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Abstract

Multi-agent decision problems, in which independent agents have to agree on a
joint plan of action or allocation of resources, are central to artificial intelligence.
In such situations, agents’ individual preferences over available alternatives may
vary, and they may try to reconcile these differences by voting.

We consider scenarios where voters cannot coordinate their actions, but are al-
lowed to change their vote after observing the current outcome, as is often the case
both in offline committees and in online voting. Specifically, we are interested in
identifying conditions under which such iterative voting processes are guaran-
teed to converge to a Nash equilibrium state—that is, under which this process
is acyclic. We classify convergence results based on the underlying assumptions
about the agent scheduler (the order in which the agents take their actions) and the
action scheduler (the actions available to the agents at each step). By so doing, we
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position iterative voting models within the general framework of acyclic games
and game forms.

In more detail, our main technical results provide a complete picture of condi-
tions for acyclicity in several variations of Plurality voting. In particular, we show
that (a) under the traditional lexicographic tie-breaking, the game converges from
any state and for any order of agents, under a weak restriction on voters’ actions;
and that (b) Plurality with randomized tie-breaking is not guaranteed to converge
under arbitrary agent schedulers, but there is always some path of better replies
from any initial state of the game to a Nash equilibrium. We thus show a first sep-
aration between order-free acyclicity and weak acyclicity of game forms, thereby
settling an open question from [Kukushkin 2011]. In addition, we refute another
conjecture of Kukushkin regarding strongly acyclic voting rules, by proving the
existence of strongly acyclic separable game forms.

Keywords: Iterative voting, Acyclicity, Convergence, Nash equilibrium

1. Introduction

Voting mechanisms are a popular tool for preference aggregation and collective
decision making in multi-agent systems. One major concern when applying such
mechanisms is that voters may misreport their real preferences in order to affect
the outcome in their favor. Indeed, most voting rules are known to be susceptible
to such strategic behavior [3, 4]. It is therefore natural to employ game-theoretic
tools in order to model voting behavior and assess the outcome of a voting process.
Specifically, in this work we are interested in identifying conditions under which
the process will converge to an equilibrium state where no voter has an incentive
to change his vote—that is, conditions such that the game induced by the voting
process is acyclic.

Researchers in economics and game theory since Cournot [5] have been de-
veloping a formal framework to study questions about acyclicity (see, for exam-
ple, [6, 7, 8]). Acyclic games have several attractive features: not only do they
possess an equilibrium in pure strategies, they also guarantee that local improve-
ment dynamics will always lead to one. These properties are highly desirable
both from an economic and a computational perspective, as they imply that a sys-
tem has a stable state which is reachable in a decentralized way, often with little
information and communication.
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The analysis of acyclicity of voting games is of particular interest to AI as
it tackles the fundamental problem of multi-agent decision making, where au-
tonomous agents (that may be distant, self-interested and/or unknown to one an-
other) have to choose a joint plan of action or allocate resources or goods. Agents
may vote strategically based on their current information, and keep updating their
vote as the current state changes, and thus it is the local dynamics (in addition to
preferences) that determines the outcome.

Now, there are several degrees of acyclicity, depending on the initial state of
the process, the type of improvement steps that agents may take and the order in
which they may act (see the classification scheme of Kukushkin [9, 10, 7]). In
particular, a better reply denotes any change of strategy that strictly improves the
utility of the agent, and a game that admits no cycles of better replies whatsoever
is called strongly acyclic. In contrast, weak acyclicity means that while cycles
may generally occur, there is at least one path of better replies that leads to an
equilibrium from any initial state. Order-free acyclicity is a middle ground,1 re-
quiring convergence for any order of agents (agent scheduler), but allowing the
action scheduler to restrict the way they choose among several available replies
(e.g., only allowing best replies that maximize the agent’s utility among all better
replies). In this work, we apply this classification to games that arise in the context
of voting.

Specifically, we consider the model of iterative voting. In this model, voters
have fixed private preferences and start from some announcement (e.g., sincerely
report their preferences or submit random votes). Votes are then aggregated via
some predefined rule (e.g., Plurality, Veto or Borda), but the agents can change
their votes after observing the current announcement and the outcome, but not
other voters’ true preferences. The game proceeds in turns, where a single voter
changes his vote at each turn, until no voter has objections and the final outcome
is announced. Note that voters remain ignorant regarding the true preferences of
the other voters. This process is similar to online polls via Doodle or Facebook,
where users can log-in at any time and change their ballot. Similarly, some offline
committees (e.g., for recruitment processes or art competitions) often hold straw
votes, or an informal process where a member can ask to change his vote when she
sees the current outcome or receives additional information about the applicants.
Another voter may react by changing his vote as well, and so on. Interestingly,

1Order-free acyclicity is sometimes referred to as restricted acyclicity [7], but we find this term
needlessly ambiguous.
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even in presidential elections, in several states of the United States people can
change their votes if they cast their ballots early [11].

The formal study of iterative voting rules was initiated about seven years ago
in our AAAI paper that was a preliminary version of this work [1]. Subsequent
papers on iterative voting typically focused on common voting rules such as Plu-
rality, Veto and Borda, and studied the conditions under which convergence of the
iterative process to an equilibrium is guaranteed [12, 13, 14]. However, despite
the fact that both fields ask similar questions, the iterative voting literature has re-
mained largely detached from the more general literature on acyclicity in games.
Bridging this gap is the main conceptual contribution of this work, and is impor-
tant for two reasons. First, the analysis of conditions that entail acyclicity of games
and game forms is crucial to the understanding of iterative voting scenarios and
the ability to properly compare their convergence properties (e.g., convergence of
any best reply dynamics is a special case of order-free acyclicity and convergence
under a particular order of voters implies weak acyclicity). Second, convergence
results for specific voting rules under best/better reply dynamics may shed light
on more general questions regarding acyclicity of voting processes. To this end,
we apply the formalism of Kukushkin [7] for strong/order-free/weak acyclicity of
game forms, which allows us to re-interpret both known and new results on con-
vergence of better and best reply dynamics in voting games, and to answer some
open questions.

1.1. Related work
Kukushkin [7] provided several partial characterizations for game forms with
strong acyclicity. In particular, he showed that if we further strengthen the acyclic-
ity requirement to demand an ordinal potential [6], then this is attained if and only
if the game form is dictatorial—i.e., there is at most one voter that can affect
the outcome. He further characterized game forms that are strongly acyclic un-
der coalitional improvements, and provided broad classes of game forms that are
“almost strongly acyclic”—i.e., order-free acyclic with only mild restrictions on
voters’ actions. Other partial characterizations have been provided for acyclicity
in complete information extensive form games [15, 16]. The most relevant aspects
of this work are explained in more detail in the following sections.

The study of classes of games with specific utility structures that are guaran-
teed to be acyclic or weakly acyclic has attracted much attention, in particular
regarding the existence and properties of potential functions [6, 17, 18, 8]. We
discuss these below.
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Strategic voting
The notion of strategic voting has been highlighted in research on social choice

as crucial to understanding the relationship between preferences of a population
and the final outcome of elections (see, for example, [19, 20, 21]). In various
applications, ranging from political domains to AI, the most widely used voting
rule is Plurality, in which each voter has one vote and the winner is the candidate
who receives the highest number of votes. While it is known that no reasonable
voting rule is completely immune to strategic behavior [3, 4], Plurality has been
shown to be particularly susceptible, both in theory [21, 22] and in practice [23].
This makes the analysis of any election campaign—even one where the simple
Plurality rule is used—a challenging task. As voters may speculate and counter-
speculate, it would be beneficial to have formal tools that help us understand (and
perhaps predict) the final outcome.

In particular, natural tools for this task include the well-studied solution con-
cepts developed for normal form games, such as better/best replies, dominant
strategies or different variants of equilibrium. Now, while voting settings are com-
monly presented in other forms, several natural normal form formulations have
been proposed in the past [24, 25, 26, 27, 28]. These formulations are extremely
simple for Plurality voting games, where voters have only few available ways to
vote. Specifically, some of this previous work has been devoted to the analysis
of solution concepts such as elimination of dominated strategies [24] and strong
equilibria [26]. Other multi-step voting procedures that have been proposed in
the literature are the iterated majority vote [29] and extensive form games, where
voters vote one by one [30]. However, in contrast to iterative voting, these mod-
els are inconsistent with the better reply dynamics in the framework of normal
form games, and are analyzed via different techniques. A model somewhat more
similar to ours was recently studied in [31], where voters can choose between vot-
ing truthfully or manipulating under the assumption that everyone else is truthful.
That is, in this model each voter has exactly two available actions, whereas in ours
all valid votes are allowed.

Convergence of better reply dynamics in iterative voting for particular voting
rules has been studied extensively in the computational social choice literature.
We summarize and compare these findings with our results in the concluding sec-
tion, particularly in Table 3.

An important question in the context of strategic voting, including the iterative
voting model, is whether an obtained equilibrium state is good for the society ac-
cording to various metrics. To this end, Branzei et al. [32] showed bounds on what
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they term the dynamic price of anarchy, that evaluates how far the final outcome
can be from the initial truthful outcome. Other work in this line used simula-
tions to show that iterative voting may improve the social welfare or Condorcet
efficiency [33, 34, 35].

A similar variant of iterative voting in the context of multi-issue voting was
studied by [36] via simulations.

Biased and sophisticated voting
Some recent work on iterative voting deals with voters who are uncertain,

truth-biased, lazy-biased, bounded-rational, non-myopic, or apply some other re-
strictions and/or heuristics that diverge from the standard notion of better reply in
games [37, 38, 33, 39, 34, 40, 13, 41, 42]. The outcomes of such dynamics are
not necessarily Nash equilibria, which means that some voters could still benefit
from changing their votes in such states, should the limitations on their available
actions be removed. In this work, we exclude the possibility of this potential in-
stability, and deal exclusively with myopic better and best reply dynamics that (if
they converge) lead to a Nash equilibrium state.2

1.2. Contribution
On the conceptual level we introduce a model to handle dynamics of strategic
behavior in voting settings and position variants of this iterative voting model
within the general framework of acyclic games and game forms.

In Section 3 we consider strong acyclicity, and settle an open question regard-
ing the existence of acyclic non-separable game forms, by explicitly constructing
one, thereby refuting a conjecture by Kukushkin [7].

Section 4 focuses on order-free acyclicity of the Plurality rule. Our main re-
sult in this section shows that to guarantee convergence, it is necessary and suffi-
cient that voters restrict their actions in a natural way that we term direct reply—
meaning that a voter will only reassign his vote to a candidate that will become a
winner as a result. Importantly, it is not sufficient to restrict the set of actions to
best (but possibly indirect) replies: best reply dynamics, as we demonstrate, may
contain cycles. However, best reply dynamics is guaranteed to converge from the
truthful state, under either lexicographic or randomized tie-breaking.

In Section 5, we use variations of Plurality to show a strict separation between
order-free acyclicity and weak acyclicity, thereby settling another open question

2However, we do consider two standard ways to handle ties that slightly relax the better-reply
definition (see Section 4.4).
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from [7]. In particular, we show that if we add either weights (plus some restric-
tion on the votes) or random tie-breaking to the Plurality rule, we get a game
form that is weakly acyclic, but not order-free acyclic, since the order of voters is
crucial for convergence.

We conclude in Section 6, where we also classify all known convergence re-
sults in iterative voting according to the standard taxonomy of acyclicity in games.

2. Model and preliminaries

We usually denote sets by uppercase letters (e.g., A,B, . . .), and vectors by bold
letters (e.g., a = (a1, . . . , an)). In some cases the i’th entry of a is referred to as
a(i). For a set X we denote by L(X) the set of permutations over X .

2.1. Voting rules and game forms
There is a set C of m alternatives (or, candidates), and a set N of n strategic
agents (voters). A game form (also called a voting rule) f allows each agent
i ∈ N to select an action ai from a set Ai (we also refer to ai as the vote of agent
i). The input to f is therefore a vector a = (a1, . . . , an) called an action profile
(or, a voting profile). Then, f chooses a winning alternative—i.e., it is a function
f : A → C, where A = ×i∈NAi (see Figure 1 for examples).

A voting rule f is standard if Ai = A for all i, and A is either L(C) or
a coarsening of L(C).3 For example, in Plurality—one of the most prominent
voting rules—we have that A = C, and the winner is the candidate with the most
votes; thus, all permutations with the same leading candidate are considered to be
the same action. For a permutation L ∈ L(C), we denote the first element—i.e.,
the leading candidate—in L by top(L). Like Plurality, most common voting rules
except Approval are standard.

We allow for a broader set of “Plurality game forms” by considering weighted
and fixed voters, and varying the tie-breaking method. Specifically, each of the
strategic voters i ∈ N has an integer weight wi ∈ N, and there are also n̂ fixed
voters who do not play strategically or change their vote. The value ŝ(c) (called
the initial score) specifies the number of fixed votes for each candidate c. The
vector w ∈ Nn of weights and the vector ŝ ∈ Nm of initial scores are part of the
game form.4

3Standard voting rules are also called resolute social choice functions, or SCF (see [43]).
4All of our results still hold if there are no fixed voters, but allowing fixed voters enables the
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f1 a b c
a a a a
b b b b
c c c c

f2 a b c
a a a a
b a b b
c a b c

f3 x y
a a b
b b c
c c a

f4 x y z w
a ax ay az aw
b bx by bz bw
c cx cy cz cw

Figure 1: Four examples of game forms with two agents. f1 is a dictatorial game form with
3 candidates (the row agent is the dictator). f2 is the Plurality voting rule with 3 candidates
and lexicographic tie-breaking. f3 and f4 are non-standard game forms. In f3, A1 = C =
{a, b, c}, A2 = {x, y}. Note that f4 is completely general (there are 3 × 4 possible outcomes in
C, one for each voting profile) and can represent any 3-by-4 game.

fPL
w,ŝ a b c

a (14, 9, 3) {a} (10, 13, 3) {b} (10, 9, 7) {a}
b (11, 12, 3) {b} (7, 16, 3) {b} (7, 12, 7) {b}
c (11, 9, 6) {a} (7, 13, 6) {b} (7, 9, 10) {c}

Figure 2: A game form fPL
w,ŝ, where N = {1, 2}, A1 = A2 = C = {a, b, c}, ŝ = (7, 9, 3)

and w = (3, 4) (i.e., voter 1 has weight 3 and voter 2 has weight 4). The table shows the final
score vector s(a1,a2) for every joint action of the two voters, and the respective winning candidate
fPL
w,ŝ(a1, a2) in curly brackets.

The final score of a candidate c for a given profile a ∈ An in the Plurality game
form fŝ,w is the sum of the initial score and the total weight of strategic voters that
vote for c. We denote the final score vector by sŝ,w,a (often just sa or s when the
other parameters are clear from the context), where s(c) = ŝ(c) +

∑
i∈N :ai=c

wi.
The Plurality rule selects a candidate from W = argmaxc∈C sŝ,w,a(c), break-

ing ties according to some specified method. As our results show, acyclicity prop-
erties may strongly depend on the tie-breaking method. The two primary vari-
ations we consider are fPL

ŝ,w which breaks ties lexicographically, and fPR
ŝ,w which

selects a winner from W uniformly at random. As with s, we omit the subscripts
w and ŝ when they are clear from the context.

For illustration, consider an example in Figure 2, demonstrating a specific
weighted Plurality game form with two agents.

introduction of simpler examples, and facilitates some of the proofs, see Remark 4.1. For further
discussion on fixed voters see [31].
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2.2. Incentives
Games are attained by adding either cardinal or ordinal utility to a game form.
The linear order relation Li ∈ L(C) reflects the preferences of agent i. That
is, i prefers c over c′ (denoted c �i c′) if (c, c′) ∈ Li. The vector containing
the preferences of all n agents is called a preference profile, and is denoted by
L = (L1, . . . , Ln). The game form f , coupled with a preference profile L, defines
an ordinal utility normal form game G = 〈f,L〉 with n agents, where agent i
prefers outcome f(a) over outcome f(a′) if f(a) �i f(a′). In standard game
forms, the action ai may indicate the agent’s preferences, hence their common
identification with voting rules.

Improvement steps and equilibria
Having defined a normal form game, we can now apply standard solution con-

cepts. Let G = 〈f,L〉 be a game, and let a = (a−i, ai) be a joint action in
G.

We denote by a
i→ a′ an individual improvement step (or, better reply), if

(1) a,a′ differ only by the action of agent i; and (2) f(a−i, a
′
i) �i f(a−i, ai).

We sometimes omit the actions of the other voters a−i when they are clear from
the context, only writing ai

i→ a′i. We denote by Ii(a) ⊆ Ai the set of ac-
tions a′i s.t. ai

i→ a′i is an improvement step of agent i in a. Similarly, I(a) =⋃
i∈N
⋃
a′i∈Ii(a)

(a−i, a
′
i) contains all states accessible from a by some better reply.

a
i→ a′i is called a best reply if i weakly prefers f(a−i, a

′
i) over any candidate

f(a−i, bi) s.t. b ∈ Ii(a).
A joint action a is a (pure strategy) Nash equilibrium (NE) in G if I(a) = ∅.

That is, no agent can gain by changing his vote, provided that others keep their
strategies unchanged. A priori, a game may not admit any NE in pure strategies.

Now, observe that when f is a standard voting rule the preference profile L
induces a special joint action a∗ = a∗(L), termed the truthful state, where a∗i
equals (the coarsening of) Li. For example, in Plurality a∗i = top(Li). We refer to
f(a∗) as the truthful outcome of the game 〈f,L〉.

The truthful state may or may not be included in the NE points of the game,
as can be seen from Tables 3 and 4 that demonstrate games that are induced by
adding incentives to the game form shown in Figure 2, and indicate the truthful
states and the NE points in these games.

2.3. Iterative Games
We consider natural dynamics in iterative games. Assume that agents start by
announcing some initial profile a0, and then proceed as follows: at each step t a
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〈
f,L1

〉
a b * c

* a {a} 3, 2 {b} 2, 1 * {a} 3, 2
b {b} 2, 1 {b} 2, 1 {b} 2, 1
c {a} 3, 2 {b} 2, 1 {c} 1, 3

Figure 3: A game G =
〈
f,L1

〉
, where f = fPL

w,ŝ is as in Fig. 2, and L1 is defined by a �1 b �1 c
and c �2 a �2 b. The table shows the ordinal utility of the outcome to each agent, where 3 means
the best candidate. Bold outcomes are the NE points. Here the truthful vote (marked with *) is
also a NE.

〈
f,L2

〉
a b * c

* a {a} 3, 1 {b} 1, 2 * {a} 3, 1
b {b} 1, 2 {b} 1, 2 {b} 1, 2
c {a} 3, 1 {b} 1, 2 {c} 2, 3

Figure 4: This game has the same game form as in Fig. 2, and the preference profile L2 is
a �1 c �1 b and c �2 b �2 a. In this case, the truthful vote a∗(L2) is not a NE.

single agent i may change his vote to a′i ∈ Ii(at−1), resulting in a new state (joint
action) at = (at−1−i , a

′
i). The process ends when no agent has objections, and the

outcome is set by the last state.

Local improvement graphs and schedulers. Any gameG induces a directed graph
whose vertices are all action profiles (states) A, and edges are all local improve-
ment steps [44, 16]. The pure Nash equilibria of G are all states with no outgoing
edges.

Since generally a state may have multiple outgoing edges (|I(a)| > 1), we
need to specify which one is selected in a given play. An agent scheduler is a
function φN that given a finite sequence of states a0, . . . ,at where at is not a
PNE, selects a player i such that Ii(at) 6= ∅ [8].5 Since we also need to decide
which action is played by i, we define an action scheduler as a function φA that
selects a single action from Ii(a

t). Thus a scheduler φ = (φN , φA) is a function
mapping any sequence not ending in a PNE to a better reply of some agent.

5Apt and Simon [8] make a finer distinction to state-based and other subclasses of schedulers,
that is not important for our results.
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Convergence and acyclicity. Given a game G, an initial action profile a0 and a
scheduler φ, we get a unique (possibly infinite) path of steps.6 Also, it is readily
apparent to see that the path is finite if and only if it reaches a Nash equilibrium
(which is the last state in the path). We say that the triple 〈G,a0, φ〉 converges if
the induced path is finite.

Following [6, 17], a game G has the finite improvement property (we say that
G is FIP), if 〈G,a0, φ〉 converges for any a0 and scheduler φ. Games that are FIP
are also known as (strongly) acyclic games and as generalized ordinal potential
games [6]. It is quite easy to see that not all Plurality games are FIP (see examples
in Section 4).

However, there are alternative, weaker notions of acyclicity and convergence.

• A game G is weakly-FIP if there is some scheduler φ such that 〈G,a0, φ〉
converges for any a0. Such games are known as weakly acyclic [8].

• A game G is order-free-FIP (or, order-free acyclic) if there is some action
scheduler φA such that

〈
G,a0, (φN , φA)

〉
converges for any a0 and φN [7].

Intuitively, order-free-FIP means that there is some restriction agents can adopt
such that convergence is guaranteed regardless of the order in which they play.
Kukushkin identifies a particular restriction of interest, namely restriction to best
reply improvements. Formally, an action scheduler φA is a BR action scheduler if
it always selects from Ii(a

t) a best reply of i. φ =
〈
φN , φA

〉
is BR if φA is BR.

We get the following definitions for a game G, where FBRP stands for finite best
reply property:

• G is FBRP if 〈G,a0, φ〉 converges for any a0 and any BR φ.

• G is weakly-FBRP if there is a BR φ such that 〈G,a0, φ〉 converges for any
a0.

• G is order-free-FBRP if there is a BR φA such that
〈
G,a0, (φN , φA)

〉
con-

verges for any a0 and φN .

In this paper, we identify a different restriction, namely direct reply, that is
well defined under the Plurality rule. Formally, a step a

i→ a′ is a direct reply if
f(a′) = a′i, i.e., if i votes for the new winner (see labeled examples in Section 4).
Another rule where a natural direct reply exists is Veto, where a voter can veto the

6This is in contrast to some definitions of schedulers that allow multiple possible paths [8, 45].
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FBRP order-free-FBRP ⇒ weak-FBRP
⇑ ⇓ ⇓

ordinal potential ⇒ FIP V FDBRP V order-free-FIP ⇒ weak-FIP ⇒ pure Nash
exists ⇓ ⇑ ⇑ exists

FDRP order-free-FDRP ⇒ weak-FDRP

Figure 5: A double arrow X⇒ Y means that any game or game form with the X property also has
the Y property. A triple arrow means that any property on the premise side entails all properties
on the conclusion side. The third row is only relevant for Plurality/Veto, where direct-reply is well
defined.

current winner [46]. 7 Formally, φA is a DR action scheduler if it always selects
a direct reply from Ii(a

t), and φ =
〈
φN , φA

〉
is DR if φA is DR. We get the

following definitions for a Plurality game G, where FDRP stands for finite direct
reply property:

• G is FDRP if 〈G,a0, φ〉 converges for any a0 and any DR φ.

• G is weakly-FDRP if there is a DR φ such that 〈G,a0, φ〉 converges for any
a0.

• G is order-free-FDRP if there is a DR φA such that
〈
G,a0, (φN , φA)

〉
con-

verges for any a0 and φN .

• FDBRP means that replies are both best and direct. Note that it is unique
and thus cannot be further restricted. In Veto there is only one direct reply
and thus FDBRP and FDRP coincide.

Restricted dynamics that may disallow all better replies (as in [38, 33]) do not
select an action from Ii(a

t) and thus do not fall under the definition of order-free-
FIP (but can be considered as a separate dynamics).

Finally, a game form f has the X property (where X is any of the above ver-
sions of finite improvement) if 〈f,L〉 is X for all preference profiles L ∈ (L(C))n.
Since some convergence properties entail others, we describe these entailments in
Figure 5.

7It is not obvious how to define direct replies in other voting rules. A good candidate for “direct
strategy” in positional scoring rules is to rank the new winner first, and then all other candidates
by increasing order of their current score. Note that the direct replies for Plurality and Veto are
special cases.

12



Kukushkin notes that there are no known examples of game forms that are
weak-FIP, but not order-free-FIP. In this paper, we settle this question by con-
structing such examples explicitly (see Section 5.2).

Convergence from the truth. We say that a gameG is FIP from state a if 〈G,a, φ〉
converges for any φ. Clearly, a game is FIP iff it is FIP from a for any a ∈ An.
The definitions for all other notions of finite improvement are analogous.

We are particularly interested in convergence from the truthful state a∗. This
is because it is reasonable to assume that agents will start by voting truthfully,
especially when not sure about others’ preferences. Even with complete informa-
tion, voters may be inclined to start truthfully, as they can always later change
their vote.

Heuristic voting
Much work on iterative voting deals with heuristics that apply different limi-

tations on the sets of available moves at each state. The properties of strong, weak
and order-free convergence can be defined in the same way as for best and better
replies, where the only difference is in the way of defining the set Ii(a) (i.e., the
set of all steps that are allowed for agent i at state a by the considered heuristics).
For example, the truth-bias heuristic assumes that if a voter does not have any lo-
cal improvement step, she reverts to her truthful vote [1, 39]. Some heuristics only
allow an agent a single action at a given state (for example, “k-pragmatist” [37],
“second chance” or “best upgrade” [33]). In such cases, the only meaningful
distinction is between FIP and weak-FIP.

However, as we mentioned earlier, the outcomes of such heuristics are not nec-
essarily Nash equilibria, meaning that voters could further improve by changing
their votes, should the restrictions on their actions be removed. Therefore, in this
paper we focus on better and best reply dynamics that (if they converge) reach a
Nash equilibrium state. We refer the reader to [13] for a more thorough discussion
of heuristics.

3. Properties of Strongly Acyclic Rules

Recall that a voting rule (or game-form) is strongly acyclic if any sequence of
better-replies by voters must converge to an equilibrium, regardless of voters’
preferences. An ordinal potential is a function that strictly increases if and only if
some agent plays a better reply [6]. A generalized ordinal potential is a function
that strictly increases with every better reply, but may also increase with other
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steps. Clearly, a game is FIP if and only if it has a generalized potential (by
a topological sort of the better reply graph) [6]. In the context of voting, even
most common rules may not admit a generalized ordinal potential or an ordinal
potential function; in fact, the latter only exists for dictatorships.

Theorem 3.1 (Kukushkin [7]). A game form f guarantees an ordinal potential
(i.e., every derived game has an ordinal potential function) if and only if f is a
dictatorship.

Let us stress that this result does not preclude the existence of other game
forms with FIP, as an ordinal potential is a stronger condition than a generalized
ordinal potential. Indeed, Kukushkin provides a partial characterization of FIP
game forms. For example, the Lexicographic rule where there is a linear order L
over C and the winner is the first candidate according to L that is top-ranked by
at least one voter, has this property.

A game form f is called “separable” [7] if there are mappings gi : Ai → C for
i ∈ N s.t. for all a ∈ A, f(a) ∈ {g1(a1), g2(a2), . . . , gn(an)}. That is, the vote of
each voter is mapped to a single candidate via some function gi, and the outcome
is always one of the candidates in the range. Examples of separable rules include
Plurality, the Lexicographic rule, and dictatorial rules, in all of which gi are the
identity functions.

We now demonstrate another separable game form which (unlike the examples
above) is non-standard. In the direct kingmaker voting rule [47] all voters i ∈
N \ {1} specify a single candidate a ∈ C, whereas voter 1 selects i ∈ N \ {1}
to be a “dictator of the day.” The direct kingmaker is a separable game form,
since f(a) ∈ {a2, . . . , an}. However, since A1 is not a coarsening of L(C), it is
non-standard. We prove the following.

Proposition 3.2. The direct kingmaker is FIP.

Proof. Denote dt = at1 as the dictator in at. In every state at, only agents 1 and
dt may have a better reply. Further, any better reply of dt is selecting a more
preferred candidate, i.e., at+1

dt �dt atdt . Thus any agent except agent 1 may move
at most m− 1 times. Since any cycle implies an unlimited number of steps by at
least 2 agents, there can be no cycles.

It was conjectured by Kukushkin that separability is a necessary condition for
a game form to be FIP.

Conjecture 3.3 (Kukushkin [7]). Any FIP game form is separable.
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Some weaker variations of this conjecture have been proved. In particular, the
statement is true for game forms with finite coalitional improvement property [7],
and for FIP game forms with n = 2 voters [48] (separable game forms are called
“assignable” there). We believe that Conjecture 3.3 holds for other small values
of n. Yet, next we show that for sufficiently large n, there are non-separable FIP
game forms, thereby refuting the conjecture.

Theorem 3.4. For any n ≥ 7, there is a non-separable game form f ∗n with n
agents s.t. f ∗n is FIP.

Proof. The proof outline is as follows. Suppose that each voter only has two pos-
sible actions. Clearly any separable game form may have at most 2n possible
outcomes in C, otherwise it is impossible to find mappings gi from actions to out-
comes as required. However the number of possible action profiles is exponential
in n. We will define a voting rule/game form with 2n + 1 outcomes, such that
almost all 2n profiles yield the same outcome z, with “special” profiles that are
few (only 2n) and far between (several steps are required to get from one special
profile to another). Note that for sufficiently high n, such game forms are very
easy to construct, but with small n construction has to be more careful. Such
game forms must be FIP, and for a very “boring” reason: any cycle must contain
a several consecutive steps where the outcome remains z. Such steps cannot be a
better-reply for any agent.

We begin by constructing f ∗n. The following construction works for n ≥ 8.
For n = 7 we use a somewhat different construction, see appendix. Let X =
{x1, . . . , xn}, Y = {y1, . . . , yn} and C = X ∪ Y ∪ {z}. Let Ai = {0, 1} for each
voter. Every voting function fn is a function from the n dimensional binary cube
B = {0, 1}n to C.

The challenge is to “pack” our 2n special profiles corresponding to X ∪ Y
in this cube such that they are “far between.” Fortunately, coding theory deals
with exactly this type of challenges, albeit for very different reasons. What we
will do is write our 2n special outcomes as (short) binary vectors, then use an
error-correcting code to map them back into n-bits (i.e., to profiles), but with the
guarantee that they are sufficiently far from one another (a distance of 3 ‘bits’ will
suffice).

Denote by k the total number of bits required for an optimal single error-
correcting code (Hamming code) with k data bits. For example, for k = 4 we
need 4 = 7 bits. In particular, there is a mapping q : {0, 1}k → {0, 1}k such that
the Hamming distance between any two words is at least 3 [49]. Formally, for all
w,w′ ∈ {0, 1}k, it holds that |{j : q(w)j 6= q(w′)j}| ≥ 3.
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For reasons that will become apparent later, we want to have k ≤ n − 1, and
n = |X| ≤ 2k.

Set r = blog2(n)c, and k = dlog2(n)e. Thus for n ∈ [8, 15],

2r−r−1 = 2blog2(n)c−blog2(n)c−1 = 23−3−1 = 4 ≥ dlog2(15)e ≥ dlog2(n)e = k;

for n ∈ [16, 31],

2r−r−1 = 2blog2(n)c−blog2(n)c−1 = 24−4−1 = 11 ≥ dlog2(31)e ≥ dlog2(n)e = k;

and for n ≥ 32,

2r−r−1 = 2blog2(n)c−blog2(n)c−1 ≥ 2log2(n)−1−log2(n)−1 = n/2−log2(n)−1 ≥ dlog2(n)e = k.

So for all n ≥ 8 we get k ≤ 2r − r− 1. From coding theory [49], for all r ≥ 2, if
k ≤ 2r − r − 1, then k = 2r − 1 bits are sufficient to code all k-bit strings. That
is, there is a valid code q from {0, 1}k to {0, 1}k.

It thus holds that:

k = 2r − 1 = 2blog2(n)c − 1 ≤ 2log2(n) − 1 = n− 1 (1)

n = 2log2(n) ≤ 2dlog2(n)e = 2k (2)

Let bin(t, k) ∈ {0, 1}k be the k-bit binary representation of t ∈ {1, 2, . . . , n}
(e.g., bin(5, 4) = 0101). Since n ≤ 2k, all of t ≤ n are represented with k bits.
Using the Hamming code q, we map each outcome xt ∈ X to a specific profile
at ∈ {0, 1}n by setting the first k bits of at to q(bin(t, k)) ∈ {0, 1}k, the n’th bit
to 0. Since n ≥ k+ 1 we pad any remaining bits with 0’s. Similarly, we map each
yt ∈ Y to the profile bt = (q(bin(t, k)), 0, . . . , 0, 1) ∈ {0, 1}n.

This provides us with a mapping from candidates to profiles. We now define
f ∗n (which is a reverse mapping from profiles to candidates) as follows:

• For all t ≤ n, set f ∗n(at) = xt;

• For all t ≤ n, set f ∗n(bt) = yt;

• For all other 2n − 2n profiles, set f ∗n(a) = z.

For any two profiles a,a′, let d(a,a′) be the number of voters that disagree
in a,a′ (the Hamming distance on the cube). By the construction above, we
have that for all t 6= t′, d(at, bt) = 1, d(at,at

′
) ≥ 3, and d(at, bt

′
) ≥ 3. Let

Ct = {xt, yt}.
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Assume towards a contradiction that there is some cycle of better replies in f ∗n.
Since each “special outcome” in X ∪ Y appears in only one profile, there must be
a path containing at least three distinct outcomes. This is possible in one of two
ways:

1. There are two distinct outcomes in the cycle from the same setCt = {xt, yt}.
In this case the cycle contains a path from at to bt and a different path from
bt to at. At least one of these paths must be of length 3, and contain at least
two consequent profiles whose outcome is z.

2. There are two outcomes in the cycle from distinct sets Ct, Ct′ . In this case
the cycle must contain a path from {at, bt} to {at′ , bt′} or vice versa. In
either case this path must be of length 3, and contain at least two consequent
profiles whose outcome is z.

A path that contains two consequent profiles with outcome z cannot be a better
reply path, since a better reply must in particular change the outcome. Hence we
get a contradiction, and f ∗n is FIP.

Finally, note that at, bt are all distinct profiles, and f ∗n has 2n+1 >
∑

i≤n |Ai|
possible outcomes. In contrast, for any separable rule fn the size of the range of
fn is at most

∑
i≤n |Ai|, since fn(a) = gi(b) for some voter i ∈ N and action

b ∈ Ai. This means that f ∗n is non-separable.

For n ≤ 6 such a construction is impossible, since any function with 2n + 1
distinct outcomes will necessarily contain a cycle. It may still be possible to con-
struct non-separable rules with fewer outcomes, but we believe that Conjecture 3.3
holds for all n ≤ 6.

For most common voting rules, separable or not, it is easy to find examples
where some cycles occur. Thus the importance of Conjecture 3.3 (or its refutation)
is mainly to game theory rather than social choice. In the remainder of this paper
we focus on the weaker notions of convergence as discussed in Section 1, which
are more relevant to social choice.

4. Plurality is Order-Free Acyclic

In this section, we analyze convergence of order-free dynamics in Plurality—that
is, there is no scheduler prescribing in which order the agents should take their
improvement steps. We look at sequences of better, best and direct best replies,
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initiated at an arbitrary or a specific (namely, truthful) profile. We consider vari-
ations of the game where the agents may have different or equal weights, and the
ties are broken lexicographically or arbitrarily.

4.1. Lexicographic Tie-Breaking
We start with the case of lexicographic tie-breaking. Given some score vector s,
we denote by s̈(c) ∈ R the score of c ∈ C that includes the lexicographic tie-
breaking component. One way to formally define it is by setting s̈(c) = s(c) +

1
m+1

(m − L(c)), where L(c) is the lexicographic index of candidate c. However
the only important property of s̈ is that s̈(c) > s̈(c′) if either s(c) > s(c′) or the
score is equal and c has a higher priority (lower index) than c′.

Thus, for Plurality with lexicographic tie-breaking, a given weight vector w
and a given initial score vector ŝ, we denote the outcome by

fPL
ŝ,w(a) = argmaxc∈C s̈ŝ,w,a(c).

As with s, we omit the scripts w, ŝ and PL when they are clear from the
context.

Lemma 4.1. Consider a game
〈
fPL
w,ŝ,L

〉
. If there exists a better reply for a given

agent i at state at−1, then i has a direct best reply at state at−1.

The proof is trivial under lexicographic tie-breaking, by letting i vote for her
most preferred candidate among all better replies. In this case the direct best reply
is also unique.

One implication of the lemma is that it is justified and natural to restrict our
discussion to direct replies and focus on FDRP, as w.l.o.g. a voter always has a
direct reply that is at least as good as any other reply.

We next introduce some additional notation that we can use to classify all pos-
sible improvement steps under the lexicographic Plurality rule into three types.
This classification will be useful in the proofs and examples throughout the sec-
tion.

Types of improvement steps in Plurality
Recall that along a given path, at ∈ An = Cn denotes the voting profile at

time t. We next denote by st = sat the score vector at time t; by cwt = fPL(at)
the candidate that wins at time t; and by swt = s̈t(cwt) the highest score at time
t. Note that the score of a losing candidate is always strictly lower than swt, even
if she has the same number of votes as the winner and loses only by tie-breaking.
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Suppose that agent i has an improvement step (i.e., better reply) at−1i
i→ ati at

time t. We classify all possible steps into the following types (an example of such
a step appears in parentheses):

Type 1. from at−1i 6= cwt−1 to ati = cwt ; (step 1 in Ex. 4.3)

Type 2. from at−1i = cwt−1 to ati = cwt ; (step 1 in Ex. 4.4),

Type 3. from at−1i = cwt−1 to ati 6= cwt ; (step 2 in Ex. 4.3)

Note that steps of type 1 and 2 are direct, whereas type 3 steps are indirect.
We first show our main result: when voters all have unit weight, any sequence

of direct replies converges to equilibrium. Then, we show that this no longer holds
if voters may have different weights.

Unweighted voters
Theorem 4.2. fPL

ŝ is FDRP. Moreover, any path of direct replies will converge
after at most m2n2 steps. In particular, Plurality is order-free acyclic.

This extends a weaker version of the theorem that appeared in the preliminary
version of this paper [1], which only showed FDBRP. The bound on the number
of direct best reply steps was improved to O(mn) in [12, Theorem 5.4].

Proof. By our restriction to direct replies, there can only be moves of types 1 and
2. We first consider moves of type 1, and inductively prove two invariants that
yield a bound on the total number of such moves. Next, we bound the number
of moves of type 2 by a given voter between any of his moves of type 1, which
completes the proof.

Consider time t− 1 and denote the score of the current winner (including tie-
breaking) by s̄ = swt−1. Suppose that a move a i→ b of type 1 occurs at time t:
that is, a 6= cwt−1 and b = cwt. We then have (see Figure 6):

s̈t(b) = swt ≥ swt−1 = s̄ > s̈t−1(a) = s̈t(a) + 1. (3)

The strict inequality is since cwt−1 beats a. We claim that at any later time
t′ ≥ t the following two invariants hold:

I. Either there is a candidate c 6= a whose score is at least s̄+ 1, or there are at
least two candidates c, c′ 6= a whose score is at least s̄. In particular it holds
in either case that swt′ ≥ s̄.
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Figure 6: An illustration of a type 1 move. Tie-breaking is in favor of the left-most candidate.

II. The score of a does not increase: s̈t′(a) ≤ s̈t(a).

Note that this, coupled with Eq. (3), implies that candidate a will never win again,
as its score will stay strictly below s̄, and there will always be a candidate with a
score of at least s̄.

We now prove both invariants by induction on time t′. In the base case t′ = t,
(I) holds since both cwt−1 and b have a score of at least s̄, and (II) holds trivially.

Assume by induction that both invariants hold until time t′ − 1, and consider
step t′ by voter j. Due to (I), we either have at least two candidates whose score
is at least s̄, or a candidate with a score of at least s̄ + 1. Due to (II) and Eq. (3)
we have that s̈t′−1(a) ≤ s̈t(a) < s̄− 1.

Let d j→ d′ be the step at time t′ by voter j (that is, d = at
′−1
j , d′ = at

′
j ). We

first argue that d′ 6= a: by adding the vote of j to a its score will still be strictly
less than s̄, whereas by removing a vote from any other candidate d, we still have
at least one candidate c with score at least s̄. Thus a cannot be a direct reply for
any voter j, and (II) still holds after step t′.

It remains to show that (I) holds. If d is not one of the candidates in (I) with
the score of at least s̄ at time t′ − 1, then their score does not decrease after step
t′, and we are done. Otherwise, we divide into the following cases:

1. At t′ − 1, d = c is the (only) candidate with a score of at least s̄+ 1.

2. At t′ − 1, candidates c, c′ have scores of at least s̄, and d is one of them
(w.l.o.g. d = c).

In the first case, s̈t′(d) = s̈t−1(d) − 1 ≥ s̄ + 1 − 1 = s̄, whereas s̈t′(d′) >
s̈t

′
(d) ≥ s̄. Thus, both d, d′ have scores of at least s̄ at time t′, as required. In the
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second case, since only c = d can lose votes, then if d′ 6= c′,

s̈t
′
(d′) = swt

′ ≥ s̈t
′
(c′) = s̈t

′−1(c′) ≥ s̄,

and thus both c′, d′ have scores of at least s̄ at time t, as required. If d′ = c′,
then

s̈t
′
(d′) = s̈t

′−1(d′) + 1 = s̈t
′−1(c′) + 1 ≥ s̄+ 1,

that is, d′ has a score of at least s̄+ 1, as required.
Next, we demonstrate that invariants (I) and (II) supply us with a polynomial

bound on the rate of convergence. Indeed, as we mentioned before, at every step
of type 1, at least one candidate is ruled out permanently, and there are at most
n times that a vote can be withdrawn from a given candidate. Thus in total there
can be at most mn steps of type 1. Also note that, since a type 2 move by a given
voter i implies that he prefers ati to at−1i , each voter can make at mostm−1 type 2
moves before making a move of type 1, and the total number of steps between any
two type 1 steps is (m − 1)n. Hence, there are in total at most m2n2 steps until
convergence.

Next, we show that the restriction to direct replies is necessary to guarantee
convergence, whereas a restriction to best replies is insufficient.

Proposition 4.3. fPL is not FBRP.

Remark 4.1. In the example below and in other examples throughout the paper
we use an initial score vector ŝ. However, this is w.l.o.g. since we could replace ŝ
with additional voters that do not participate in the cycle. Initial scores are only
useful to construct examples that are simpler and/or with fewer strategic agents.
This holds for all negative results in the paper.8 For positive results, we have to
show convergence for every initial score vector ŝ. Clearly, any such positive result
also holds for the case of ŝ = 0.

Example 4.3. Let C = {a, b, c} and N = {1, 2}. We have a single fixed voter
voting for a, thus ŝ = (1, 0, 0). The preference profile is defined as a �1 b �1 c,
c �2 b �2 a. The following cycle consists of individual improvement steps of
the strategic voters (the vector denotes the votes (a1, a2) at time t, and the winner
appears in curly brackets):

(b, c){a} 2→ (b, b){b} 1→ (c, b){a} 2→ (c, c){c} 1→ (b, c).

8Note that the remark no longer holds if ŝ is used to construct a counter-example for weak-FIP.
However we do not use such examples in this paper.
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Note that all steps are best replies, but the steps of agent 1 are indirect. ♦

Proposition 4.3 in particular implies that fPL is not FIP. As we show below,
cycles of better replies may occur even from the truthful state.

Proposition 4.4. fPL is not FIP even from the truthful state.

Example 4.4. LetC = {a, b, c, d}. Candidates a, b, and c have 2 fixed voters each,
thus ŝ = (2, 2, 2, 0). We use 3 strategic agents N = {1, 2, 3} with the following
preferences: d �1 a �1 b �1 c, c �2 b �2 a �2 d and d �3 a �3 b �3 c.
Starting from the truthful state (d, c, d) the agents can make the following two
improvement steps, which are direct replies (showing only the outcome s and the
winner): (2, 2, 3, 2){c} 1→ (2, 3, 3, 1){b} 3→ (3, 3, 3, 0){a}, after which agents 1
and 2 repeat the cycle shown in Example 4.3. ♦

There is still the question of convergence from the truthful state, when voters
are restricted to best replies that are not necessarily direct. This was shown to be
positive as well.

Proposition 4.5 (Reijngoud [50]). fPL is FBRP from the truth. Moreover, any
path of best replies will converge after at most mn steps.

The reason is that under best-response dynamics from the truthful state, only
type 1 steps can occur. This fact was also shown independently by Branzei et
al. [32].

Weighted voters
Next, we show that if the voters may have non-identical weights, then conver-

gence to equilibrium is not guaranteed even if they start from the truthful state and
use direct best replies.

Proposition 4.6. fPL
w is not order-free-FDRP for some w, even from the truthful

state.

Example 4.6. Let the initial fixed score of candidates C = {a, b, c, d} be ŝ =
(0, 1, 2, 3). The weight of each voter i ∈ N = {1, 2, 3} is i. The preference
profile is as follows: c �1 d �1 b �1 a, b �2 c �2 a �2 d, and a �3 b �3 c �3 d.
The initial truthful profile is thus a0 = (c, b, a), which results in the score vector
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s0 = (3, 3, 3, 3) where a is the winner.

votes: (c, b, a)
1→ (d, b, a)

2→ (d, c, a)
scores: (3, 3, 3, 3){a} (3, 3, 2, 4){d} (3, 1, 4, 4){c}

↑ 3 ↓ 3

(c, b, b)
2← (c, c, b)

1← (d, c, b)
(0, 6, 3, 3){b} (0, 4, 5, 3){c} (0, 4, 4, 4){b}

Our example shows a cycle of direct replies. Note that at every step there is only
one direct reply available to the agent, thus it is not possible to eliminate the cycle
by further restricting the action scheduler. ♦

However, if there are only two strategic weighted voters (and possibly other
fixed voters), either restriction to direct replies or to a truthful initial state is suffi-
cient to guarantee convergence.

Lemma 4.7. Suppose that there are n = 2 weighted voters, and that at some
state t′ both voters vote for distinct candidates, and one of these candidates is the
winner. Then the score of the winner is strictly higher at any later state t > t′.

Proof. W.l.o.g, voter 1 plays in all the odd steps, and voter 2 in all the even steps
(if a voter plays several consecutive steps we consider them as a single step).
Denote the current votes by at′1 = x and at′2 = y 6= x. In order to change the
outcome, voter 1 must vote in step t′ + 1 for some z /∈ {x, y} s.t. cwt′+1 = z.
Since x 6= y, we have swt′+1 = s̈t

′+1(z) > s̈t
′+1(y) = s̈t

′
(y) = swt. We can

now apply the same argument inductively, as in state t′+ 1 voters vote for distinct
candidates, one of whom is the winner.

Theorem 4.8. fPL
ŝ,w is FDRP for n = 2.

Proof. Let state t′ > 2 be any state where voters vote for two distinct candidates.
W.l.o.g. t′ is even, meaning voter 2 just moved to y from some other candidate.
By our restriction to direct replies, cwt′ = y. By applying Lemma 4.7, the score
of the winner must increase in every step until convergence.

Theorem 4.9. fPL
ŝ,w is FIP from the truth for n = 2.

Proof. The first step must be of type 1 since initial votes are truthful. Thus at state
a1 at least one voter (w.l.o.g. voter 2) is voting for the winner a12 = cw1 = x. If
a11 = x as well then we are done since neither voter will want to move. Otherwise,
the voters are voting for distinct candidates and thus by Lemma 4.7, the score of
the winner must increase in every step until convergence.
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Thus, in either case convergence is guaranteed after at most 2m steps.
It remains an open question whether there is any restriction on better replies

that guarantees order-free acyclicity in weighted games, i.e., if fPL
w is order-free-

FIP for any n > 2 and weights w. However, Prop. 4.6 shows that if such a
restricted order-free dynamic exists, it must make use of indirect replies, which is
rather unnatural. We thus conjecture that such order-free dynamics do not exist.

We next consider how the tie-breaking method affects the convergence prop-
erties of the (unweighted) Plurality rule.

4.2. Arbitrary tie-breaking
Lev and Rosenschein [46, 14] showed that for any positional scoring rule (in-
cluding Plurality), we can assign some deterministic tie-breaking rule, so that
the resulting voting rule may contain cycles. For any positional scoring rule fα
with score vector α, denote by fLR

α the same rule with the Lev-Rosenschein tie-
breaking.

Proposition 4.10 (Theorem 1 in [46]). fLR
α is not FBRP for any α, even for n = 2,

and even from the truth. In particular, Plurality with the Lev-Rosenschein tie-
breaking (fPLR) is not FBRP.

In fact, a slight modification of their example yields the following:

Proposition 4.11. fPLR is not order-free-FIP, even for n = 2, and even from the
truth.

Example 4.11. The original example used in [46] for Plurality has four candidates
{a, b, c, d} and two voters with preferences a �1 b �1 c �1 d and c �2 d �2 b �2

a. The (non linear) tie-breaking rule is defined such that: a beats d; b beats a and
c; c beats a and d; and d beats b. We modify the preferences by switching a and b
in voter 2’s preferences, so that c �2 d �2 a �2 b.

We get the following cycle from the truthful state a0 = (a, c):

(a, c){c} 1→ (b, c){b}
↑ 2 ↓ 2

(a, d){a} 1← (b, d){d}

Since each voter has only one available better reply in every step, no restriction
on the action scheduler would break the cycle. ♦
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4.3. Randomized tie-breaking
LetF P

ŝ,w denote the game form that maps any state a ∈ An to the set argmaxc∈C sŝ,w,a(c)

(all candidates with maximal Plurality score). Let W t = F P (at) ⊆ C denote the
set of winners at time t. We thus define a direct reply at−1i

i→ ati as one where
ati ∈ W t.

It is easy to see that a preference order Li does not induce a complete order
over outcomes of F P . For instance, the order a �i b �i c does not determine
if i prefers {b} over {a, c}. However, we can naturally extend Li to a partial
preference order over subsets, using the following axioms:

Axiom Name and reference Definition
K1 Kelly [20] (∀a ∈ X, b ∈ Y, a �i b) ⇒ X �i Y
K2 Kelly [20] (∀a ∈ X, b ∈ Y, a �i b) ⇒ X �i Y
G Gärdenfors [19] (∀b ∈ X, a �i b) ⇒ {a} �i ({a} ∪X) �i X
R Responsiveness [51] a �i b if and only if

∀X ⊆ C \ {a, b}, ({a} ∪X) �i ({b} ∪X)

These axioms reflect various beliefs a rational voter may have on the tie-
breaking procedure: the K axiom reflects no assumptions whatsoever; the K+G
axioms are consistent with tie-breaking according to a fixed and unknown or-
der [52]; and K+G+R axioms are consistent with random tie-breaking with equal
probabilities (see Lemma 4.15 and Prop. 4.23). In this section, we assume all
axioms hold, however our results do not depend on the interpretation of this pref-
erence extension as a result of random tie-breaking, and we do not specify the
voters’ preferences in cases not covered by the above axioms. Under strict pref-
erences, it also holds that G entails K [53]. We can also define “weak” variants
G2 and R2 for axioms G and R, by replacing all strict relations with weak ones;
however, as long as we restrict attention to strict preferences over the alternatives,
the weak variants are not required.

We define the Plurality with random tie-breaking rule fPR
ŝ,w by selecting the

winner uniformly at random from F P
ŝ,w. We emphasize that the ties are resolved

only after the voting process ends, and thus voters’ decisions cannot take the
realized outcome into consideration (ex-ante better reply).9 In order to be able to
identify all better replies in a game

〈
fPR
ŝ,w,L

〉
, we need to extend each Li using

9With ex-post better replies, any convergence proof for lexicographic tie-breaking entails con-
vergence of random tie-breaking, since eventually there will be a long enough sequence of steps
where ties are broken (by chance) lexicographically.
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Axioms K+G+R. The extended relation Li is just a partial order over subsets of
C, but nonetheless this is sufficient to prove our main result in this section.

For the following lemma we only need Axiom K, i.e., it does not depend on
the tie-breaking assumptions.

Lemma 4.12. If there exists a better reply in fPR
ŝ,w for agent i at state at−1, then i

has a direct best reply.

Proof. Suppose there is a better reply at−1i
i→ b at time t− 1. As some best reply

always exists, denote by b′ an arbitrary best reply. Let W = F P
ŝ,w(at−1−i , b

′), and
let a′ be the most preferred candidate of i in W . Then we argue that at−1i

i→ a′

is a direct best reply of i. Since a′ is a direct reply by definition, it is left to show
that a′ is a best reply (for the lexicographic case this follows immediately from
W = {a′} and fPL(at−1−i , a

′) = W = {a′}).
If b′ is a direct reply then b′ = a′ and we are done. Thus assume that b′ is

not a direct reply from at−1i . Then b′ /∈ W . By voting for a′ ∈ W , we get
that F P

ŝ,w(at−1−i , a
′) = {a′}, i.e., a′ remains the unique winner. If |W | = 1 then

we are done as in the lexicographic case. Otherwise we apply Axiom K2 with
X = {a′}, Y = W , and get that a′ �i W . That is,

F P
ŝ,w(at−1−i , a

′) = {a′} �i W = F P
ŝ,w(at−1−i , b

′),

which means that a′ is also a best reply in fPR
ŝ,w.

Weighted voters
In contrast with the lexicographic case, the weighted randomized case does not

always converge to equilibrium, even with (only) two strategic agents. Moreover,
a pure strategy Nash equilibrium may not exist at all [1]. We therefore restrict
attention in the rest of this section to unweighted voters.

Unweighted voters
In this case, we show that while better replies may not converge, best replies

converge from the truthful profile.

Proposition 4.13. fPR is not FIP.

Example 4.13. C = {a, b, c} with initial score ŝ = (0, 1, 0). The initial state
is a0 = (a, a, b)—that is, s(a0) = (2, 2, 0) and the outcome is the winner set
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F P
ŝ (a0) = {a, b}. The preferences are a �1 c �1 b, b �2 a �2 c and c �3 b �3 a.

We get the following cyclic sequence:

(2, 2, 0){a, b} 2→ (1, 2, 1){b} 1→ (0, 2, 2){b, c}
↑ 1 ↓ 3

(1, 2, 1){b} 3← (2, 1, 1){a} 2← (1, 1, 2){c}

We emphasize that each step is justified as a better reply by either Axiom K or
Axiom G. For example, in the step of agent 2 in the top row, agent 2 prefers
b �2 a, and thus b �2 {a, b} by Axiom G. This will be used later in Section 4.4.
♦

Theorem 4.14. fPR
ŝ is FBRP from the truth.

Proof. We denote the sets of winners and runner-ups at time t as W t = F P
ŝ (at)

(i.e., we omit the scripts); and Rt = {c : st(c) = swt − 1}. We will show by
induction that at any step at−1

i→ at:

1. W t ∪Rt ⊆ W t−1 ∪Rt−1 (i.e., the set of potential winners is never expand-
ing).

2. ati ∈ W t (i.e., step t is a direct reply).

3. ati is the most preferred candidate for i in W t ∪Rt.

4. at−1i �i ati (in the terminology of [34], this is a compromise step).

5. Either swt > swt−1 (the score of the winner strictly increases), or swt =
swt−1 and |W t| > |W t−1|.

Since each voter can make at most m− 1 compromise steps, convergence is guar-
anteed within nm steps.

Assume that for some t ≥ 1, all of the above holds for any t′ < t (so we prove
the base case together with the other cases). Since a0 is truthful, the first step of
any voter is always a compromise move. Also, if i had already moved at some
previous time t′ < t, then at′i is most preferred in W t′ ∪Rt′ .

By induction, a = at−1i is the most preferred candidate in some C ′ that con-
tains W t−1 ∪ Rt−1 (C ′ = C in i’s first step, and C ′ = W t′ ∪ Rt′ at any other step
t′). Let x and y be i’s most preferred candidates inW t−1 and inRt−1, respectively,
and denote the best reply by a′ = ati. Each of a or a′ may belong toW t−1, toRt−1,
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or to neither set. This means there are 3 · 3 = 9 cases to check. Fortunately, we
can show that some of these cases immediately lead to a contradiction, and in the
other cases all invariants 1–5 will hold after step t.

Consider first the case a ∈ W t−1. Since a is most preferred in C ′, it is strictly
more preferred than any other candidate in W t−1 or in Rt−1 (in particular, a = x).

• If a′ ∈ W t−1, then we show that all invariants hold: (1) W t ∪Rt = W t−1 \
{a} ⊆ W t−1 ∪ Rt−1; (2) holds since a′ becomes the unique winner; (3) if
there was another candidate z ∈ W t ∪ Rt = W t−1 \ {a} such that z �i a′,
then z would be i’s best reply; (4) follows since a′ ∈ C ′ and a is the most
preferred in C ′; and (5) follows since the score of the winner a′ increases
by 1.

• If a′ ∈ Rt−1 we get W t = (W t−1 \{a})∪{a′} ≺i W t−1 by Axiom R. Thus
a

i→ a′ is not an improvement step.

• If a′ /∈ W t−1 ∪Rt−1 then we further split into two cases:

– If |W t−1| > 1, then W t = W t−1 \ {a} = W t−1 \ {x}. Then since x
is the most preferred in W t−1 we have by Axiom G that W t−1 �i W t,
meaning that this cannot be an improvement step.

– If |W t−1| = 1, i.e., W t−1 = {a}, then let t′ < t be the previous step
by agent i. We argue that step t′ must be an earlier violation of some
of the five invariants, thus contradicting our inductive hypothesis:

∗ W t = Rt−1 ∪ {a′}. Otherwise (i.e., if a′ does not become a win-
ner) we have {a} = W t−1 �i W t = Rt−1 by Axiom K.
∗ The score of a′ at time t − 1 is exactly s = st−1(a) − 2, other-

wise a′ cannot become a winner. Denote by RRt−1 all candidates
with score s at time t− 1 (second runner-ups), then a′ is i’s most
preferred in RRt−1.
∗ a′ must be more preferred than all of Rt−1∪{a}. Otherwise, let z

be the most preferred candidate in Rt−1 ∪ {a}, and by Axiom G,
{z} �i W t. Since i can make z the unique winner by voting for
it, a′ cannot be a best reply.
∗ Since step t − 1 was a direct reply (by invariant (2)), it was by

some agent j moving from some candidate b = at−2j /∈ W t−2 to
a, meaning that the winning score at time t − 2 is s + 1. Thus
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W t−2 = Rt−1 ∪ {a}, and Rt−2 = RRt−1 \ {b}. In particular
a ∈ W t−2 and a′ ∈ Rt−2, and both are in the union.
∗ By invariant (1) again, and since t′ ≤ t− 1, a′ ∈ Rt−2 ∪W t−2.
∗ We get that at step t′, voter i votes for a even though there is a

more preferred candidate a′ ∈ Rt′ ∪W t′ . This is a violation of
invariant (3).

This shows that a step that strictly decreases the score of the winner
at time t implies an earlier violation, which is a contradiction to our
induction assumption.

Next, suppose a /∈ W t−1. We further split to subcases based on a′.

• If a′ ∈ W t−1 then W t = F P
ŝ (a−i, a

′) = {a′}. Then a′ = x, as otherwise
F P
ŝ (a−i, x) = {x} �i {a′}, and i is strictly better off by voting for x. This

entails W t = {x}, Rt = W t−1 \ {x} so all invariants 1–5 hold: (1) since
W t−1 = W t ∪ Rt; (2) since W t = {a′}; (3) follows from (1) since a′ = x
is the most preferred in W t−1; (4) follows from (1) since a = at−1i is the
most preferred in C ′, and a′ ∈ C ′; (5) follows since the score of the unique
winner a′ increases by 1.

• If a′ ∈ Rt−1 then W t = F P
ŝ (a−i, a

′) = {a′} ∪ W t−1. Then a′ = y, as
otherwise F (a−i, y) = {y} ∪W t−1 �i {a′} ∪W t−1 by Axiom R, which
means i is strictly better off by voting for y. This entails W t = {y}∪W t−1,
Rt = Rt−1 \ {y}. We also get that a′ = y �i x or else x would have been a
strictly better reply since F P

ŝ (a−i, x) = {x} �i {y} ∪W t−1 by Axiom K.
Thus all invariants 1–5 hold: (1) W t = W t−1 ∪ {y} ⊆ W t−1 ∪ Rt−1 and
Rt = Rt−1 \ {y}; (2) since a′ ∈ W t; (3) follows from (1) since a′ = ati = y
is most preferred in Rt−1 and strictly preferred to x; (4) follows from (1) as
in the previous case; and (5) follows since W t = W t−1 ∪ {a′}.

• If a′ /∈ W t−1 ∪ Rt−1, then W t = F (a−i, a
′) = W t−1. The outcome does

not change so this cannot be an improvement step for i.

The proofs and examples above make use only of the axioms, without speci-
fying an explicit cardinal scale. To show that the result is tight, we next consider
games with specific cardinal utility scales.
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Cardinal utilities
A (cardinal) utility function is a mapping of candidates to real numbers u :

C → R, where ui(c) ∈ R denotes the utility of candidate c to agent i. We say
that ui is consistent with a preference relation Li if ui(c) > ui(c

′) ⇔ c �i c′.
The definition of cardinal utility naturally extends to multiple winners by setting
ui(W ) = 1

|W |
∑

c∈W ui(c) for any subset W ⊆ C. As explained above, one
interpretation of this is that the winner is selected uniformly at random from the
set W .

Lemma 4.15. Consider any cardinal utility function u and the partial prefer-
ence order L it induces on subsets by random tie-breaking. Then, L satisfies
Axioms K+G+R.

The proof is rather straightforward, and is deferred to the appendix. Note that
a cardinal scale ui may induce additional preference relations that are not implied
by (nor contradict) the axioms.

Proposition 4.16. fPR is not FIP from the truth, even for n = 2.

Example 4.16. We use 5 candidates with initial score ŝ = (1, 1, 2, 0, 0), and 2
agents with preferences that imply {b, c} �1 c, {a, c} �1 {a, b, c} (with d =
top(L1)), and {a, b, c} �2 {b, c}, c �2 {a, c} (with e = top(L2)). The following
cycle occurs: (1, 1, 2, 1, 1){c} 1→ (1, 2, 2, 0, 1){b, c} 2→ (2, 2, 2, 0, 0){a, b, c} 1→
(2, 1, 2, 1, 0){a, c} 2→ (1, 1, 2, 1, 1){c}.

To see why there must exist valid preferences as above, note that L1 is con-
sistent with (for example) u1 = (5, 3, 2, 8, 0) and likewise L2 is consistent with
u2 = (4, 2, 5, 0, 8). Then by Lemma 4.15 the preferences hold all axioms. ♦

Finally, in contrast to the lexicographic case, convergence is no longer guaran-
teed if agents start from an arbitrary profile of votes, or are allowed to use direct
replies that are not best replies. In the next propositions we define voters’ pref-
erences directly as cardinal utilities. The following example shows that in the
randomized tie-breaking setting even direct best reply dynamics may have cycles,
albeit for specific utility scales.

Proposition 4.17. fPR is not order-free-FIP.

Example 4.17. There are 4 candidates {a, b, c, x} and 3 agents with utilities u1 =
(7, 3, 0, 4), u2 = (0, 7, 3, 4) and u3 = (3, 0, 7, 4). In particular, the following
preference relations hold: a �1 {a, b} �1 x �1 {a, c}; b �2 {b, c} �2 x �2

{a, b}; and c �3 {a, c} �3 x �3 {b, c}.
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Consider the initial state a0 = (a, b, x) with s(a0) = (1, 1, 0, 1) and the out-
come {a, b, x}. We have the following cycle where every step is the unique reply
of the playing agent.

(1, 1, 0, 1){a, b, x} 2→ (1, 0, 0, 2){x} 3→ (1, 0, 1, 1){a, x, c}
↑ 1 ↓ 1

(0, 1, 0, 2){x} 3← (0, 1, 1, 1){x, b, c} 2← (0, 0, 1, 2){x}

♦

Proposition 4.18. fPR is not FDRP even from the truth.

Example 4.18. We take the game from Ex. 4.17, and add for each voter i ∈
{1, 2, 3} a candidate di, s.t. ui(di) = 8, ui(dj) = j for j 6= i. Thus initially each
voter i votes for di. We also add an initial score of 3 to each of the candidates
{a, b, c, x}. Voter 3 moves first to a13 = x, which is a direct reply. Then voters 1
and 2 move to their best replies a, b, respectively. Now the cycle continues as per
Ex. 4.17. ♦

4.4. Stochastic Dominance and Local Dominance
Extending Li to a complete preference over subsets (that is consistent with the ax-
ioms) is one way to define a better reply dynamics for F P . Another way to derive
a well-defined dynamics from any partial order Li over subsets of candidates, is
by assuming that a voter performs a better reply step if she strictly prefers the new
outcome according to Li, and otherwise (if the new outcome is same, worse, or
incomparable) she does not move.

One example of such a partial order is stochastic dominance (SD), which was
applied to tie-breaking by [12]. A different partial order is implied by local
dominance (LD) which was defined for voting with uncertainty about the out-
come [54, 34]. We show how convergence results for LD/SD dynamics fit with
other results.

Stochastic dominance
Reyhani and Wilson assume that ties are broken uniformly at random, and

that a voter will only perform a step that stochastically dominates the current
winner(s), if such exists.

Theorem 4.19 (Theorem 5.7 in [12]). Plurality with stochastic dominance tie-
breaking is FDBRP.
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A natural question is how this result related to the results in Section 4.3, where
voters have cardinal utilities.

Since any SD step is also a better reply under any cardinal utility scale [12],
any strong or order-free convergence result for the latter applies to the former, but
not vice-versa. In particular, if we restrict attention to convergence from the truth,
we have the following immediate corollary from Theorem 4.14:

Corollary 4.20. Plurality with stochastic dominance tie-breaking is FBRP from
the truth.

Local dominance
Suppose that there are several candidates with maximal score. A voter may

consider all of them as “possible winners,” without specifying how the actual
winner is selected. If the voter is concerned about making a move that will leave
him worse off, he will only make moves that will improve his utility with certainty,
i.e., that dominates his current action (where possible worlds are all strict tie-
breaking orders) [54, 34, 41].10

Theorem 4.21 (Theorem 11 in the full version of [41]). Plurality with Local-
Dominance tie-breaking is FDRP.

Which tie-breaking axioms are required for convergence?
We can use our axioms to characterize all better replies. Note that by our

assumption voters that cannot conclude that a step will myopically benefit them
prefer to keep their current vote. Thus adding more axioms lets the voter make a
more informed decision and therefore only increases the number of improvement
steps and may only add cycles. We emphasize that in either case convergence may
be to a state that is not a Nash equilibrium.

If we assume that voters only follow steps that are better replies by Axiom K
(an extreme risk-averse behavior), then it is easy to see that only moves to a more-
preferred candidate can be better replies (any move to or from a tie cannot follow
from Axiom K and is thus forbidden), which means that there are trivially no
cycles, and Plurality becomes FIP.

10These papers consider a setting where the voter is uncertain about the outcome in general.
[34, 41] consider uncertainty over the candidates’ score, and [54] considers arbitrary information
sets. We simply apply the same decision criterion to the case where uncertainty is regarding the
tie breaking.
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Proposition 4.22 (See appendix for the proof). A step a
i→ a′ is a better reply un-

der unknown tie-breaking and local dominance, if and only if F P (a′) �i F P (a)
is entailed by Li, Axioms K+G, and transitivity.

Proposition 4.23 (Meir [55]). A step a
i→ a′ is a better reply under random tie-

breaking and stochastic dominance, if and only if F P (a′) �i F P (a) is entailed
by Li, Axioms K+G+R, and transitivity.

Thus by Propositions 4.21 and 4.22, Plurality with voters that follow Ax-
ioms K+G is FDRP (i.e., guaranteed to converge if voters stick to direct replies).
In contrast, the analysis of Ex. 4.13 shows that all steps are entailed by Ax-
ioms K+G, meaning that imposing Axioms K+G make it possible to have cycles
of arbitrary better replies.

Similarly, by Propositions 4.19, 4.20 and 4.23, Plurality with voters that fol-
low all Axioms K+G+R is both FDBRP and FBRP from the truth. That is, conver-
gence is guaranteed if voters both stick to best replies, and either keep them direct
or start from the truthful state. It is left as an open question if cycles of arbitrary
direct replies are possible, i.e., whether FDRP holds even with Axiom R.

5. Separating Order-Free and Weak Acyclicity

Except for Plurality and Veto, convergence is not guaranteed even under re-
strictions on the action scheduler and the initial state. In contrast, simulations [33,
34, 35] show that iterative voting almost always converges even when this is not
guaranteed by theory. We believe that weak acyclicity is an important part of the
explanation to this gap. Recall that a voting rule is weakly acyclic if from any
initial profile, there is some sequence of better-replies that reaches a pure strategy
Nash equilibrium. Indeed, we show that there are voting rules, including a com-
mon variation of the Plurality rule, that are not order-free acyclic, but are weakly
acyclic. This explains convergence in practice, since in a weakly acyclic game
with a random scheduler, every cycle will only be repeated a finite number of
times before convergence must occur.

5.1. Plurality with Random tie-breaking
We have seen in Section 4 that while fPR is FBRP from the truthful initial state,
this is no longer true from arbitrary states, and in fact fPR is not order-free-FIP
under any action scheduler. Our main theorem in this section shows that under
a certain scheduler (of both agents and actions), convergence is guaranteed from
any state. Further, this still holds if actions are restricted to direct replies. We use
the following lemma, whose proof is in the appendix.
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Lemma 5.1. Consider any game G = 〈fPR
ŝ ,L〉. Consider some candidate z, and

suppose that in a0, there are x, y s.t. s0(x) ≥ s0(y) ≥ s0(z) + 2. Then, for any
sequence of direct replies, z /∈ f(at).

Theorem 5.2. fPR
ŝ is weak-FDRP.

Proof. Consider a game G = 〈fPR
ŝ ,L〉, and an initial state a0. For a state a,

denote by B(a) ⊆ An all states reachable from a via paths of direct replies. Let
B = B(a0), and assume towards a contradiction that B does not contain a Nash
equilibrium. For every b ∈ B, let C(b) = {c ∈ C : ∃a ∈ B(b) ∧ c ∈ f(a)}, i.e.,
all candidates that are winners in some state reachable from b.

For any b ∈ B(a0), define a game Gb by taking G and eliminating all candi-
dates not in C(b). Since we only consider direct replies, for any a ∈ B(b), the set
of outgoing edges I(a) is the same in G and in Gb (as any direct reply must be to
a candidate in C(b)). Thus by our assumption, the set B(b) in game Gb does not
contain a NE.

For any b ∈ B(a0), let b∗ be the truthful state of game Gb, and let T (b) ⊆ N
be the set of agents who are truthful in b. That is, i ∈ T (b) if bi = b∗i .

Let b0 be some state b ∈ B(a0) s.t. |T (b)| is maximal, and let T 0 = T (b0).
If |T 0| = n then b0 is the truthful state of Gb0 , and thus by Theorem 4.14 all best
reply paths from b0 in Gb0 lead to a NE, in contradiction to B(b0) not containing
any NE. Thus T 0 < n. We will prove that there is a path from b0 to a state b′ s.t.
|T (b′)| > |T 0|.

Let i /∈ T (b0) (must exist by the previous paragraph). Consider the score of
candidate b∗i at state b0. We divide into 6 cases. All scores specified below are in
the game Gb0 .

Case 1. |f(b0)| > 1 and b∗i ∈ f(b0) (i.e b∗i is one of several winners). Then consider
the step b0

i→ b∗i . This make b∗i the unique winner, and thus it is a direct best
reply for i. In the new state b′ = (b0−i, b

∗
i ), and we have T (b′) = T (b0)∪{i}.

Case 2. s0(b∗i ) = sw0 − 1 (i.e., b∗i needs one more vote to become a winner). By
Axioms G and R, i prefers f(b0−i, b

∗
i ) over f(b0). Then similarly to case 1,

i has a direct step b0
i→ b∗i , which results in a state b′ that is closer to being

truthful.11

11Note that this is not necessarily a best reply.
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Case 3. b∗i = f(b0) (i.e b∗i is the unique winner). Then the next step b0
j→ b1

will bring us to one of the two previous cases. Moreover, it must hold that
j /∈ T (b0) since otherwise b0j = b∗j = f(b0) which means Ij(b0) = ∅. Thus
|T (b′)| = |T (b1)|+ 1 ≥ |T (b0)|+ 1.

Case 4. There are x, y s.t. s0(x) ≥ s0(y) ≥ s0(b∗i ) + 2. Then by Lemma 5.1 b∗i can
never be selected, in contradiction to b∗i ∈ C(b0).

Case 5. There is a unique winner x = f(b0), and s0(x) ≥ s0(y) + 2 for all other
candidates (note that there has to be an equality for at least one candidate,
or else there is no better reply). Then the next step (by some voter j) must
be from x, which brings us to one of the Cases 1,2 (if s0(b∗i ) = sw0 − 2) or
in Case 4 (if s0(b∗i ) < sw0 − 2).

Case 6. The last case is when there is a unique winner x = f(b0), some other
candidate y with s0(y) = sw0 − 1, and s0(b∗i ) = sw0 − 2. Then there are
two types of steps: a type I step is from x to y (by a voter that prefers y over
x), and a type II step is any other step. A type I step puts us back in Case 6,
but there can be at most 1 such step by each voter. Thus eventually there
will be a type II step. Finally, any type II move puts us either in Case 1 or 2
(if x loses a vote) or in Case 4 (if y gains a vote).

Therefore we either construct a path of direct replies to b′ ∈ B(b0) with |T (b′)| >
|T (b0)| in contradiction to our maximality assumption, or we reach another con-
tradiction. Thus B(b0) must contain some NE (both in Gb0 and in G), which
means by construction that G is weakly-FDRP from b0. However since b0 ∈
B(a0), we get that G is weakly-FDRP from a0 as well.

Remark 5.1. Theorem 5.2 and Ex. 4.17 provide a partial answer to an open ques-
tion regarding whether there are game forms that admit weak-FIP but not order-
free-FIP [7]. Indeed, the game form fPR for m = 4, n = 3 is such an example,
but one that uses randomization. However, if we think of fPR as a deterministic
game form with 2m − 1 possible outcomes (all nonempty subsets of candidates),
where agents are restricted to m actions each, then the allowed utility profiles are
constrained (by Axioms G and R) and thus this result does not settle Kukushkin’s
question completely.

5.2. Weighted Plurality
When voters are weighted, cycles of direct replies can emerge [1, 56]. We conjec-
ture that such cycles must depend on the order of agents, and that certain orders
will break such cycles and reach an equilibrium, at least from the truthful state.
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Conjecture 5.3. fPL
ŝ,w is weak-FDRP (in particular weak-FIP).

Similar techniques to those used so far (where some invariants are maintained
throughout the better reply path) appear to be insufficient to prove the conjecture.
For example, in contrast to the unweighted case, a voter might return to a candi-
date she deserted in any scheduler, even if only two weight levels are present. We
thus leave the proof of the general conjecture for future work, possibly with the
aid of “non-constructive” convergence proofs, such as the ones in [41].

Yet, we want to demonstrate the power of weak acyclicity over order-free
acyclicity, even when there are no randomness or restrictions on the utility space.
That is, we intend to provide a definite (negative) answer to Kukushkin’s question
of whether weak acyclicity entails order-free acyclicity. To this end, we use a
slight variation of Plurality with weighted voters and lexicographic tie-breaking.

Theorem 5.4. There exists a game form f ∗ s.t. f ∗ is weak-FIP but not order-free-
FIP.

Proof. Consider the game
〈
fPL
ŝ,w,L

〉
from Example 4.6: The initial fixed score of

candidates {a, b, c, d} is ŝ = (0, 1, 2, 3). The weight of each voter i ∈ {1, 2, 3}
is i. The preference profile is as follows: c �1 d �1 b �1 a, b �2 c �2 a �2 d,
and a �3 b �3 c �3 d. This game was used in Section 4.1 to demonstrate that
Plurality with weighted voters is not FDRP, however it can be verified that this
game is order-free-FIP so it is not good enough for our use.

If we ignore the agents’ preferences, we get a particular game form fPL
ŝ,w where

N = {1, 2, 3}, M = {a, b, c, d}, ŝ = (0, 1, 2, 3) and w = (1, 2, 3).
We define f ∗ by modifying fPL

ŝ,w with the following restrictions on agents’
actions: A1 = {c, d}, A2 = {b, c}, and A3 = {a, b, d}. Thus f ∗ is a 2 × 2 × 3
game form, presented in Figure 7(a).

We first show that f ∗ is not order-free-FIP. Indeed, consider the game G∗ ac-
cepted from f ∗ with the same preferences from game G (Figure 7(b)). We can see
that there is a cycle of length 6 (in bold). An agent scheduler that always selects
the agent with the bold reply guarantees that convergence does not occur, since in
all 6 relevant states the selected agent has no alternative replies.

Next, we show that f ∗ is weak-FIP. That is, for any preference profile there is
some scheduler that guarantees convergence. We thus divide into cases according
to the preferences of agent 3. In each case, we specify a state where the scheduler
selects agent 3, the action of the agent, and the new state.

We note that since all thick edges must be oriented in the same direction,
a �3 b if and only if b �3 c. Thus the following three cases are exhaustive.
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(a) The game form f∗

(c c d){d}

(c c b){c}

(c c a){c}

(d c d){d}

(d c b){b}

(d c a){c}

(c b d){d}

(c b b){b}

(c b a){a}

(d b d){d}

(d b b){b}

(d b a){d}

3 3

3

3

3

3

3

1

1

2 2 2

3

3

(b) The game G∗

(c c d){d}

(c c b){c}

(c c a){c}

(d c d){d}

(d c b){b}

(d c a){c}

(c b d){d}

(c b b){b}

(c b a){a}

(d b d){d}

(d b b){b}

(d b a){d}

Figure 7: In each state we specify the actions of all 3 agents, and the outcome in curly brack-
ets. Agent 1 controls the horizontal axis, agent 2 the vertical axis, and agent 3 the in/out axis.
We omit edges between states with identical outcomes, since such moves are impossible for any
preferences. A directed edge in (b) is a better reply in G∗.

L3 state action new state
1 b � d (d, b, a) b (d, b, b)
2 d � b & d � a (c, b, b) d (c, b, d)
3 a � d � b � c (d, c, b) d (d, c, d)

In either case, agent 3 moves from a state on the cycle to a Nash equilibrium.
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6. Conclusions

Acyclicity is a highly desirable property of games, as it means that the agents
will reach a deterministic stable state (equilibrium), even if they act myopically
with little knowledge and coordination. It is particularly useful in the analysis and
design of voting mechanisms: allowing voters to freely modify their votes will
let them reach an equilibrium regardless of their initial votes and the information
about other voters’ preferences. Importantly, in the context of voting such myopic
dynamics define a natural and straightforward process, which, coupled with the
convergence properties demonstrated in this paper, makes it an attractive candidate
method for predicting human voter behavior in elections and designing artificial
agents with strategic voting capabilities—two of the most important, and also the
hardest, goals of social choice research.

The outcome of such voting processes can be thought of as compromise reached
by means of an iterative game—the agents might start voting for their favorites,
but looking at the current scores, might like to compromise and support less pre-
ferred candidates if they (unlike the top choice candidates) have more chances to
win the election. Importantly, recent theoretical and empirical work demonstrates
that these compromise outcomes are never much worse than the truthful Plurality
outcome, and are often significantly better according to Condorcet efficiency, vot-
ers’ social welfare and other metrics [32, 33, 34]. These findings, together with
our convergence results, thus suggest that online voting platforms such as Doo-
dle and Facebook should enable and maybe even encourage their users to look
at current candidates’ scores and update their votes dynamically, as this would
guarantee both stable and socially desirable outcome.

Beyond the direct implication of various acyclicity properties on interactive
settings where agents vote one by one, strong/weak acyclicity is tightly linked
to convergence properties of more sophisticated learning strategies in repeated
games [57, 58], which gives another reason to understand them. However, while
there exist some broad classes of acyclic games (with congestion/potential games
being probably the best known representative), there are not many natural game
forms that demonstrate acyclicity [7]. To this end, Fabrikant et al. [18] provide
a sufficient condition for weak acyclicity, namely that any subgame contains a
unique Nash equilibrium; another sufficient condition due to Apt and Simon [8]
is by eliminating never-best reply strategies. Unfortunately, both these criteria are
not applicable to most voting rules, where typically (at least) all unanimous votes
form equilibria, and every strategy is a best reply to some joint vote of the others.

In this work, we focus on the common Plurality voting rule and show that it
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code author(s) citation
∗1 Koolyk, Strangway, Lev and Rosenschein’17 [35]
∗2 Lev’15 [59]
∗3 Lev and Rosenschein’12 [46]
∗4 Lev and Rosenschein’16 [14]
∗5 Meir’15 [41]
∗6 Meir’16 [56]
∗7 Reyhani and Wilson’12 [12]

Table 1: Reference codes for Tables 3 and 4.

has the desired acyclicity property: natural better reply dynamics guarantees that
voters will converge to an equilibrium, while the exact conditions under which
this will occur may depend on the tie-breaking method. A key insight for these
results is the identification of direct replies—a natural restriction on voters’ ac-
tions that might be generalized to other voting rules. Moreover, we provide a
joint rigorous framework for the study of iterative voting, as part of the broader
literature on acyclicity of games and game forms, which allows us to compare all
known convergence results from the literature, and derive some new entailments.
In particular, we demonstrate variations of Plurality that are weakly acyclic but
not order-free acyclic, thereby settling an open question on whether such game
forms exist [7].

We summarize all known results on iterative voting that we are aware of in
Tables 3 and 4. Note that in some cases we get positive results if we restrict
the initial state, the number of voters, or some other parameter (not shown in the
table). For Plurality we provide a more detailed picture in Figs. 8 and 9. The
tables also visualize which questions are still open (mainly for rules other than
Plurality). Note that previous papers whose results are covered in the tables often
use different terminology and thus theorems and examples need to be rephrased
(and sometimes slightly modified) to be directly comparable. These rephrasing
and necessary modifications are explained in detail in [56].

Based on the progress made in this paper and the other results published since
the introduction of iterative voting in [1], we believe that research on iterative
voting should focus on three primary directions:

1. Weak acyclicity seems more indicative than order-free acyclicity to deter-
mine convergence in practice. Thus, theorists should study which voting
rules are weak-FIP, perhaps under reasonable restrictions (as we demon-
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Property Game converges for:
FIP any selection of players and replies
FBRP any selection of players and best replies
FDRP any selection of players and direct replies
FDBRP any selection of players, and the unique direct best reply
Order-free-FIP any selection of players, for some reply
Weak-FDRP some selection of players and direct replies
Weak-FIP some selection of players and replies

Table 2: Reminder of the different notions of convergence properties and what they mean. The
entailment relations among them are detailed in Figure 5.

Voting rule FIP FDRP FDBRP Order-free-FIP Weak-FIP
Plurality (Lex.) 7(4.3) X(4.2) X X X
Plurality (LD) 7(4.13) X∗5 X X X
Plurality (SD) 7(4.13) ? X∗7 X X
Plurality (Rand.) 7 7 7 7(4.17) X(5.2)
Weighted Plurality (Lex.) 7 7 7(4.6) ? ?

Veto (Lex.) 7∗6 X∗7∗3 X X
Veto (SD) ? X∗7 X X

Table 3: Positive results (in light green) carry to the right side, negative results (in dark gray) to
the left side. Tie-breaking methods: Lex.- Lexicographic, LD - Local Dominance, SD - Stochastic
Dominance, Rand. - Randomized with cardinal utilities. The number in brackets points to the
Theorem or Proposition proving this result. The numbered superscripts are references to results
shown in other papers, see Table 1.

strated, this property is distinct from order-free-FIP). We highlight that even
in rules where there are counter-examples for weak acyclicity (k-approval,
Borda), these examples use only two voters, and games with more voters
may well be weakly acyclic.

2. It is important to experimentally study how people really vote in iterative
settings (both in and out of the lab), so that this behavior can be formalized
and behavioral models can be improved. The work of [60] is a preliminary
step in this direction, but there is much more to learn. Ideally, we would like
to identify a few types of voters, such that for each type we can relatively
accurately predict the next action in a particular state. It would be even
better if these types are not specific to a particular voting rule or contextual
details.

40



Voting rule FIP FBRP order-free-FIP Weak-FIP
Direct Kingmaker X(3.2) X X X
Plurality 7 7(4.3) X(4.2) X
Veto 7 7∗6 X∗7∗3 X
k-approval (k ≥ 2) 7 7∗3∗2 7 7∗6

Borda 7 7∗7∗3 7 7∗7

PSRs (except k-approval) 7 7∗3∗2 ? ?
Approval 7 7∗6 X∗6 X
Other common rules 7 7∗1 ? ?

Table 4: Positive results carry to the right side, negative to the left side. All rules in the table use
lexicographic tie-breaking.

(from truth)
FBRPX(4.5) ⇐ FBRP 7(4.3) Order-free-FBRPX ⇒ Weak-FBRPX

⇑ ⇑ ⇓ ⇓
FIP 7 ⇐ FIP 7 V Order-free-FIPX ⇒ Weak-FIPX
⇓ ⇓ ⇑ ⇑

FDRPX ⇐ FDRP X(4.2) Order-free-FDRPX ⇒ Weak-FDRPX

Figure 8: Convergence results for Plurality under lexicographic tie-breaking. Positive results (in
light green) carry with the direction of the arrows ad in Fig. 5, whereas negative results (dark gray)
carry in the opposite direction. For example non-convergence from the truthful state (leftmost
column) implies non-convergence from an arbitrary initial state.

3. We would like to know not only if a voting rule converges under a particular
dynamics (always or often), but also what are the properties of the attained
outcome—in particular, whether the iterative process improves welfare or
fairness, avoids “voting paradoxes” [61], and so on. Towards this end, sev-
eral researchers (e.g., [37, 32, 34, 36, 35]) have started to explore these
questions via theory and simulations. However, a good understanding of
how iterative voting shapes the outcome, whether the population of voters
consists of humans or artificial agents, is still under way.

We hope that this paper will help in focusing and classifying future work.
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(from truth)
FBRPX(4.14) ⇐ FBRP 7 Order-free-FBRP 7 ⇒ Weak-FBRP ?

⇑ ⇑ ⇓ ⇓
FIP 7 ⇐ FIP 7 V order-free-FIP 7(4.17) ⇒ weak-FIPX
⇓ ⇓ ⇑ ⇑

FDRP 7(4.18) ⇐ FDRP 7 order-free-FDRP 7 ⇒ weak-FDRP X(5.2)

Figure 9: Convergence results for Plurality under random tie-breaking.
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Appendix A. Proofs

Theorem 3.4. For any n ≥ 7, there is a non-separable game form f ∗n with n
agents s.t. f ∗n is FIP.

Proof for n = 7. Let C ′ = {c1, . . . , c2n} and C = C ′ ∪ {z}. Let Ai = {0, 1} for
each voter. Every voting function fn is a function from the n dimensional binary
cube B = {0, 1}n to C.

Denote by k the total number of bits required for an optimal single error-
correcting code (Hamming code) with k data bits. For example, for k = 4 we
need 4 = 7 bits. In particular, there is a mapping q : {0, 1}k → {0, 1}k such that
the Hamming distance between any two words is at least 3 [49]. Formally, for all
w,w′ ∈ {0, 1}k, it holds that |{j : q(w)j 6= q(w′)j}| ≥ 3.

For reasons that will become apparent later, we want to have k ≤ n, and
2n = |C ′| ≤ 2k.

For any n = 7, set r = dlog2(n+ 1)e = 3, and k = dlog2(2n)e = 4. Thus
2r − r − 1 = 23 − 3 − 1 = 4 = k. From coding theory [49], for all r ≥ 2, if
k ≤ 2r − r − 1, then k = 2r − 1 = 7 bits are sufficient to code all (k = 4)-bit
strings. That is, there is a valid code q from {0, 1}4 to {0, 1}7.

Note that k = 7 = n, and that |C ′| = 2n = 14 < 24 = 2k.
Let bin(t, k) ∈ {0, 1}k be the k-bit binary representation of t ≤ 2n (e.g.,

bin(5, 4) = 0101). Since 2n < 16 = 24, all of t ≤ 2n = 14 have a 4-bit
representation. Using the Hamming code q, we map each outcome ct ∈ C ′ to a
specific profile at = q(bin(t, 4)) ∈ {0, 1}7 = {0, 1}n.

We now define f ∗n by setting f ∗n(at) = ct for all t ≤ 2n, and f ∗n(a) = z for all
2n − 2n = 114 other profiles.

For any two profiles a,a′, let d(a,a′) be the number of voters that disagree
in a,a′ (the Hamming distance on the cube). Let B ⊆ B be all 14 profiles whose
outcome is not z. By the construction above, we have that d(a,a′) ≥ 3 for all
a,a′ ∈ B.

Assume towards a contradiction that there is some cycle of better replies in
f ∗n. Then there must be a path containing at least three distinct outcomes, and
thus at least two profiles from B. Denote these profiles by a, b ∈ B. Since
any path between a and b is of length at least 3, the path must contain at least
two consequent profiles whose outcome is z. This path cannot be a better reply
path, since a better reply must in particular change the outcome. Hence we get a
contradiction, and f ∗n is FIP.

Finally, f ∗n cannot be separable, exactly as in the proof for n ≥ 8.
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Lemma 4.15. Consider any cardinal utility function u and the partial preference
order L it induces on subsets by random tie-breaking. L holds Axioms K+G+R.

Proof. Let u be any utility scale, we will show that all axioms hold. Let a, b ∈ C
and W ⊆ C \ {a, b}.

u({a} ∪W ) =
1

|W |+ 1|

(
u(a) +

∑
c∈W

u(c)

)
,

u({b} ∪W ) =
1

|W |+ 1|

(
u(b) +

∑
c∈W

u(c)

)
= u({b} ∪W ),

thus {a} ∪W �L {b} ∪W , and Axiom R holds.
Let a ∈ C,W ⊆ C s.t. ∀b ∈ W,a �b. Then

u(a) =
1

|W |+ 1

(
u(a) +

∑
b∈W

u(a)

)
>

1

|W |+ 1

(
u(a) +

∑
b∈W

u(b)

)
= u({a} ∪W )

>
1

|W |+ 1

(
u(W ) +

∑
b∈W

u(a)

)
=

1

|W |+ 1
u(W ) +

|W |
|W |+ 1

u(W ) = u(W ),

thus a �L {a} ∪W �L W and Axiom G holds.
Axiom K1 follows immediately from G. K2 also follows if preferences are

strict. Even if there are ties, and a � w for all a ∈ A,w ∈ W then:

u(A) ≥ min
a∈A

u(a) ≥ max
w∈W

u(w) ≥ u(W ),

i.e., A �L W .

Proposition 4.22. A step a
i→ a′ is a better-response under unknown tie-breaking

and local dominance, if and only if f(a′) �i f(a) is entailed by Li, Axioms K+G,
and transitivity.

Proof. Suppose that X = f(a′) locally-dominates Y = f(a). Let Z = X ∩ Y ,
and X ′ = X \ Z, Y ′ = Y \ Z. We must have x �i y for any x ∈ X, y ∈ Y ′,
otherwise, a tie-breaking order that selects y first and x second would make i
strictly lose when moving from Y to X . Similarly, x �i y for any x ∈ X ′, y ∈ Y .
If Z = ∅ then X = X ′ �i Y ′ = Y follows from Axiom K. Otherwise, by
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repeatedly applying Axiom G we get X �i Z �i Y with at least one relation
being strict.

In the other direction, since Axiom G can only be used to add elements lower
(or higher) than all existing elements, it may only induce relations of the form
Z � Z ∪ Y ′ where z � y for all z ∈ Z, y ∈ Y ′; or relations of the form
Z ∪ X ′ � Z where x � z for all z ∈ Z, x ∈ X ′. Thus if X � Y follows from
Axiom G, they must have the formX = Z∪X ′, Y = Z∪Y ′ where x � z � y for
all x ∈ X ′, z ∈ Z, y ∈ Y ′. To see that this entails local dominance, let xL = L(X)
be the first element in X according to order L ∈ π(C), and likewise for Y . For
any L, xL � yL (with equality iff L(X) = L(Y ) ∈ Z). Further, either X ′ or Y ′

are non-empty (w.l.o.g. X ′). Consider an order L′ such that L′(X) ∈ X ′, then
xL′ � y for all y ∈ Y and in particular xL′ � yL′ .

Lemma 5.1. Consider any game G = 〈fPR
ŝ ,L〉. Consider some candidate z, and

suppose that in a0, there are x, y s.t. s0(x) ≥ s0(y) ≥ s0(z) + 2. Then, for any
sequence of direct replies, z /∈ f(at).

Proof. We show that at any time t ≥ 0 there are xt, yt s.t. s0(x), s0(y) ≥
s0(z) + 2. For t = 0 this holds for xt = x, yt = y. Assume by induction that the
premise holds for at−1. Then there are two cases:

1. |f(at−1)| ≥ 2. Then since step t must be a direct reply, it must be to some
candidate z with st−1(z) ≥ swt−1−1. Also, either xt−1 or yt−1 did not lose
votes (w.l.o.g. xt−1). Thus st(x), st(z) ≥ swt−1 ≥ st−1(z) + 2 ≥ st(z) + 2.

2. |f(at−1)| = 1. Then suppose f(at−1) = {xt−1}, and we have that swt−1 ≥
st−1(z) + 3. The next step is z where either st−1(z) = swt−1 − 1 (and then
we conclude as in case 1), or st−1(z) = swt−1 − 2 and xt−1 loses 1 vote. In
the latter case, st(xt−1) = st(z) = swt−1−1 ≥ st−1(z)+2 ≥ st(z)+2.
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