1.5.
Suppose these 2 clusters have a share of 1.5, some other cluster has share 0, and
all remaining clusters have share 1. Hence we had k shares, but received k − 1
slot allocations.

Determinism does not just prevent strategyproof mechanisms, but also anony-
mous ones as shown by the following Theorem.

Theorem 5. No Partition-based method, which assigns non-integer quotas to
each cluster can select exactly k agents by rounding the quotas in a determinis-
tically anonymous way.

Proof. Let ` = 3, with clusters being of equal size. All agents in cluster 1 rank
agents in cluster 2 before any in cluster 3; agents in cluster 2 rank those in
cluster 3 ahead of cluster 1; and those in cluster 3 rank agents in cluster 1
ahead of those in 2. So share of each cluster is equal, and for k < ` there is no
deterministic anonymous way to allocate quotas.

5.2. A Novel Randomized Apportionment Rule

We resort to randomization to achieve ex ante fairness and the target size.
Using randomization, our goal is to ensure that the target number of total
agents chosen is exactly k ex post. Therefore we will require that the integer
quota allocation returned by the lottery is a nice allocation. Randomization has
been used in various settings such as voting and fair allocation of indivisible
goods to achieve ex ante as well as procedural fairness [13, 11, 22].

12

One possible way to achieve the appropriate randomization is to enumer-
ate all the feasible discrete quota allocations and then solve equations to find
the probability distribution over these quota allocations. If such a probability
distribution exists, the method outlined involves enumerating an exponential
number of such quota allocations that is computationally infeasible if the num-
ber of groups is large (for example, in U.S. elections, ` is 50). Hence, some
suggested approaches to this problem require multiple rounds of randomization
and also do not enumerate the possible ex post outcomes (there may be an ex-
ponential number of them) [20]. Previously, a stochastic apportionment rule was
presented that achieves the quota requirements [23] by two randomizations, one
of them using a stochastic continuous variable. This means that it does not in-
volve a probability distribution over discrete nice allocations, hence it cannot be
used to achieve fairness via repeated representation. Moreover, due to comput-
ers not being able to reproduce truly continuous values, this may compromise
strategyproofness.

In view of these challenges, we present a simple method Allocation-
FromShares that achieves the target quotas, relies on a probability distri-
bution over a linear number of nice allocations, the probability distribution
can be computed in linear time, and requires minimal randomization (only one
round). Our randomized procedure can be easily de-randomized in repetitive
settings. In frequently repeated allocation settings, one could use the nice allo-
cations computed by AllocationFromShares (at most `, compared to the
potentially exponential number) in a way such that the allocations have the
same frequency as the probability distribution computed by the algorithm. In
this sense, our randomized apportionment routine has an advantage over other
proposed methods.

Informally, our method proceeds gradually from quotas which need to be
rounded up with low probability, while keeping an eye on our two main con-
straints: not rounding up a quota too much, on the one hand, while not being
left with not enough probability for allocations with quotas that need to be
rounded up with high probability.

Example 2. We give an example of the working of AllocationFromShares,
shown in Algorithm 2, when a set of quotas are not integers. Suppose we have
the following Dollar shares for ` = 5:

~s = (1.1, 2.1, 1.3, 1.7, 1.8)

We wish to select k = 8 agents. The α, number of clusters that need to be
rounded up, computed on line 5, is 2, and we start with low = 1;high = 5.
We begin by considering the allocation:

~t1 = (d1.1e , d2.1e , b1.3c , b1.7c , b1.8c) = (2, 3, 1, 1, 1)

Since 0.1 = s1 − bs1c < ds5e − s5 = 0.2, this allocation will get a probability of
0.1. Now low = 2 (since cluster 1 should not be rounded up any more), p̄ = 0.1,
and we “slide” our allocation by one to the right, and look at the next allocation:

~t2 = (b1.1c , d2.1e , d1.3e , b1.7c , b1.8c) = (1, 3, 2, 1, 1)

13

Algorithm 2 AllocationFromShares (s1, . . . , s`)

Input: A real-value allocation (s1, . . . , s`) over ` objects.
Output: A discrete allocation (t1, . . . , t`) over ` objects.

1 Sort and renumber (s1, . . . , s`) according to size of si − bsic, with s1 − bs1c
being minimal.

2 Let (p1, . . . , p`) ←− (0, . . . , 0) where pi is the probability of rounding up
cluster i.

3 Let p̄←− 0, the total probability allocated so far.
4 Let D ←− ∅, where D maps: allocation → probability.
5 α←−

∑`
i=1(si − bsic)

6 low ←− 1; high←− `
7 while low ≤ high do
8 Let allocation←− (bs1c , . . . , bslow−1c , dslowe , . . . ,
9 dslow+α−1e , bslow+αc , . . . , bshighc,dshigh+1e , . . . , ds`e)

10 Where if low=1, we start with ds1e; if high = `, we
11 end with bshighc; and if α = 0, we have only bslowc.
12 prob←− 0
13 prevLow ←− low; prevHigh←− high
14 if α = 0 then
15 prob←− 1− p̄;high←− high− 1
16 else
17 if slow − bslowc − plow < dshighe − shigh − p̄+ phigh then
18 prob←− slow − bslowc − plow; low ←− low + 1
19 else
20 prob←− dshighe − shigh − p̄+ phigh
21 high←− high− 1; α←− α− 1
22 end if
23 end if
24 for all i such that prevLow ≤ i < prevLow+α or prevHigh < i ≤ ` do
25 pi ←− pi + prob
26 end for
27 p̄←− p̄+ prob
28 D ←− D ∪ (allocation→ prob)
29 end while
30 Select an allocation (t1, . . . , t`) according to D.
31 return (t1, . . . , t`)

Since the second cluster has been rounded up with a probability of 0.1 in the
previous allocation, s2 − bs2c − p(v2) = 0. Therefore this allocation is given
probability 0, p̄ does not change and now low = 3. We now move to allocation:

~t3 = (b1.1c , b2.1c , d1.3e , d1.7e , b1.8c) = (1, 2, 2, 2, 1)

We see 0.3 = s3 − bs3c − pv3 > ds5e − s5 − p̄ + pv5 = 0.1, so this allocation is
given probability 0.1, p̄ = 0.2, and from now on cluster 5 will always be rounded

14

up in every allocation we consider. Hence, α and high now change: α = 1 and
high = 4. We now turn to look at:

~t4 = (b1.1c , b2.1c , d1.3e , b1.7c , d1.8e) = (1, 2, 2, 1, 2)

Since 0.2 = s3 − bs3c − pv3 = ds4e − s4 − p̄+ pv4 = 0.2, we give this allocation
the probability 0.2, p̄ = 0.4, and low = 4. Finally, we look at:

~t5 = (b1.1c , b2.1c , b1.3c , d1.7e , d1.8e) = (1, 2, 1, 2, 2)

We give this allocation the probability s4 − bs4c − pv4 = 0.6.
Overall, the algorithm yields a probability distribution over ` allocation vec-

tors.

t1 = (2, 3, 1, 1, 1) : 0.1

t2 = (1, 3, 2, 1, 1) : 0.1

t3 = (1, 2, 2, 2, 1) : 0.1

t4 = (1, 2, 2, 1, 2) : 0.2

t5 = (1, 2, 1, 2, 2) : 0.6

This defines our probability space, and the expected number of agents se-
lected from each cluster is exactly its Dollar share: (1.1, 2.1, 1.3, 1.7, 1.8).

Theorem 6. AllocationFromShares defines a distribution and the expected
allocation of each cluster i is its share si.

To prove this theorem, we first need several lemmas. Note that any cluster
i needs to be rounded up with probability of si − bsic, and rounded down with
probability dsie − si.

Lemma 2. Let z = (z1, . . . , z`) ∈ N` and let set A = {z′ ∈ N` | in α ∈
N coordinates z′i = zi + 1. In the rest z′i = zi}. For any ẑ = (ẑ1, . . . , ẑ`) that is

a simplex of A (i.e., ẑ =
∑
a∈A paa such that

∑
a∈A pa = 1),

∑`
i=1(ẑi−zi) = α.

Proof.

∑̀
i=1

(ẑi − zi) =
∑̀
i=1

[
(
∑
a∈A

(paai))− (
∑
a∈A

pa)zi
]

=
∑
a∈A

pa
[∑̀
i=1

(ai − zi)
]

For any a ∈ A, from A’s definition we know
∑`
i=1(ai − zi) = α. Hence:

∑
a∈A

pa
[∑̀
i=1

(ai − zi)
]

=
∑
a∈A

paα = α
∑
a∈A

pa = α

15

Note that Lemma 2 is applicable to our algorithm, as we can consider z =
(bs1c , . . . , bs`c) as a basis, and in each allocation the algorithm rounds up α
coordinates, and this rounding up is equivalent to taking α coordinates, and
instead of using the value from z (the rounded down value, bsic), we round up
and add 1 to the coordinate.

Lemma 3. At no point in the algorithm is a cluster rounded up or down in
allocations that, together, have more probability than it should, i.e., for any
cluster i, it is always true that pi ≤ si − bsic and p̄− pi ≤ dsie − si. Moreover,
for any i < low, the probability that cluster i is rounded up is si−bsic. For any
i > high, the probability that cluster i is rounded down is dsie − si.

Proof. Recall that the probability cluster i is rounded up needs to be si − bsic.
When a set of clusters is being rounded up, the probability of the allocation is
bounded by slow − bslowc − plow (Line 17), i.e., the probability slow should be
rounded up which still remains to be allocated. Any other cluster i rounded up
in the same allocation has been rounded with slow in every previous allocation
when it has been rounded up (since i > low), so pi ≤ plow. Since the clusters are
ordered according to si − bsic in line 1, we know that si − bsic > slow − bslowc.
Hence, slow − bslowc − plow ≤ si − bsic − pi, so no cluster is rounded up more
than it should be.

At any point in the algorithm, if i < low, then there was a stage where
low = i, and line 18 changed low to i + 1. However, at that point, cluster i
is rounded up exactly the additional probability it needed to be rounded up
(si − bsic − pi) , and no further allocation in the algorithm will round it up.

Similarly, if i > high (and α 6= 0), there was a stage where high = i, and
line 21 changed high to i− 1. However, at that point, cluster i is rounded down
exactly the additional probability it needs to be rounded down. It could not
have been rounded down too much previously, as every allocation’s probability is
bounded so that cluster high will not be rounded down more than it is supposed
to (dshighe− shigh). Once again, once an index is high+ 1, no further allocation
will round it down.

For cluster i, low ≤ i ≤ high, it has only been rounded down when shigh was
rounded down as well (though not vice versa) and rounded up when slow was
rounded up (again, not vice versa), and as the dsie − si ≥ dshighe − shigh and
si − bsic ≥ slow − bslowc, these clusters have not been rounded up more than
si−bsic, or rounded down more than dsie−si. Therefore, the sum of allocation
probabilities is never larger than 1 (since si−bsic+ dsie− si = 1). Hence, also,
for clusters i < low, as they have received the exact needed probability of being
rounded up, and since the sum of allocations does not exceed 1, they have not
been rounded down more than needed.

Proof of Theorem 6. We first show all the allocations we consider only round
up
∑`
i=1(si − bsic) clusters, as otherwise, allocations are not allocating exactly

k agents. As long as low + α ≤ high in the algorithm this is trivially true. We
now wish to show the situation low + α > high cannot happen (as that results
in too few clusters rounded up).

16

If low + α > high then there was a stage in which low + α = high, and
then we executed line 18. This means that cluster high needs more unallocated
probability to be rounded down than cluster low needs unallocated probability
to be rounded up. Moreover, thanks to the monotonicity of elements of the si
vector, we know cluster high still has need for more allocations with positive
probability in which it is rounded up. But this property means that if we ad-
vanced low and assigned all remaining unassigned probability to the allocation
rounding up clusters low + 1, . . . , `, we would be rounding them up too much,
and for clusters low+ 1, . . . , high, strictly so. But we know from Lemma 3 that
for all i ≤ low, we have rounded the share si up exactly correctly, so looking at
the vector ẑ ∈ N` in which each coordinate is the expected allocation for that
cluster, we have:

∑̀
i=1

(ẑi − bsic) =

low∑
i=1

(si − bsic) +
∑̀

i=low+1

ẑi − bsic >

>
∑̀
i=1

(si − bsic) = α

This contradicts Lemma 2, as all allocations had exactly α clusters rounded up.
So it cannot be that cluster high still needed more probability to be rounded
down, and therefore, if low + α = high, line 18 would not have been executed
at this point.

Since low + α ≤ high at all times, the algorithm will end when low = high.
Hence, the previous step ended with α becoming 0 in line 21. Observe that
α = 0 only in this case: otherwise, it means the sum of expected value—that is,
probability to be rounded up—over all clusters is above α: we have too many
clusters that need to be rounded up.

We now wish to prove that the last step, where the clusters high+ 1, . . . , `
are rounded up, results in what we desired. Since clusters 1, . . . , low − 1 have
been allocated the right probability to be rounded up, as well as clusters high+
1, . . . , ` (Lemma 3), we only need to verify this for cluster low. But according to
Lemma 2, the probability of low being rounded up is exactly α−

∑
1≤i≤`,i6=low(si−

bsic), which is exactly slow − bslowc, which means cluster low has the correct
allocation.

6. Analytical Comparisons with Other Mechanisms

Though ExactDollarPartition draws inspiration from Dividing a Dollar
and Partition, there are key differences between these mechanisms and clear
reasons to use ExactDollarPartition over other potential variants.

6.1. Comparison with other Dollar Based Mechanisms

Although ExactDollarPartition is partly based on the Dollar mecha-
nism for dividing a bonus (division of a divisible item between agents), it is

17

more desirable than some other natural mechanisms one can construct based on
the Dollar framework. Consider the following possible adaptations of the Dollar
framework and their shortcomings.

Dollar Raffle: Take the dollar mechanism (without any partitions), compute
the relative fraction of the dollar each agent should receive. Use these fractions
as a probability distribution over the agents and then repeatedly select an
agent according to its dollar share until k different agents are selected.

Dollar Partition Raffle: Take the Dollar shares of the clusters in Dollar Raf-
fle and use these shares to define a probability distribution over the clusters.
A cluster is drawn with respect to the cluster Dollar probabilities and the next
best agent, based on reviews of agents outside the cluster, is selected, until k
different agents are selected.

Top Dollar: Select the agents with maximum Dollar shares.5

Both Dollar Raffle and Dollar Partition Raffle have a non-zero probability
of selecting the k worst agents. While Top Dollar is not strategyproof for any
k < n, Dollar Raffle and Dollar Partition Raffle are strategyproof for k = 1.
None, however, are strategyproof for n > k > 1.

Theorem 7. Dollar Raffle, Dollar Partition Raffle, and Top Dollar are not
strategyproof for n > k > 1.

Proof. For Dollar Raffle and Dollar Partition Raffle, the proof follows a similar
path: The mechanism iterates until it chooses k different agents, which is equiv-
alent to eliminating each selected agent and re-normalizing the dollar partitions,
i.e., the probabilities of being selected, since once some agent is selected we ig-
nore its repeated selection. This re-normalization prevents the mechanism from
being strategyproof, as now the probabilities of others matter for each agent.

For example, an agent will prefer to contribute to a very strong agent. This
strong agent, once eliminated, will make our agent’s probability increase signifi-
cantly. Suppose k = 2 using Dollar Raffle (Dollar Partition Raffle), and suppose
all agents (clusters) except b1, b2, b3 allocate their points equally between those
3. b1 divides its point equally between b2 and b3, as does b2 between b1 and b3.
Suppose b3 believes it should also divide its point equally between b1 and b3. In
that case, it has a probability 1

3 of being selected first, and a probability of 1
3 of

being selected second, ultimately, 2
3 . But if agent (in) b3 decides to give its point

fully to (cluster) b1, the probability of b3 being selected first does not change.
But the probability of b1 being selected and then b3 is 1

3 (in Dollar Partition

Raffle: (1
3 + 1

2n)
1
3

2
3−

1
2n

), and the probability of b2 being selected and then b1 is

1
15 (in Dollar Partition Raffle: (1

3 −
1
2n)

1
3

2
3+

1
2n

). The sum of these is more than
1
3 , hence doing so would improve agent (in cluster) b3 chances of being selected.
This proof can easily be extended to any additional k.

5Vanilla is equivalent to Top Dollar when agents’ valuations are normalized.

18

For Top Dollar, agents are a1, . . . , ak+1. Agents a1, . . . ak−1 allocate each of
their points by giving 1

k −
1
k2 to agent ak+1, 1

k2 to agent ak and 1
k to all other

agents. Agent ak gives 1
k to all other agents. Agent ak+1 would like to allocate its

point to agent ak, but that would mean it would not be selected itself. Giving its
point to other agents will mean it will be, contradicting strategyproofness.

Interestingly, the proof of this theorem for Dollar Raffle and Dollar Partition
Raffle carries on, quite straightforwardly, to the various mechanisms presented
for k = 1 (e.g., [19]). Simply running the algorithm several times destroys its
strategyproofness. This is true even for mechanisms that are strategyproof for
k = 1, as long as any agent has the power to influence the outcome, i.e., not
purely random, a dictatorship, or a combination of both.

6.2. Comparison with Partition Mechanisms

ExactDollarPartition seems similar to the Partition mechanism but
while Partition must preset the number of agents to be selected from each clus-
ter, ExactDollarPartition relies on the peer reviews to decide the number
of agents to be selected from each cluster. This difference allows ExactDol-
larPartition to have more consistent performance, no matter the clustering.
Hence, in contrast to ExactDollarPartition, if a particularly bad partition
is chosen at random, the rigidity of Partition means that it may not choose a
large proportion of the best agents even if agents have unanimous valuations.

Example 3. Consider the setting in which N = {1, . . . , 18}, k = 6, and ` = 3.
Let the clusters be C1 = {1, . . . , 6}, C2 = {7, . . . , 12}, C3 = {13, . . . , 18}. C1

puts all its weight on C2, equally dividing its points between 7, 8, . . . , 12, with a
slight edge to 7 and 8, C2 and C3 put all the weight on C1, dividing their points
between 1, 2, 3 and 4. Now Partition will choose 1, 2, 7, 8, 13, 14 where everyone
thinks that 1, 2, 3, 4, 7, 8 are the best. ExactDollarPartition will select ex-
actly that set. Moreover, if we increase the number of clusters, the disparity
between ExactDollarPartition and Partition only grows.

Partition, in contrast to ExactDollarPartition, performs poorly ex post6

if the clusters are lopsided, with some cluster containing all good agents and
other clusters containing low value agents. One natural fix is to deliberately
choose a balanced partition where the weight of a cluster is based on the rat-
ings of agents outside the cluster and we choose a clustering that minimizes the
difference between the cluster weights. However, for this and various notions of
balanced partitions, computing the most balanced partition is NP-hard. What
is even more problematic is that if we choose a balanced partition, the resulting
mechanism is not strategyproof.

We point out that there are instances where Partition may perform better
than ExactDollarPartition even if the rankings of the agents are unani-
mous. Consider a case where a highly preferred agent is in the same group as

6For high stakes outcomes, we want a mechanism that performs well on average and rarely
returns an especially bad outcome.

19

the lowest preferred agents, while other groups only contain medium preferred
agents. In that case the weight of the cluster with the highest preferred agent
might be so high that the lowest ranked agents might also be selected.The nor-
malization of scores entailed in ExactDollarPartition causes a certain loss
of information and granularity compared to the other mechanisms. However,
even in the example above, ExactDollarPartition will ensure that when
agents have highly correlated or unanimous preferences, the agent(s) that are
unanimously on the top will be selected, even if some low-ranked agents are also
selected.

7. Experimental Comparison with Other Mechanisms

Using Python and extending code from PrefLib [42] we have implemented
the ExactDollarPartition, Credible Subset, Partition, Dollar Raffle, Dollar
Partition Raffle, and Vanilla peer selection mechanisms. All the code developed
for this project is available open-sourced in the PeerSelection repository on
GitHub.7 As in all simulations there are many parameters to consider that can
drastically affect the outcome (see e.g., [48]). By focusing on a target domain,
the NSF Mechanism Design Pilot [45, 56], we can draw focused conclusions
from our simulations. In 2014, this program had n = 131 proposals, with each
submitter reviewing m = 7 other proposals, broken into ` = 4 clusters. The
acceptance numbers are not broken out from the global ≈20% acceptance rate,
so we use this as the acceptance rate.

7.1. Experimental Setup

To create NSF-like data we generate a sparse N = {1, . . . n} scoring matrix
(profile) using a Mallows Model to generate the ordinal evaluation [40, 41].
Mallows models are parameterized by a reference order (σ) and a dispersion
parameter (φ). The reference order σ can be thought of as the underlying ground
truth; the NSF mechanism assumes implicitly that there is some true ordering
of proposals of which the reviewers provide a noisy observation. Intuitively,
the dispersion parameter φ is the probability of committing ranking errors by
swapping neighboring elements of σ, where φ = 0 means that no agent ever
commits an error and φ = 1.0 means that orderings are generated uniformly at
random [37]. Mallows models are used when each agent is assumed to have the
same reference ranking subject to some independent noise from a common noise
model. Each agent i ∈ N ends up with a ranking rank(i, j) → {0, . . . ,m − 1}
over each agent j ∈ N where rank(i, j) = 0 means j is the highest reviewed
proposal by i. In our evaluation we assume that all agents share the same ground
truth ranking, σ, and that all agents share the same noise parameter φ that we
sweep across a range of values. An interesting direction for future work would be
comparing the algorithms when agents may have different notions of the ground

7https://github.com/nmattei/peerselection

20

truth ordering, i.e., different values for σ, and/or have different levels of ability,
i.e., different values for φ (as [15, 14] implicitly do).

Each agent reviews m of the n proposals and is also reviewed by m other
agents. Agents are clustered under the constraint that each agent reviews m
agents outside his cluster. We call a reviewer assignment satisfying these con-
straints a balanced m-regular assignment. To maximize inter-cluster compar-
ison, we want the m reviews provided by agent i to be balanced among the
clusters (less Ci) so agent i in cluster Ci reviews in total m

`−1 agents from each
other cluster. We generate this assignment randomly and as close to balanced
as possible. Up to this point, our setup is similar to that of Caragiannis et al.
[15], used for studying grade aggregation in MOOCs.

We generate a sparse n× n score matrix by: drawing a balanced m-regular
assignment; generating a complete ordinal ranking using a Mallows model for
agent i; removing all candidates from i’s ordinal ranking not assigned to i; and
assigning score m− rank(i, j) to each agent j that i ranks (known as the Borda
score). This process mimics the underlying assumption of the NSF mechanism in
that, if a reviewer were to see all proposals, they could strictly order the complete
set. The Borda score is well-motivated in this setting as it is the optimal scoring
rule, i.e., returns a result closest to the ground truth ranking, for aggregation
when agents submit correct orderings [15], and is the one used by the NSF in
their pilot. This process leaves us with a sparse n×n score matrix which obeys
an m-regular assignment of agents partitioned into ` clusters.

We use two different orderings to evaluate the performance of all the mech-
anisms presented: the ground truth (GT) ordering and the ordering selected by
vanilla (V). Since a Vanilla-like mechanism is used in many settings, it is fitting
to see how well the strategyproof mechanisms approximate it (though we assume
it is not manipulated by the participants despite not being strategyproof). This
allows us to understand the “price” we are paying for strategyproofness. For-
mally, let W,W ′ be the winning sets returned by two mechanisms, we measure
the similarity of W to W ′ by |W ∩W ′|/k. For n = 130 and s = 1000, we looked
at an “NSF Like” space with k ∈ {15, 20, 25, 30, 35}, m ∈ {5, 7, 9, 11, 13, 15},
φ ∈ {0.0, 0.10, 0.20, 0.35, 0.50}, and ` ∈ {3, 4, 5, 6}.

7.2. General Results

It is hard to directly compare results for Credible Subset due to the high
probability of returning an empty set under the given parameters. In fact,
counter to intuition, Credible Subset performs worse as we increase the number
of reviews because this increases the chance of returning an empty set (see, e.g.,
Figure 1.) This problem is not easy to overcome; removing the ability to return
an empty set means Credible Subset is no longer strategyproof. When Credible
Subset does return a set, it performs very well, on par with Vanilla. However,
the minimum (0 in some cases), average, and standard deviation for Credible
Subset are all unacceptable for practical implementation.

Throughout the testing ExactDollarPartition strictly outperforms, for
all parameter settings, the other Dollar-based mechanisms described in Section

21

15 20 25 30 35

k

0.0

0.2

0.4

0.6

0.8

1.0
Versus Vanilla

15 20 25 30 35

k

Versus Ground Truth
5 7 9 11 13 15

m

0.0

0.2

0.4

0.6

0.8

1.0

5 7 9 11 13 15

m

Vanilla ExactDollarPartition Partition DollarPartitionRaffle DollarRaffle CredibleSubset

Figure 1: Performance of the six mechanisms surveyed in this paper as we vary settings to k
(top row) and m (bottom row) as measured in selected percentage of the Vanilla set (V, left)
and ground truth ordering (GT, right). Note that the colors of the bars are in the same order
as the table key. For both figures we have set n = 130, ` = 4, and φ = 0.5; for the top row,
we set m = 9 as we varied k and for the bottom row we set k = 30 as we vary m. Across
the tested range ExactDollarPartition outperforms all other mechanisms when measured
against the V or GT ordering with a lower standard deviation. As we increase the value of m
or k, ExactDollarPartition improves its performance at a faster rate and more consistently
than any other mechanism.

6. Hence, we conclude that the extra steps developed for ExactDollarParti-
tion are necessary and result in a dramatically increased performance. In this
discussion, we will focus on comparing the performance of ExactDollarPar-
tition and Partition only, as these two mechanisms are the top two perform-
ing mechanisms that are also strategyproof. Broadly, we find that ExactDol-
larPartition outperforms Partition. On average, ExactDollarPartition
selects between 0.5% and 5% more top agents, measured against V or GT. It
does this with between 3% and 25% lower standard deviation, and selects as
many or, in the most extreme cases, up to five more top performing agents. This
improvement in the worst case means that ExactDollarPartition is an im-
provement of up to 25% when the clustering of the agents is lopsided. Hence,
ExactDollarPartition is the best in our experiments: it selects more top
agents, more often, with better worst case performance and lower variance than
any other strategyproof mechanism.

7.3. Varying Noise(φ) and Clusters (`)

Varying the noise parameter φ has little to no effect on the approximation to
V for all mechanisms. This is not surprising as all mechanisms receive the same
(noisy) information. When approximating GT, the value of φ has a negligible
effect on the performance of the mechanisms unless φ ≥ 0.95; for the remainder,
of the discussion we fix φ = 0.5. Varying the setting of ` we see that all mech-
anisms perform best with respect to GT when we set ` = 5 and with respect

22

to V when ` = 3; with a decrease in performance as we continue to increase `.
No matter the setting, increasing the number of clusters hurt the performance
of Vanilla and ExactDollarPartition the least, i.e., their performance de-
creases less quickly than the other mechanisms. For the remainder we set ` = 4
as was done for the NSF pilot.

7.4. Varying the Number of Selections (k) and Reviews (m)

Figure 1 captures our metrics as we vary the number of selections k, in the
top row, and the number of reviews per item m, in the bottom row. Varying the
setting to k we observe fairly consistent performance by the mechanisms with
ExactDollarPartition maintaining a 1.5% to 3% advantage. The biggest
percentage-wise advantages are found when k = 15, where ExactDollarPar-
tition selects up to two more top agents according to V, in the worst case,
resulting in a ≈ 25% improvement. In the worst case, up to two more top
agents according to GT are selected by ExactDollarPartition than Parti-
tion. Because both mechanisms perform worse (in absolute terms) than they do
as measured by V, this translates to a 10–20% increase in performance for Ex-
actDollarPartition when k is small and a 5–10% increase when k is large.
Measured against both V and GT we can draw the general conclusion that, as
we increase k, ExactDollarPartition increases its advantage over Partition.

For the most NSF-like setting where we have n = 130, k = 30, l = 4, φ = 0.5,
we sweep m ∈ {5, 7, 9, 11, 13, 15}, depicted as the bottom row of Figure 1. Look-
ing closely at the numbers as measured against V we see that ExactDol-
larPartition performs 2.6 to 3.0% better on average, i.e., one better agent.
ExactDollarPartition does this with a nearly 20% smaller standard devia-
tion, always selecting at least one more and up to three more top agents (15%)
in the worst case. This pattern is similar across settings to the other parame-
ters as vary m; ExactDollarPartition performs consistently better as we
increase the number of reviews. Compared to the performance of Vanilla, Ex-
actDollarPartition selects about one more non-top agent on average, up to
two more non-top agents in the worst case (≈ 7%). Hence, the loss in perfor-
mance we see for moving to a strategyproof mechanism is similar to the loss in
performance we see when moving to Partition from ExactDollarPartition.

8. Conclusion

The problem we have considered here is one that has many common appli-
cations: from NSF funding allocations and conference paper selection to voting
for a committee in an organization’s board and decision making within groups.
All these problems are, fundamentally, a set of peers selecting the “best” subset
of themselves according to their own quality criteria. We detail a new strat-
egyproof mechanism, which incorporates ideas from the Partition mechanism
[2] and literature on dividing a continuous resource [18, 57], combined with a
new allocation mechanism, which addresses a long-standing problem of turning
a fraction allocation into an integer one, while adding some desirable properties

23

over existing solutions. Moreover, we are able to show, via a set of simulations,
that our proposed mechanism performs better than other existing mechanisms.

The next stage in this line of research, we believe, will not have to do with
finding additional strategyproof mechanisms, but rather with finding ways to
eliminate problematic agents’ preferences. This might be achieved either by
relaxing the notion of strategyproofness in return for a degree of agent incentive,
or by identifying “problematic” agents or very good ones, whose opinions may
be weighed differently.

Acknowledgments

Authors wish to thank Allan Borodin, Markus Brill, Manuel Cebrian, Serge
Gaspers, Ian Kash, Julian Mestre, and Hervé Moulin for useful comments.
Data61/CSIRO (formerly known as NICTA) is funded by the Australian Gov-
ernment through the Department of Communications and the Australian Re-
search Council through the ICT Centre of Excellence Program. This research
has also been partly funded by Microsoft Research through its PhD Scholarship
Program, Israel Science Foundation grant grants #1227/12 and #1340/18, and
NSERC grant 482671. This work has also been partly supported by COST Ac-
tion IC1205 on Computational Social Choice. Haris Aziz was supported by a
Julius Career Award and a UNSW Scientia Fellowship.

References

[1] Alfaro, L. D., Shavlovsky, M., 2014. CrowdGrader: Crowdsourcing the Eval-
uation of Homework Assignments. In: Proceedings of the ACM Technical
Symposium on Computer Science Education (ACM-SIGCSE). pp. 415–420.

[2] Alon, N., Fischer, F., Procaccia, A. D., Tennenholtz, M., 2011. Sum of
us: Strategyproof selection from the selectors. In: Proceedings of the 13th
Conference on Theoretical Aspects of Rationality and Knowledge (TARK).
pp. 101–110.

[3] Aziz, H., Lev, O., Mattei, N., Rosenschein, J. S., Walsh, T., 2016. Strat-
egyproof peer selection: Mechanisms, analyses, and experiments. In: Pro-
ceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI).
pp. 397–403.

[4] Balinski, M., Young, H. P., 1982. Fair Representation. Yale University
Press.

[5] Balinski, M. L., Young, H. P., 1980. The webster method of apportionment.
Proceedings of the National Academy of Sciences (PNAS) 77 (1), 1–4.

[6] Baumann, L., 2018. Self-ratings and peer review. SSRN Research Archive.

[7] Berga, D., Gjorgjiev, R., 2014. Impartial social rankings, working paper.

24

[8] Birkhoff, G., 1976. House monotone apportionment schemes. Proceedings
of the National Academy of Sciences (PNAS) 73 (3), 684–686.

[9] Bjelde, A., Fischer, F., Klimm, M., December 2015. Impartial selection and
the power of up to two choices. In: Proceedings of the 11th International
Conference on Web and Internet Economics (WINE). Amsterdam, The
Netherlands, pp. 146–158.

[10] Bloch, F., Olckers, M., 2018. Friend-based ranking. SSRN Research
Archive.

[11] Bogomolnaia, A., Moulin, H., 2001. A new solution to the random assign-
ment problem. Journal of Economic Theory 100 (2), 295–328.

[12] Bousquet, N., Norin, S., Vetta, A., 2014. A near-optimal mechanism for
impartial selection. In: Proceedings of the 10th International Workshop
on Internet and Network Economics (WINE). Lecture Notes in Computer
Science (LNCS). pp. 133–146.

[13] Budish, E., Che, Y.-K., Kojima, F., Milgrom, P., 2013. Designing random
allocation mechanisms: Theory and applications. American Economic Re-
view 103 (2), 585–623.

[14] Caragiannis, I., Krimpas, G. A., Voudouris, A. A., 2015. Aggregating par-
tial rankings with applications to peer grading in massive online open
courses. In: Proceedings of the 14th International Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS). IFAAMAS, pp.
675—683.

[15] Caragiannis, I., Krimpas, G. A., Voudouris, A. A., 2016. How effective can
simple ordinal peer grading be? In: Proceedings of the 17th ACM Confer-
ence on Electronic Commerce (ACM-EC). ACM Press, pp. 323–340.

[16] Cole, S., Cole, J., Simon, G., 1981. Chance and consensus in peer review.
Science 214 (4523), 881–886.

[17] Court, D., Gillen, B., McKenzie, J., Plott, C. R., 2015. Two information
aggregation mechanisms for predicting the opening weekend box office rev-
enues of films: Boxoffice Prophecy and guess of guesses. Tech. Rep. SSWP-
1412, California Institute of Technology.

[18] de Clippel, G., Moulin, H., Tideman, N., 2008. Impartial division of a dollar.
Journal of Economic Theory 139, 176–191.

[19] Fischer, F., Klimm, M., 2014. Optimal impartial selection. In: Proceedings
of the 15th ACM Conference on Economics and Computation (ACM-EC).
ACM Press, pp. 803–820.

[20] Gandhi, R., Khuller, S., Parthasarathy, S., Srinivasan, A., 2006. Dependent
rounding and its applications to approximation algorithms. Journal of the
ACM 53 (3), 324–360.

25

[21] Gibbard, A., July 1973. Manipulation of voting schemes. Econometrica
41 (4), 587–602.

[22] Gibbard, A., 1977. Manipulation of schemes that mix voting with chance.
Econometrica 45 (3), 665–681.

[23] Grimmet, G., 2004. Stochastic apportionment. The American Mathemati-
cal Monthly 111 (4), 299–307.

[24] Hall, R. L., Grofman, B., December 1990. The committee assignment pro-
cess and the conditional nature of committee bias. The American Political
Science Review 84 (4), 1149–1166.

[25] Hazelrigg, G. A., 2013. Dear Colleague Letter: Information to Principal
Investigators (PIs) Planning to Submit Proposals to the Sensors and Sens-
ing Systems (SSS) Program October 1, 2013, Deadline. NSF Website,
http://www.nsf.gov/pubs/2013/nsf13096/nsf13096.jsp.

[26] Holzman, R., Moulin, H., 2013. Impartial nominations for a prize. Econo-
metrica 81 (1), 173–196.

[27] Hussam, R., Rigol, N., Roth, B., 2018. Targeting high ability entrepreneurs
using community information: Mechanism design in the field. SSRN Re-
search Archive.

[28] Joachims, T., Raman, K., 2015. Bayesian ordinal aggregation of peer as-
sessments: A case study on KDD 2015. Tech. rep., Cornell University.

[29] Kahng, A., Kotturi, Y., Kulkarni, C., Kurokawa, D., Procaccia, A. D., 2018.
Ranking wily people who rank each other. In: Proceedings of the32ndAAAI
Conference on Artificial Intelligence (AAAI).

[30] Keynes, J. M., 1936. The General Theory of Employment, Interest and
Money. Palgrave Macmillan.

[31] Kotturi, Y., Kahng, A., Procaccia, A. D., Kulkarni, C., 2018. Rising above
conflicts of interest: Algorithms and interfaces to assess peers impartially.
Working Paper.

[32] Kulkarni, C., Wei, K., Le, H., Chia, K. D., Dec. 2013. Peer and self assess-
ment in massive online classes. ACM Transactions on Computer Human
Interaction (TOCHI) 20 (6), 1–31.

[33] Kurokawa, D., Lev, O., Morgenstern, J., Procaccia, A. D., 2015. Impartial
peer review. In: Proceedings of the 23rd International Joint Conference on
Artificial Intelligence (IJCAI). AAAI Press, pp. 582–588.

[34] Lakhani, K. R., Garvin, D. A., Lonstein, E., 2010. Topcoder (a): Developing
software through crowdsourcing. Harvard Business Review.

26

http://www.nsf.gov/pubs/2013/nsf13096/nsf13096.jsp

[35] Li, D., Agha, L., 2015. Research funding. Big names or big ideas: do peer-
review panels select the best science proposals? Science (New York, N.Y.)
348 (6233), 434–438.

[36] Lian, J. W., Mattei, N., Noble, R., Walsh, T., 2018. The conference paper
assignment problem: Using order weighted averages to assign indivisible
goods. In: Proceedings of the32ndAAAI Conference on Artificial Intelli-
gence (AAAI).

[37] Lu, T., Boutilier, C., 2011. Learning Mallows models with pairwise pref-
erences. In: Proceedings of the 28th International Conference on Machine
Learning (ICML). pp. 145–152.

[38] Luo, H., Robinson, A. C., Park, J.-Y., 2014. Peer grading in a MOOC: Re-
liability, validity, and perceived effects. Journal of Asynchronous Learning
Networks 18 (2).

[39] Mackenzie, A., 2015. Symmetry and impartial lotteries. Games and Eco-
nomic Behavior 94 (1), 15–28.

[40] Mallows, C., 1957. Non-null ranking models. Biometrika 44 (1), 114–130.

[41] Marden, J. I., 1996. Analyzing and Modeling Rank Data. No. 64 in Mono-
graphs on Statistics and Applied Probability. CRC Press.

[42] Mattei, N., Walsh, T., 2013. Preflib: A library for preferences.
http://www.preflib.org. In: Proceedings of the 3rd International Con-
ference on Algorithmic Decision Theory (ADT). pp. 259–270.

[43] Mayberry, J. P., 1978. Quota methods for congressional apportionment are
still non-unique. Proceedings of the National Academy of Sciences (PNAS)
75 (8), 3537–3539.

[44] McNutt, R. A., Evans, A. T., Fletcher, R. H., Fletcher, S. W., 1990. The
effects of blinding on the quality of peer review: A randomized trial. The
Journal of the American Medical Association 263 (10), 1371–1376.

[45] Merrifield, M. R., Saari, D. G., 2009. Telescope time without tears: a dis-
tributed approach to peer review. Astronomy & Geophysics 50 (4), 4–16.

[46] Naghizadeh, P., Liu, M., 2013. Incentives, quality, and risks: A look into
the NSF proposal review pilot. arXiv preprint arXiv:1307.6528, 1–10.
URL http://arxiv.org/abs/1307.6528

[47] Piech, C., Huang, J., Chen, Z., Do, C., Ng, A., Koller, D., July 2013. Tuned
models of peer assessment in MOOCs. In: Proceedings of The 6th Inter-
national Conference on Educational Data Mining (EDM). Memphis, Ten-
nessee, pp. 153–160.

27

http://arxiv.org/abs/1307.6528
http://arxiv.org/abs/1307.6528

[48] Popova, A., Regenwetter, M., Mattei, N., 2013. A behavioral perspective
on social choice. Annals of Mathematics and Artificial Intelligence 68 (1–3),
135–160.

[49] Price, E., December 2014. The NIPS experiment.
http://blog.mrtz.org/2014/12/15/the-nips-experiment.html.

[50] Pukelsheim, F., 2014. Proportional Representation: Apportionment Meth-
ods and Their Applications. Springer.

[51] Robinson, R., 2001. Calibrated peer review an application to increase stu-
dent reading and writing skills. The American Biology Teacher 63 (7),
474–476.

[52] Roos, M., Rothe, J., Scheuermann, B., 2011. How to calibrate the scores
of biased reviewers by quadratic programming. In: Proceedings of the 25th
AAAI Conference on Artificial Intelligence (AAAI). pp. 255–260.

[53] Satterthwaite, M. A., April 1975. Strategy-proofness and Arrow’s condi-
tions: Existence and correspondence theorems for voting procedures and
social welfare functions. Journal of Economic Theory 10 (2), 187–217.

[54] Shah, N. B., Tabibian, B., Muandet, K., Guyon, I., Von Luxburg, U., 2018.
Design and analysis of the NIPS 2016 review process. Journal of Machine
Learning Research 19 (1), 1913–1946.

[55] Stelmakh, I., Shah, N. B., Singh, A., 2018. Peerreview4all: Fair and accurate
reviewer assignment in peer review. In: Proceedings of the30th International
Conference on Algorithmic Learning Theory (ALT).

[56] The National Science Foundation, 2014. Report to the National Science
Board on the National Science Foundation Merit Review Process Fiscal
Year 2014. Tech. rep., The National Science Foundation (USA).

[57] Tideman, T. N., Plassmann, F., 2008. Paying the partners. Public Choice
136 (1/2), 19–37.

[58] Walsh, T., 2014. The PeerRank method for peer assessment. In: Proceed-
ings of the 21st European Conference on Artificial Intelligence (ECAI). pp.
909–914.

[59] Wenneras, C., Wold, A., 1997. Nepotism and sexism in peer-review. Nature
387, 341–343.

[60] Wright, J., Thornton, C., Leyton-Brown, K., 2015. Mechanical TA: Par-
tially automated high-stakes peer grading. In: Proceedings of the ACM
Technical Symposium on Computer Science Education (ACM-SIGCSE).
pp. 96–101.

[61] Young, H. P., 1994. Equity: in Theory and Practice. Princeton University
Press.

28

http://blog.mrtz.org/2014/12/15/the-nips-experiment.html

	1 Introduction
	2 Discussion and Related Work
	3 Setup and Survey of Existing Mechanisms
	3.1 Mechanisms
	3.2 Properties of Mechanisms

	4 ExactDollarPartition
	5 A Randomized Apportionment Rule
	5.1 Curse of Determinism: The Need for Randomization
	5.2 A Novel Randomized Apportionment Rule

	6 Analytical Comparisons with Other Mechanisms
	6.1 Comparison with other Dollar Based Mechanisms
	6.2 Comparison with Partition Mechanisms

	7 Experimental Comparison with Other Mechanisms
	7.1 Experimental Setup
	7.2 General Results
	7.3 Varying Noise() and Clusters ()
	7.4 Varying the Number of Selections (k) and Reviews (m)

	8 Conclusion

