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Abstract

The strategyproof classification problem deals with a setting where a decision
maker must classify a set of input points with binary labels, while minimizing the
expected error. The labels of the input points are reported by self-interested agents,
who might lie in order to obtain a classifier that more closely matches their own
labels, thereby creating a bias in the data; this motivates the design oftruthful
mechanisms that discourage false reports.

In this paper we give strategyproof mechanisms for the classification problem
in two restricted settings: (i) there are only two classifiers, and (ii) all agentsare
interested in asharedset of input points. We show that these plausible assumptions
lead to strong positive results. In particular, we demonstrate that variations of a
random dictator mechanism, that are truthful, can guarantee approximately optimal
outcomes with respect toany family of classifiers. Moreover, these results are
tight in the sense that they match the best possible approximation ratio that can be
guaranteed by any truthful mechanism.

We further show how our mechanisms can be used for learning classifiers from
sampled data, and provide PAC-style generalization bounds on their expected error.
Interestingly, our results can be applied to problems in the context of various fields
beyond classification, including facility location and judgment aggregation.

Keywords: Mechanism design, Classification, Game theory, Approximation.

1 Introduction

Consider a learning algorithm, which takes a labeled set of samples (“training data”)
as input, and outputs a binary classifier. The training data,typically hand-constructed
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by human experts, is supposed to reflect the knowledge of the experts on the current
domain. The basic requirement from such an algorithm is to guarantee that the out-
put classifier minimizes the number of classification errorswith respect to the ‘truth’
(according to the domain experts). Standard machine-learning literature studies the
performance of such algorithms given various distributions and concept classes (e.g.,
linear classifiers), sparse or noisy data, etc.

However in many real-life situations, the experts have a personal interest in the
outcome of the algorithm, and therefore they cannot be assumed to be truthful. If an
expert can bias the learned classifier in her favor by lying, then the reported training
data will no longer reflect the properties of the domain (or even the properties of the
real training data). Optimizing a classifier based on such corrupted data may result in
a very poor classifier, regardless of the guarantees supplied by learning theory (which
assumes truthfulness).

We consider two interrelated settings. The first setting isdecision-theoretic; a de-
cision must be made based on data reported by multiple self-interested agents. The
agents are concerned with the binary labels of a set of input points. Put another way,
the agents may disagree on the labels of the points of the input space, and we do not
assume any underlying distribution. The utility of an agentwith respect to a given
decision (i.e., a given classifier) is the number of points onwhich the label provided
by the classifier agrees with the agent’s own label. The goal of the decision maker is
to choose a classifier that maximizes the social welfare—the sum of utilities. As we
will see, results in this setting can also be applied to problems in the context of various
other fields, including facility location and judgment aggregation.

The second setting islearning-theoretic, a variation of the standard Supervised
Classification problem. Samples are drawn from some distribution over the input space,
and are then labeled by experts. A classification mechanism receives the sampled data
as input, and outputs a classifier. Unlike the standard setting in machine learning (but
similarly to our first setting), the experts are assumed to beself-interested agents, and
may lie in order to increase their utility. This setting may seem far more involved than
the first, as it deals with generalization from partial data (the dataset) to the underlying
distribution. However, we show that under the standard assumptions of learning theory,
the learning problem effectively reduces to finding a classifier that best fits the available
data (i.e., to the first setting, above).

In both settings the decision maker (or mechanism, or learning algorithm) aims to
find a classifier that classifies the available data as well as possible. However, the agents
may misreport their labels in an attempt to influence the finaldecision in their favor.
The result of a decision making process based on such biased data may be completely
unexpected and difficult to analyze. Atruthful learning mechanism eliminates any
such bias and allows the decision maker to select a classifierthat best fits the reported
data, without having to take into account the hidden interests of the agents. In other
words, once we guarantee that agents are telling the truth, we may concentrate on the
more standard goal of minimizing the error. In order to obtain truthfulness, however,
we may need to trade off optimality. Our goal is to provide mechanisms that are both
truthful and approximately optimal in terms of social welfare.
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1.1 Restrictions on the domain

In recent work [29] we showed that in an unrestricted domain,it is effectively im-
possible to design truthful mechanisms that are close to optimal. This motivates the
investigation of restricted domains. In this paper we consider several such restrictions,
described below.

1.1.1 Restricting the concept class: two functions

A seemingly simple case is when the concept class contains only two functions. This is
equivalent to a (binary) decision that has to be made based ondata points that are con-
trolled by multiple (possibly) selfish agents, where the decision affects all the agents.
The decision maker would like to make a decision which is consistent, as much as
possible, with all the available data. However, in our strategic setting the agents might
misreport their data in an attempt to influence the final decision in their favor.

As a motivating example, consider a decision that has to be made by the Work-
ers’ committee of the TAs in the Hebrew university, regarding an ongoing strike. Each
member of the committee (who represents one department) announces how many TAs
in his/her department are supporting the strike, and how many oppose it. A final de-
cision is being made based on the total support of the strike.Suppose that60% of
the economics department is opposing the strike. However, the representative of the
economics department is majoring in game theory. Thereforeshe knows that for the
benefit of the majority of TAsin her department, it would be better to state that every-
body objects to the strike.1

1.1.2 Restricting the dataset: shared inputs

Our main conceptual contribution in this paper, which leadsto strong positive results,
is the assumption ofshared inputs. In the decision-theoretic setting, this means that
the agents share the same set of input points, and only disagree on the labels of these
points. In the learning-theoretic setting, the shared inputs assumption implies that the
agents are interested in a common distribution over the input space, but, once again,
differ with respect to the labels.

The first restriction we described did not address the issue of shared inputs. How-
ever, as the two possible classifiers are constant, the identity of the input points (i.e.,
their location) is irrelevant—only their labels matter. Hence, the first restriction is in
fact a very special case of the latter (see also footnote 16).

As the shared inputs assumption is a weaker restriction thanassuming two func-
tions, the guarantees are also somewhat weaker. Nevertheless, they hold with respect
to any concept class. We believe that in many environments the requirement of shared
inputs is satisfied. As an example, consider a large organization that is trying to fight
congestion in an internal email system by designing a smart spam filter. In order to
train the system, managers are asked to review the last 1000 emails sent to the “all em-
ployees” mailing list (hence, shared inputs) and classify them as either “work-related”

1In an attempt to avoid such misrepresentation, major decisionsusually require to gather all TAs and hold
a standard voting procedure. However most decisions are taken in a much narrower quorum.
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(positive label) or “spam” (negative label). Whereas the managers will likely agree on
the classification of some of the messages (e.g., “Buy Viagranow!!!” or “Christmas
Bonus for all employees”), it is likely that others (e.g., “Joe from the Sales department
goes on a lunch break”) would not be unanimously classified. Moreover, as each man-
ager is interested in filtering most of what he sees as spam, a manager might try to
compensate for the “mistakes” of his colleagues by misreporting his real opinion with
respect to some cases. For example, the manager of the R&D department, believing
that about 90% of the Sales messages are utterly unimportant, might classifyall of
them as spam in order to reduce the congestion. The manager ofSales, suspecting the
general opinion on her department, might do the exact opposite to prevent her e-mails
from being filtered. The fact that some users may not have a full understanding of the
learning algorithm, does not necessarily prevent them fromtrying to bias it anyway.
Even if their strategy is not optimal for them, it still contaminates the data.

Interestingly, our model for binary classification with shared inputs is equivalent to
models that have been suggested in the literature for problems in seemingly unrelated
domains, including judgment aggregation, partition aggregation, facility location, and
voting (for a more detailed comparison, see Section 1.3 and discussion).

Such a common classification/partition problem is decidingon the operation hours
of a shared resource. As a concrete example, consider a building with a central heating
system (such buildings are common in Jerusalem and many cities in Europe). Every
tenant has certain hours in which he wants the heat to be on (e.g. alwayson when he
is home andoff otherwise, since the cost is shared by all tenants). The household fee
is the same for all tenants, and thus there is no transfer of payoffs. A “classifier” is a
partition of the day (or week) toon andoff intervals. Further, there are constraints on
the final partition. For example,on intervals must be at least 3 hours long to achieve
better efficiency.

1.1.3 Realizable datasets

In some cases, learning is facilitated if we know that there is at least one “perfect”
classifier in our concept class (that is, a classifier that separates all positive data points
in the dataset from the negative ones). Such datasets are called realizable. It is there-
fore possible that the labels of each agent will be realizable, even if there is no single
classifier that is perfect for all agents. We study how realizability, which can be seen as
another restriction on the dataset, affects the optimalityof the proposed mechanisms in
the context of shared input.

1.2 Overview of our results

We wish to design classification mechanisms that achieve a good outcome in the face
of strategic behavior. By “good outcome” we mean that the output of the mechanism
provides an approximation of the optimal solution.2 We would also like our mech-
anisms to bestrategyproof(SP), that is, the agents must not be able to benefit from

2Approximation algorithms are frequently used in various domains in computer science in order to over-
come computational barriers. While we largely ignore issues ofcomputational complexity, optimal algo-
rithms are typically not strategyproof; hence, the need for approximation.
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lying. These two key requirements are formalized and demonstrated with examples in
Section 2.

We begin by presenting mechanisms for the two-function problem in Section 3.
The results of this section serve two purposes. First, the tight worst-case analysis of
SP mechanisms provides a full picture of their power and limitations in the binary
decision-making setting. Second, the focus on a simple setting allows us to explain in
detail subtle issues that are also important for the next, more general, setting.

We put forward a simple deterministic decision-making mechanism which is group
strategyproof (i.e., even coalitions of agents do not gain from lying) and gives a 3-
approximation of the optimal global risk; in other words, the number of mislabeled
points is at most 3 times the minimum number. Moreover, we show that no determinis-
tic strategyproof mechanism can do better. Interestingly,we circumvent this result by
designing a strategyproofrandomizedmechanism that gives a 2-approximation, and
further demonstrate that this is as far as randomization cantake us.

In Section 4, we turn to study the more general case, under theshared inputs as-
sumption. We first show that SP deterministic mechanisms cannot guarantee a sub-
linear approximation ratio. We show that choosing a dictator at random provides an
approximation ratio of 3 in expectation, even if agents haveweights, i.e., the decision
mechanism values some agents more than others (in that case we randomly select a
dictator according to the weights). We then drive the approximation even lower by
using a non-trivial selection of the dictator, matching it with the known lower bound of
3 − 2

n ; it is quite striking that these results hold with respect toany concept class. In
addition, we show that when datasets are realizable, an evenbetter approximation ratio
(of 2− 2

n ) can be guaranteed.
In each section we further show how the suggested mechanismsfor the decision-

theoretic setting can be further exploited to attain similar approximation results in the
learning-theoretic setting. We observe that in the learning-theoretic setting, designing
strategyproof mechanisms is virtually impossible, since there is an additional element
of randomness introduced by sampling the input space. We therefore relax the strate-
gyproof requirements, and instead investigate each of two incomparable strategic as-
sumptions: that agents do not lie if they cannot gain more than ǫ; and that agents always
use a dominant strategy if one exists with respect to a specific sample. We show that
under either assumption our randomized mechanisms can be run directly on sampled
data while maintaining a bounded expected error. Our theorems give a connection be-
tween the number of samples and the expected error of the mechanism in each case, in
the spirit of PAC-learning algorithms [40].

1.2.1 Mechanisms with payments

An important remark is that in the strategyproof classification setting, standard eco-
nomic money-based mechanisms such as the Vickrey-Clarke-Groves (VCG) mecha-
nism (see, e.g., [32]) can be used to obtain good results. However, our setting admits
strategyproof mechanisms that do welleven without assuming that money is avail-
able. Achieving our goals without resorting to payments is highly desirable, since
often payments cannot be made due to legal or ethical considerations. Moreover, in
internet environments VCG style payments are notoriously difficult to implement, due
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to banking and security issues. Hence, we follow the exampleset by previous work
on strategyproof learning models (e.g., [10], see below) byconsidering approximation
mechanisms that do not require payments.

1.3 Related work

This paper lies at the intersection of several areas, including mechanism design, judg-
ment aggregation, and learning. We cluster the related workby areas.

1.3.1 Approximate mechanism design without money

Mechanisms that deal with strategic behavior of agents havebeen proposed recently
for a large range of applications. While certain restrictions may allow the design of
optimal SP mechanisms [39], often this is not the case, and approximation is required.
This observation gave rise to the agenda of approximate mechanism design without
money (AMDw/oM).

Below, we overview some SP mechanisms for machine learning problems in detail,
and compare them to our work. These, however, constitute just one facet of the large
variety of problems to which AMDw/oM can be applied. Approximate mechanisms
without payments have been proposed for facility location,matching [3, 15], resource
allocation [18, 19, 33], scheduling [23], and even auctions[20].

1.3.2 Strategyproof learning algorithms

The work most closely related to ours is a paper by Dekel et al.[10] Their work fo-
cused on regression learning, where the labels are real numbers and one is interested
in thedistancesbetween the mechanism’s outputs and the labels. Except for this very
significant difference, the settings that we study and our goals are very similar to theirs.
Dekel et al. provided upper and lower bounds on the approximation ratio achieved by
supervised regression mechanisms in this model. Notably, some of our bounds re-
semble the bounds in their regression setting. Moreover, similar intuitions sometimes
apply to both settings, although it seems the results of one setting cannot be analytically
mapped to the other. Dekel et al. also concentrate on mechanisms without payments,
but their results hold only with respect to very specific function classes (as they do not
assume shared inputs; see, e.g., Theorems 4.1 and 4.2 of [10]). We also demand weaker
assumptions for some of our generalization theorems, thereby allowing for stronger re-
sults.

Strategyproof regression has also been studied by Perote-Peña and Perote [34].
They suggested several mechanisms and compared them to naive learning algorithms
in a strategic setting. Unlike Dekel et al., they evaluated their mechanisms empirically
rather than analytically, with respect to some specific assumptions on the strategic be-
havior of the agents.

Another rather closely related work by the same authors has results of a negative
flavor. Perote and Perote-Peña [35] put forward a model of unsupervisedclustering,
where each agent controls a single point inR2 (i.e., its reported location). A clustering
mechanism aggregates these locations and outputs a partition and a set of centroids.
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They show that if every agent wants to be close to some centroid, then under very weak
restrictions on the clustering mechanism therealwaysexists a beneficial manipulation,
that is, there are no reasonable (deterministic) clustering mechanisms that are SP.

1.3.3 Judgment and partition aggregation

While the motivation for our model stems from thebinary classificationproblem in
machine learning, very similar models have been used to describe various problems of
judgment aggregation. In particular, a list of binary issues that must be decided upon
is essentially equivalent to a dataset with binary labels. Similarly, a suggestion to split
a finite set into two parts can also be replaced with labels foreach element in the set.

Properties of mechanisms for judgment/partition aggregation have been discussed
extensively in the literature since the 1970’s [42, 30, 24, 5, 16]. A recent paper that
deals explicitly with manipulations is by Dokow and Holzman[14], which charac-
terizes strategyproof aggregation rules (that can also be interpreted as classification
mechanisms in our framework).

Our current work differs in two important ways from the literature on judgment
aggregation. First, we explicitly measure the quality of proposed mechanisms (in the
spirit of AMDw/oM), which enables us to compare SP mechanisms to one another.
Second, we study not only deterministic mechanisms, but also randomizedones. We
believe that the notion of approximation, and the use of randomization (both a com-
mon practice in computer science) can also contribute to thestudy of more “standard”
judgment aggregation settings. The current paper is a demonstration of this approach.

1.3.4 Facility location

In the facility location problem, agents report their location (usually in some metric
space), and the mechanism outputs a location for a facility that is close, on average,
to all agents. SP location mechanisms for various topologies have been suggested and
studied (see, e.g., [1, 26], and [36], which also provides a clear overview of the field).

Consider a dataset labeled by several agents, and a binary cube whose dimensions
correspond to the samples in the dataset. It is not hard to verify that classification
with shared inputs is equivalent to facility location on thebinary cube, where the label
vector of each agent corresponds directly to a specific vertex of this cube. Similarly,
any concept class (which defines the allowed labellings) corresponds to a set of vertices
which constitutes the allowed locations. A classification mechanism then seeks the
optimal classification (i.e., theoptimal vertex) within this restricted set.

Although our main focus in the context of binary classification is the binary cube,
all of our mechanisms in this paper can be directly applied tofacility location problems
in any metric space.

An important note is that it is typically assumed that the setof allowed locations
for the facility coincides with the possible locations of the agents. This is equivalent to
the assumption ofrealizability in our classification model. We study SP mechanisms
both with and without this assumption.
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1.3.5 Voting

A finite set of classifiers can also be thought of as a class of candidates in a voting
scenario, where the experts are casting the votes. While sucha perspective is some-
times useful (see, for example, [29]), the preferences in voting are typically much more
expressive.

We can, however, model any preference profile with a proper input space. Suppose
that we have a set of candidates; consider the binary cube from the last section, where
every dimension (i.e., a sample in the dataset) correspondsto apair of candidates. The
allowed set of vertices (i.e., the concept class) restrictsthe outcome to vertices that
correspond to a linear order over the candidates. The assumption of realizability in this
setting is interpreted asrationality of the voters. The optimal classification mechanism,
which minimizes the average distance to all voters, is equivalent to the Kemeny-Young
voting rule [22]. Therefore, SP classification mechanisms can be interpreted in this
setting as strategyproof approximations of the Kemeny-Young rule. It is important to
note, however, that strategyproofness in our modeldoes notcoincide with the similar
requirement in voting (as in the typical voting setting onlythe identity of the winner is
considered).

1.3.6 Other related work

There is a significant body of work on learning in the face of noise, where the noise can
be either random or adversarial (see, e.g., [6, 25]). Dalvi [9], and Dekel and Shamir [11]
study settings more similar to ours, where the learning process is modeled as a game
between a classifier and an adversary. However, in these papers the goal is to do well
in the face of noisy or biased data, rather than provide incentives in a way that prevents
the dataset from being manipulated in the first place.

Further afield, it is worth mentioning several examples fromthe literature that apply
machine learning techniques in order to resolve problems ineconomics or game theory.
Balcan et al. [4] apply SP machine learning algorithms to learn bidders’ valuations in
auctions. However, the authors achieve truthfulness by learning from agents that are
not directly influenced by the outcome that relies on their reported data. This is not
possible in our setting, asall agents are affected by the selected classifier. Other papers
such as Procaccia et al. [37] suggest learning algorithms that enable better preference
aggregation, but do not consider strategic behavior of the society. Finally, there has
been some recent work on automated mechanism design using techniques from ma-
chine learning [7, 8]. Although the designed mechanisms arerequired to be truthful,
the learning algorithm itself does not handle private information, and thus truthfulness
is irrelevant.

2 Model and Notations

We start by introducing our model and notations for the decision-theoretic setting; ad-
ditional definitions for the learning-theoretic setting are given subsequently.
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Figure 1: An instance with shared inputs. Here,X = R2, C is the class of linear
separators overR2, andn = 3. The data pointsX of all three agents are identical, but
the labels, i.e., their types, are different. The best classifier from C with respect to each
Si is also shown (the arrow marks the positive halfspace of the separator). Only the
rightmost dataset is realizable.

2.1 Binary Classification with Multiple Experts

Let X be an input space, which we assume to be either a finite set or some subset of
Rd. A classifieror conceptc is a functionc : X → {+,−} from the input space to
the labels{+,−}. A concept classC is a set of such concepts. For example, the class
of linear separators overRd is the set of concepts that are defined by the parameters
a ∈ Rd andb ∈ R, and map a pointx ∈ Rd to+ if and only if a · x+ b ≥ 0.

Denote the set ofagentsby I = {1, . . . , n}, n ≥ 2. The agents are interested in a
(finite) set ofk data pointsX ∈ X k. In this paper we assume thatX is sharedamong
the agents, that is, all the agents are equally interested ineach data point inX. This
plausible assumption, as we shall see, allows us to obtain surprisingly strong results.
Naturally, the points inX are common knowledge.

Each agent has a privatetype: its labels for the points inX. Specifically, agent
i ∈ I holds a functionYi : X → {+,−}, which maps every pointx ∈ X to the label
Yi(x) thati attributes tox. Each agenti ∈ I is also assigned aweightwi, which reflects
its relative importance; by normalizing the weights we can assume that

∑
i∈I wi = 1.

Let
Si = {〈x, Yi(x)〉 : x ∈ X}

be the partialdatasetof agenti, and letS = 〈S1, . . . , Sn〉 denote the completedataset.
Si is said to berealizablew.r.t. a concept classC if there isc ∈ C which perfectly
separates the positive samples from the negative ones. IfSi is realizable for alli ∈ I,
thenS is said to beindividually realizable. Figure 1 shows an example of a dataset
with a shared set of pointsX.

We use the common 0-1 loss function to measure the error. Therisk,3 or negative
utility, of agenti ∈ I with respect to a conceptc is simply the relative number of errors
thatc makes on its dataset. Formally,

Ri(c, S) =
1

k

∑

〈x,y〉∈Si

Jc(x) 6=yK =
1

k

∑

x∈X

Jc(x) 6=Yi(x)K , (1)

3When the datasetS consists of sampled data, the appropriate term isempirical risk. This distinction
will become significant in Sections 3.3 and 4.3.
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whereJAK denotes the indicator function of the boolean expressionA. Note thatSi

is realizable if and only ifminc∈C Ri(c, S) = 0. In contrast to most standard learning
scenarios, in our model there is no “ground truth”, and the objective is to classify in a
way that will be most satisfactory to the agents. Thus theglobal risk is defined as

RI(c, S) =
∑

i∈I

wi · Ri(c, S) =
1

k

∑

i∈I

∑

x∈X

wi · Jc(x) 6= Yi(x)K . (2)

2.2 Mechanism Properties

A deterministic mechanismM receives as input a datasetS,4 and outputs a classifier
c ∈ C. Note that sinceS is finite, there are only finitely many different ways to classify
the data; thus, Ri(M(S), S) for all i ∈ I and RI(M(S), S) are well-defined. This will
no longer be the case in the learning-theoretic setting, where we will need to slightly
modify our definitions.

A randomized mechanismis identified with a probability distributionpM overS×C.
We restrict our attention to probabilities with a finite support. That is, for every dataset
S, the mechanismM returnsc ∈ C, with a probability ofpM (c|S).

When measuring the risk, we are interested in theexpectednumber of errors that
the mechanism makes on the given dataset. Formally,

Ri(M(S), S) = EpM [Ri(c, S) | S] =
∑

c∈C

pM (c | S) · Ri(c, S) , (3)

and the global risk is defined analogously.
For any (complete or partial) datasetS′ ⊆ S, the best available classifier with

respect to the datasetS′ is referred to as theempirical risk minimizer(erm) – a common
term in the machine learning literature. Formally,

erm(S′) = argminc∈C

∑

〈x,y〉∈S′

Jc(x) 6= yK . (4)

For the complete dataset, we denote the best classifier byc∗(S), and its risk byr∗(S)
(or simplyc∗, r∗ if S is clear from the context). That is,

c∗(S) = erm(S) = argminc∈C RI(c, S)

andr∗(S) = RI(c
∗(S), S).

The simple mechanism that always computes and returnserm(S) is referred to as
the ERM mechanism (with block letters).5 If there is more than one optimal clas-
sifier, we assume thatERM returns one of them arbitrarily. Similarly, a mechanism
which returns the best classifier with respect to a partial dataset of a specific agent
(e.g.,erm(S1)) is called adictator mechanism.

4We implicitly assume that information regarding the weights ofthe agents is contained in the dataset.
5Actual algorithms to compute theerm may raise various practical problems that depend on the domain,

such as computational complexity. However, such problems are not within the scope of this paper. Since
anerm always exists and the number of data points is finite, there is an algorithm that computes anerm in
finite time.
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If r∗ = 0 thenc∗ is said to beperfect. Note that the existence of a perfect classifier
in C implies that all partial datasets are realizable, but the converse does not hold.

We measure the quality of the outcome of a mechanism using thestandard notion
of multiplicativeapproximation.

Definition 2.1. A mechanismM is anα-approximationmechanism if for any dataset
S it holds that RI(M(S), S) ≤ α · r∗(S).

Note that randomized mechanisms are only required to attainapproximation in
expectation, and not necessarily with high probability.

We emphasize that the real labels of the input points are private information, and
an agent may report different labels than the ones indicatedby Yi. We denote byY i :
X → {+,−} the reported labels of agenti. We also denote bySi = {〈x, Y i(x)〉 :
x ∈ X} the reported partial dataset of agenti, and byS = 〈S1, . . . , Sn〉 the reported
dataset.

Strategyproofnessimplies that reporting the truthful types is a dominant strategy
for all agents. For a datasetS andi ∈ I, let S−i be the complete dataset without the
partial dataset of agenti.

Definition 2.2. A (deterministic or randomized) mechanismM is strategyproof(SP) if
for every datasetS, for everyi ∈ I, and for everySi,

Ri(M(S), S) ≤ Ri(M(Si, S−i), S) . (5)

Our goal is to design mechanisms that are both SP and guarantee a low worst-case
approximation ratio.

There is an inherent tradeoff between strategyproofness and good approximation.
TheERM mechanism (which always returnserm(S)), for example, is a 1-approximation
mechanism, but is not SP (as we show in the next section). On the other hand, a mecha-
nism that selects agent 1 as adictator, and returnserm(S1), is clearly SP but in general
may give a very bad approximation (e.g., if all other agents disagree with agent 1).

We remark that for randomized mechanisms, some make a distinction between
strategyproofnessin expectation(as Definition 2.2 implies), anduniversal strategyproof-
ness. The latter, stronger definition requires that an agent cannot gain from lying even
after the randomization takes place. Interestingly, the first, weaker notion of strate-
gyproofness is sufficient for our lower bounds, but our upperbounds satisfy universal
strategyproofness.

3 Choosing from Two Classifiers

In this section we consider a very simple concept class, containing only two classifiers.
For ease of exposition we assume that there is a positive classifier c+ and a negative
classifierc−, such thatc+(x) =“+”, c−(x) =“−” for any x ∈ X . Our concept class
C = {c+, c−} can be thought of as choosing between a globalpositive decisionand
negative decision, respectively.
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Remark 1. Although we define our concept classC as containing two specific classi-
fiers, our results easily extend toeveryconcept class of size 2 (provided that there is at
least one datapointx ∈ X on which the two concepts disagree). Indeed, the part of the
dataset on which the concepts agree can only improve the approximation ratio, and on
the other hand we can always give examples where all data points are in conflict. Thus
both upper and lower bounds still hold.

We start with some observations that will allow us to simplify our model in this
setting. Note that the identity of each data point is not important, only thefraction of
positive and negative labels that each agent attributes to the dataset. We can also think
of this setting as if each agent controls adifferent set of pointsXi, where the size of
each such partial dataset is proportional to the agent’s weight. With this interpretation
our model becomes even simpler, as both the weight and the type of each agent are
completely defined by thenumberof “positive points” and “negative points” it controls.

Consider our TA committee example from the introduction. Wecan count each TA
as a single data point (which is positive if it supports the strike), and the representative
of each department reports the opinions of all TAs. The weight of department in this
case would be proportional to the number of workers.

We denote the number of points controlled by agenti by mi = |Xi| = |Si|, and
the size of the full dataset bym = |S| =

∑
i∈I mi. This notation will be used in this

section instead ofk. We further denote the number of positive and negative data points
by Pi = |{〈x, y〉 ∈ Si : y = +}|, andNi = mi − Pi = |{〈x, y〉 ∈ Si : y = −}|. For
convenience we also letP =

∑
i∈I Pi,N =

∑
i∈I Ni. We emphasize that{Pi, Ni}i∈I

contains all the information relevant to our problem and canthus replaceS.
With these alternative notations, the private risk of concept c for agenti is the same

as in Equation (1), only replacingk with mi. The risk is further simplified in the
two-function case:

Ri(c, S) =
1

mi

∑

〈x,y〉∈Si

Jc(x) 6= yK =

{
Pi/mi , if c = c−
Ni/mi , if c = c+

(6)

We update the definition of the global risk as follows:

RI(c, S) =
∑

i∈I

mi

m
Ri(c, S) =

1

m

∑

〈x,y〉∈S

Jc(x) 6= yK . (7)

Similarly to the private risk, RI(c, S) is eitherP/m (for c−) or N/m (for c+). Note
that by takingwi =

mi

m , this is a special case of Equation (2).
Unfortunately, if we chooseERM as our mechanism, then even in this simple set-

ting the agents may lie in order to decrease their subjectiverisk.

Example 3.1. (Illustrated in Figure 2) Agent 1 controls 3 examples: 2 positive and
1 negative. Agent 2 controls 2 examples, both negative. Since there is a majority of
negative examples,ERM would returnc−; agent 1 would suffer a subjective risk of
2/3. On the other hand, if agent 1 reported his negative example to be positive as well,
ERM would returnc+, with a subjective risk of only 1/3 for agent 1. Indeed, note that
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Figure 2:ERM is not strategyproof. Agent 1 changes one of its points from negative
to positive, thus changing the risk minimizer fromc− to c+, to agent 1’s advantage. In
this illustration,X = R2.

an agent’s utility is measured with respect to its real labels, rather than with respect to
the reported labels. ♦

It is easy to see, however, that an agent cannot gain by lying when it only controls
one point. For instance, if an agent has a positive point andERM returnsc−, falsely
reporting a negative label will only reinforce the mechanism’s decision. This is in
striking contrast to the regression learning setting considered in Dekel et al. [10], where
the deepest technical results concern the single-point-per-agent scenario.

Despite the fact thatERM is not SP, we would still like to use the optimal concept
in order to evaluate other concepts and mechanisms. From thedefinition of theerm,
we have that

r∗ = RI(c
∗, S) = min{RI(c+, S),RI(c−, S)} = min

{
N

m
,
P

m

}
.

3.1 Deterministic Mechanisms

Denote byci theerm onSi, i.e.,ci = c+ if Pi ≥ Ni andc− otherwise. Clearlyci is
the best classifier agenti can hope for. Consider the mechanism given as Mechanism 1.

Mechanism 1THE PROJECTEDMAJORITY MECHANISM (PM)
Based on the labels of each agentPi, Ni, calculateci. Define each agent as anegative
agentif ci = c−, and as apositive agentif ci = c+.
Denote byP ′ =

∑
i:ci=c+

mi the number of examples that belong to positive agents,
and similarlyN ′ =

∑
i:ci=c−

mi = m− P ′.
if P ′ ≥ N ′ then return c+.
else return c−.
end if

Remark 2. Informally we state that in our current setting, we can obtain similar ap-
proximation results even under mechanisms that are not SP, assuming agents lie only
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when this is beneficial to them. Nevertheless, strategyproofness gives us a very clean
framework to analyze mechanisms in the face of strategic behavior. When we discuss
our learning theoretic framework, where obtaining strategyproofness is next to impos-
sible, we shall apply the former, less elegant, type of analysis.

We will show that this mechanism has the excellent game-theoretic property of
beinggroup strategyproof: no coalition of players can gain by lying. In other words,
if some agent in the coalition strictly gains from the joint lie, some other agent in the
coalition must strictly lose. While technically simple, this first result demonstrates the
key principles of strategyproof mechanisms.

Theorem 3.2. Mechanism 1 is a 3-approximation group-SP mechanism.

Proof. We first show group strategyproofness. LetB ⊆ I. We can assume without
loss of generality that either all agents inB are positive or all of them are negative,
since a positive (resp., negative) agent cannot gain from lying if the mechanism returns
c+ (resp.,c−). Again without loss of generality, the agents are all positive. Therefore,
if some agent is to benefit from lying, the mechanism has to return c− on the truthful
dataset. However, since the mechanism considers all agentsin B to be positive agents
when the truthful dataset is given, an agent inB can only hope to influence the out-
come by reporting a majority of negative examples. However,this only increasesN ′,
reinforcing the mechanism’s decision to returnc−.

It remains to demonstrate that the approximation ratio is asclaimed. We assume
without loss of generality that the mechanism returnedc+, i.e., P ′ ≥ N ′. We first
prove that if the mechanism returned the positive concept, at least1/4 of the examples
are indeed positive, that is,P ≥ 1

4m.
Indeed, clearlyP ′ ≥ m

2 ≥ N ′ otherwise we would getc = c−. Now, if an agent is
positive(ci = c+), at least half of its examples are also positive. Thus

P =
∑

i∈I

Pi ≥
∑

i:ci=c+

Pi ≥
∑

i:ci=c+

mi

2
=

P ′

2
,

and henceP ≥ P ′

2 ≥
m
4 .

Now, we know thatP + N = m, soN = m − P ≤ m −
(
m
4

)
= 3m

4 ≤ 3P .
Clearly if the mechanism decided “correctly”, i.e.,P ≥ m/2, then

RI(c, S) = RI(c+, S) =
N

m
= r∗.

Otherwise, ifP < m/2, then

RI(c, S) = RI(c+, S) =
N

m
≤ 3

P

m
= 3RI(c−, S) = 3r∗.

In any case we have that RI(c, S) ≤ 3r∗, proving that Mechanism 1 is indeed a 3-
approximation mechanism. �

As 3-approximation is achieved by such a trivial mechanism,we would naturally
like to know whether it is possible to get a better approximation ratio, without waiving
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Figure 3: The examples of each agent in the three datasets areshown (fort = 2). Agent
1 can make dataset II look like dataset III and vice versa by reporting false labels. The
same goes for agent 2 regarding datasets I and II.

the SP property. We show that this isnot the case by proving a matching lower bound
on the best possible approximation ratio achievable by an SPmechanism. Note that the
lower bound only requires strategyproofness, not group strategyproofness.

Theorem 3.3. Let ǫ > 0. There is no(3− ǫ)-approximation strategyproof mechanism.

Proof. To prove the bound, we present 3 different datasets. We show that any SP
mechanism must return the same result on all of them, while neither concept inC
yields an approximation ratio of(3− ǫ) in all three.

Let ǫ > 0. We will useI = {1, 2}, and an integert = t(ǫ) to be defined later. Note
that in all three datasetsm1 = m2 = 2t + 1. We define the three datasets as follows
(see Figure 3 for an illustration):

• SI : P1 = 2t+ 1, N1 = 0 ; P2 = t,N2 = t+ 1

• SII : P1 = 2t+ 1, N1 = 0 ; P2 = 0, N2 = 2t+ 1

• SIII : P1 = t+ 1, N1 = t ; P2 = 0, N2 = 2t+ 1

LetM be some strategyproof mechanism. Then it must hold thatM(SI) = M(SII).
Indeed, otherwise assume first thatM(SI) = c+ andM(SII) = c−. Notice that the
only difference between the two settings is agent 2’s labels. If agent 2’s truthful labels
are as inSI , his subjectiveerm is c−. Therefore, he can report his labels to be as in
SII (i.e., all negative) and obtainc−. Now, if M(SI) = c− andM(SII) = c+, agent 2
can gain by deviating fromSII to SI . A symmetric argument, with respect to agent 1
(that in all settings prefersc+) shows thatM(SII) = M(SIII).
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So, without loss of generality assume thatc = M(SI) = M(SII) = M(SIII) =
c+ (otherwise, symmetric arguments yield the same result). Therefore:

RI(c, S
III) = RI(c+, S

III) =
N1 +N2

m
=

3t+ 1

4t+ 2
(8)

On the other hand, the negative concept is much better:

r∗ = RI(c−, S
III) =

t+ 1

4t+ 2

By combining the last two equations:

RI(c, S
III)

r∗
=

3t+1
4t+2
t+1
4t+2

=
3t+ 1

t+ 1

Let us sett > 3
ǫ ; then the last expression is strictly greater than3 − ǫ, and thus

RI(c, S
III) > (3 − ǫ)r∗. We conclude that any SP mechanism cannot have an ap-

proximation ratio of3− ǫ. �

3.2 Randomized mechanisms

What if we let our mechanism flip coins? Can we find an SP randomized mechanism
that beats (in expectation) the 3-approximation deterministic lower bound? To answer
the question we first recall the definition of the risk of such amechanism given in (3).

For our simple concept classC = {c+, c−}, a randomized mechanism is defined
only by the probability of returning a positive or negative concept, givenS. Accord-
ingly, the risk (both private and global) is

R(M(S), S) = p+ · R(c+, S) + p− · R(c−, S) ,

wherep+, p− stand forpM (c+ | S) andpM (c− | S).
We start our investigation of SP randomized mechanisms by establishing a lower

bound of 2 on their approximation ratio.

Theorem 3.4. Let ǫ > 0. There is no(2− ǫ)-approximation strategyproof randomized
mechanism.

The proof, along with all the remaining proofs of this section, appears in Ap-
pendix A.

We presently put forward a randomized SP 2-approximation mechanism, thereby
matching the lower bound with an upper bound. However we firstpropose a simpler
mechanism and analyze where it fails: The natural thing to dowould be to calculate
P ′ andN ′ as in our deterministic Projected Majority Mechanism and then simply to
selectc+ with probabilityP ′/m andc− with probabilityN ′/m. We refer to this simple
mechanism as theweighted random dictatormechanism (WRD), for reasons that will
become apparent in Section 4.1.6 Unfortunately, this simple randomization (which is
clearly SP) cannot even beat the deterministic bound of3 − ǫ, as demonstrated by the
following example.

6This procedure is equivalent to randomly selecting an agent with probability proportional to its weight,
and using its preferred classifier to classify the entire dataset — henceWeighted Random Dictator.
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Example 3.5. Consider the datasetS of n agents with the following examples: one
agent withP1 = t+1,N1 = t, andn−1 additional agents each holding2t+1 negative
examples. ThusP = t+1;N = (n−1)(2t+1) butP ′ = 2t+1;N ′ = (n−1)(2t+1).
The optimal classifier makes|P | = t+ 1 mistakes, thusr∗ = t+1

m . On the other hand,
the expected number of mistakes made by the mechanism is

m · RI(WRD(S), S) =p− · |P |+ p+ · |N | =
N ′

m
· (t+ 1) +

P ′

m
· ((n− 1)(2t+ 1) + t)

=
(n− 1)(2t+ 1)

n(2t+ 1)
(t+ 1) +

2t+ 1

n(2t+ 1)
(2nt+ n− t− 1)

=
(n− 1)(t+ 1)

n
+

2nt+ n− t− 1

n
=

=
nt+ n− t− 1 + 2nt+ n− t− 1

n
=

3nt+ 2n− 2t− 2

n
.

We have that the approximation ratio of this mechanism is at least

RI(WRD(S), S)

r∗
=

3nt+ 2n− 2t− 2

n(t+ 1)

t→∞
→ 3−

2

n
. (9)

Thus, for everyǫ > 0, there is a large-enought such that the approximation ratio is
worse than3− 2

n − ǫ. ♦

Note that in this example all agents control datasets of the same size (2t + 1). A
similar example can be crafted with two weighted agents, by merging the datasets of
agents2, . . . , n to a single, heavier, agent. This example will provide us with a lower
bound of3− 2w1, wherew1 is the weight of the lighter agent.

Crucially, an adjusted, less intuitive randomization can do the trick.

Mechanism 2The Square Weighted Dictator Mechanism (SRD)

ComputeP ′ andN ′ as in Mechanism 1.
Returnc+ or c− with probability proportional to(P ′)2, (N ′)2, respectively.

Theorem 3.6. Mechanism 2 is a group-SP2-approximation randomized mechanism.

There are, in fact, multiple ways to achieve a 2-approximation using different ran-
domizations onN ′ andP ′. In a previous version of this paper we suggested one such
alternative randomization [28]. A third procedure followsas a special case from the
CRD mechanism described in Section 4.1.

3.3 Binary Decision in a Learning Theoretic Setting

In this section we extend our simple setting to a more generalmachine learning frame-
work. Our previous results will be leveraged to obtain powerful learning theoretic
results.
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Instead of looking at a fixed set of examples and selecting theconcept that fits
them best, we now turn to look atsampled datasets. That is, we assume that there is
some fixed and known distributionDX ∈ ∆(X ) (where∆(A) is the set of probability
distributions over a setA), which represents theinterestthat agents have in different
parts of the input space. According to our shared input assumption, the distribution of
interest is the same for all agents.

In addition, each agenti ∈ I now has a private functionYi : X → {+,−},
which assigns a label to every point in the input space. Observe thatYi, along with
the distributionDX , induces a (private) distributionDi over inputs and labels, i.e.,
Di ∈ ∆(X × {+,−}). This distribution determines the type of agenti.

The new definition of the subjective risk naturally extends the previous setting by
expressing the errors a concept makes with respect to the distributionDi:

Ri(c) = E(x,y)∼Di
[Jc(x) 6= yK] = Ex∼DX

[Jc(x) 6= Yi(x)K] . (10)

The global risk is calculated similarly to how it was previously defined, as the weighted
average of the private risk, i.e.,

RI(c) =
∑

i∈I

wi · Ri(c) . (11)

For ease of exposition, we will assume in this section that all agents have equal
weight. Thus, RI(c) = 1

n

∑
i∈I Ri(c). In Section 4.3, when discussing the more

general problem, we will not use this assumption.7

Similarly, we can no longer compare the outcome of our mechanism to r∗(S),
as this notion of the optimal risk assumes a fixed dataset, whereas an instance of the
learning-theoretic setting consists of a set ofdistributions. We therefore define the
minimal risk as

rmin = inf
c∈C

RI(c) . (12)

Although in the general caseC might be an open set, in our simple two-function
settingC is finite, andrmin = min{RI(c−),RI(c+)}.

Note that we cannot directly evaluate the risk in this learning theoretic framework;
we may only sample points from the agents’ distributions andask the agents to label
them. We then try to minimize thereal global risk, using theempirical riskas a proxy.8

The empirical risk is the risk on the sampled dataset, as defined in the previous section.

Remark 3. A subtle point is that the mechanism we present is not strategyproof, and in
factno mechanismthat gets sampled data points as input is strategyproof. Indeed, even
if there is only a single agent, which gives greater weight tonegative points (according
toD1), it might be the case that, by miserable chance, the agent’ssampled dataset only
contains positive points. Thus there is some non-zero probability that the agent will
have an incentive to “lie” by reporting negative labels.

7The results in this section can also be generalized to varying weights by sampling for each agent a
number of points proportional to its weight, yet still large enough.

8This is similar to an oracle model, where we have no direct access to the distribution, but we can ask
yes/no questions about it. The major difference is that in ourmodel the “oracle” may lie! (Perhaps theSphinx
model would be a better name)
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We note that even allowing payments would not guarantee strategyproofness in
our example, as it contains only one agent. This fact may seemcontradictory to the
revelation principle (see, e.g., [32]), but not if we recallthat truthful mechanisms are
only guaranteed to exist underdirect revelation. In our domain, direct revelation means
that the agents must be asked to explicitly select the classifier they prefer. However in
the learning-theoretic setting the agents only reveal their preferences indirectly, by
submitting their preferred labels on the sampled data points.

3.3.1 Three Game-Theoretic Assumptions

While full strategyproofness is too much to ask for, we can still make assumptions
on the behavior of agents that will allow us to formally analyze the outcome of our
mechanisms. We exploit this very simple setting to clarify the distinction between
three alternative game-theoretic assumptions on agents’ behavior.

The ǫ-truthfulness assumption. The first assumption is that agents will not lie un-
less their expected gain from this lie isat leastǫ. This assumption is stronger than the
rationality assumption in the decision-making setting, where we demanded this only
for ǫ = 0. In Section 4.3 we refer to this assumption as the “Truthful Approach”. This
is the approach taken for example by Dekel et al. [10].

The pure rationality assumption. A second assumption is that agents willalways
play a dominant strategy, if one is available to them. The existence of dominant strate-
gies depends on the mechanism, as well as on the dataset, and we allow arbitrary be-
havior when such a strategy does not exist. This assumption is also stronger than the
standard rationality assumption (which does not assume anything about agents’ behav-
ior when truth-telling is suboptimal), but it is incomparable with the first assumption.
In Section 4.3 we refer to this assumption as the “rational approach”. It is important
to note that the rational approach entails that agents must have complete knowledge
of their own distribution. This implicit assumption is not necessary under the truthful
approach.

The weak truthfulness assumption. The third assumption, which is also the weak-
est, requires that an agent is truthful if this is a weakly dominant strategy, i.e., if it
cannot gain by lying.

An agent that always obeys the first, second or third assumption is calledǫ-truthful,
purely rational, or weakly truthful, respectively. Note that bothǫ-truthful agents (for
anyǫ ≥ 0) and purely rational agents are always weakly truthful, which means that the
third assumption is indeed the weakest.

In this section we employ the third assumption as it suppliesus with the strongest
results. Thus the results in this section are “stronger” in away than the results of Dekel
et al. [10] (regression) and the results in Section 4 (classification).9

9In fact, a simple variant of the proofs in Section 4.3 could be directly applied to the binary decision
problem (as it is a special case of shared inputs, and has a bounded VC dimension), yielding an approxi-
mation ratio that is close to 2. However, this bound would onlyhold under either of the first two strategic
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Remark 4. We offer a simple scenario that will highlight the substantial difference
between the different assumptions. Suppose we employ the pure rationality assumption,
and consider the following simple mechanism: sample one point fromDX , and let
all agents label this single point. If an agent labels the point positively, the agent is
positive; otherwise it is negative. Now apply either Mechanism 1 or Mechanism 2.
This clearly gives us approximation upper bounds of 3 and 2 respectively, using only
one sampled data point. In contrast, theǫ-truthfulness assumption will not guarantee
anything in this case. This suggests that the difference between the assumptions is
non-trivial. Compare also with the analysis of the two first approaches in Section 4.3.

Mechanism 3The Binary Learning Mechanism (̃SRD)
for each agenti ∈ I do

Samplem′ = mi points i.i.d. fromDX .
Denotei’s set of data points asXi = {xi,1, . . . , xi,m′}.
Ask agenti to labelXi.
DenoteSi = {〈xi,j , Y i(xi,j)〉}

m′

j=1.
end for
Use Mechanism 2 onS = {S1, . . . , Sn}, return SRD(S).

The risk of the mechanism is computed as the expectation of the risk of the outcome
classifier, where the expectation is taken over both randomizations: the sampling of the
data points, and the randomization performed bySRD. Formally (for both private and
global risk),

R(S̃RD) = EX∼(DX)m
[
R(SRD(S))

]
, (13)

where the labels ofX in S are set according to our strategic assumptions.
We presently establish a theorem that explicitly states thenumber of examples we

need to sample in order to properly estimate the real risk. Wewill get that, in ex-
pectation (taken over the randomness of the sampling procedure and Mechanism 2’s
randomization), Mechanism 3 yields close to a 2-approximation with relatively few
examples, even in the face of strategic behavior.

Theorem 3.7. Given sampled datasets, assume weak truthfulness. For anyǫ > 0, there
is m′ (polynomial inln(n) and 1

ǫ ) such that by samplingm′ points for each agent, it
holds that

RI(S̃RD) ≤ 2rmin + ǫ.

Specifically, samplingm′ > 50 1
ǫ2 ln(

10n
ǫ ) will suffice.

While the proof is quite technical, it can be sketched as follows. Mechanism 2 is
SP with respect to the (already sampled) datasetS. Thus if an agent’s sampled dataset
faithfully represents its true distribution, and the agentis strongly inclined towardsc+
or c−, the agent still cannot benefit by lying (by the weak truthfulness assumption). If
an agent is almost indifferent betweenc+ andc−, it might wish to lie—but crucially,
such an agent contributes little to the global risk.

assumptions.
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4 Classification with Shared Inputs

We begin with an analysis of the decision-theoretic setting. As in Section 3, these
results will later be applied to the learning-theoretic setting.

In this section, we assume that all agents control the same set of data points. The
size of this dataset is denoted byk. The total number of labeled data points from all
agents is thusm = n · k. However, as our mechanisms in this section use only a single
agent,k is effectively the size of the input being used.

4.1 Deterministic Mechanisms

We start by examining an extremely simple deterministic mechanism. Recall that
erm(S′) is the conceptc ∈ C that minimizes the risk w.r.t.S′ ⊆ S (see Equation (4)).
Our mechanism simply lets the heaviest agent dictate which concept is chosen.

Mechanism 4The Heaviest Dictator Mechanism (HD)
h← argmaxi∈I wi. // (Leth ∈ I be an agent with maximal weight)
return erm (Sh).

If more than oneerm exists, return one of them arbitrarily. The mechanism is
clearly SP: the heaviest dictatorh has no interest to lie, since its best concept is selected;
all other agents are simply ignored, and therefore have no reason to lie either. We have
the following result.

Theorem 4.1. Let |I| = n. For every concept classC and any datasetS, Mechanism 4
is an SP(2n− 1)-approximation mechanism.

Recall the central negative result regarding deterministic mechanisms with non-
restricted input.

Theorem 4.2(Meir, Procaccia, and Rosenschein [29]). There exist concept classes for
which any deterministic SP mechanism has an approximation ratio of at leastΩ(m),
wherem is the total size of the full dataset.

We therefore see that the restriction to shared inputs helpsby removing the depen-
dency on the size of the dataset, but nevertheless an approximation ratio that increases
linearly with the number of agents is not very appealing. However, it turns out that us-
ing deterministic mechanisms we cannot do better with respect to every concept class.
Indeed, a slight variation of Theorem 4.2 gives us the following result.

Theorem 4.3. Suppose there aren agents with shared inputs. There exist concept
classes for which any deterministic SP mechanism has an approximation ratio of at
leastΩ(n), even if all the weights are equal.

The proof of the theorem is a minor variation of the proof of Theorem 4.2, which
applies the Gibbard-Satterthwaite impossibility theorem[17, 38].

Theorem 4.3 implies that Mechanism 4 is optimal, up to a constant, as a generic
mechanism that applies to any concept class. Of course, for specific concept classes
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one can do much better, as shown in Section 3. One could hope that imposing further
restrictions on the dataset, such as realizability, would enable the design of better SP
mechanisms. However, recent results show that theΩ(n) bound remains even if all
datasets are realizable [13].

4.2 Randomized Mechanisms

In order to break the lower bound given by Theorem 4.3, we employ a simple ran-
domization. We will see that this randomization yields a constant approximation ratio
with respect to any concept class(under our assumption of shared inputs, of course).
Moreover, if the agents have uniform weights, then this mechanism cannot be further
improved.

Mechanism 5The Weighted Random Dictator (WRD) mechanism
select agenti with probabilitywi.
return erm (Si).

Consider Mechanism 5, which is clearly SP. The following theorem bounds its
approximation ratio for different cases.

Theorem 4.4. For every concept classC and for any datasetS, Mechanism 5 is an SP
(3 − 2wmin)-approximation mechanism, wherewmin = mini∈I wi. Moreover, ifS is
individually realizable, then(2− 2wmin)-approximation is guaranteed.

When all agents have the same weight, we have thatwmin = 1
n . We therefore have

the following corollary which follows directly from Theorem 4.4.

Corollary 4.5. Let |I| = n, and assume all agents have equal weights. For every
concept classC and for any datasetS, Mechanism 5 is an SP(3 − 2

n )-approximation
mechanism (2− 2

n whenS is individually realizable).

The last corollary also follows as a special case from results we will see in Sec-
tion 4.2.2.

It is possible to show that the analysis of Mechanism 5 is tight. Indeed, consider the
outcome of the mechanism for the concept class{c−, c+}. In this case, the mechanism
is essentially equivalent to the naive randomized mechanism presented in Section 3.2,
and yields the same outcome. Therefore, Example 3.5 gives a tight lower bound on
the approximation ratio of the mechanism, matching the upper bound given in Theo-
rems 4.4 and 4.5. A similar example can be easily constructedfor every concept class
of size at least two.

4.2.1 Is the WRD mechanism optimal?

It is natural to ask whether better (randomized) SP mechanisms exist. For specific con-
cept classes, the answer to this question is positive, as demonstrated by Theorem 3.6.
For general concept classes, the following lower bound is known.
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Theorem 4.6(Meir, Almagor, Michaely and Rosenschein [27]). Suppose there aren
agents with shared inputs. There exist concept classes for which any randomized SP
mechanism has an approximation ratio of at least3 − 2

n , even if all the weights are
equal.

Theorem 4.6 shows that when weights are uniform, theWRD mechanism (i.e.,
selecting a dictator uniformly at random) is in fact optimal. That is, no SP mechanism
can do better. However, the mechanism is suboptimal for weighted datasets, as it only
guarantees a3 approximation in this case.

We next turn to close this gap, presenting new mechanisms that beat theWRD
mechanism on weighted datasets, matching the lower bound given in Theorem 4.6.

4.2.2 Improving the upper bound for weighted agents

Theorem 4.6 in fact tells us that we must pick a dictator at random to have an SP
mechanism. However we are still free to define the probabilities of selecting different
agents, and we may take agents’ weights into account. TheWRD mechanism is an
example of such a randomization, but we can design others.

Recall that in the two-function scenario, we performed an optimal randomization
by using theSRD mechanism. As a first attempt to improve the upper bound, we
translate theSRD mechanism to the current setting.10 That is, the mechanism would
select every dictatori ∈ I with probability proportional tow2

i . Unfortunately, while
SRD does attain some improvement over theWRD mechanism, it is still suboptimal,
even forn = 3.

Proposition 4.7. There is a datasetS with three agents, such that

RI(SRD(S), S) > 2.4 · r∗ >

(
3−

2

n

)
r∗.

A similar counterexample exists for individually realizable datasets, where the ap-
proximation ratio ofSRD is above1.39 (i.e., strictly above2− 2

n for n = 3). We there-
fore must take a somewhat different approach in the selection of the dictator. Consider
the mechanismsCRD andRRD, where the latter is a small variation of the former.

Mechanism 6The Convex-weight Random Dictator Mechanism (CRD)

for eachi ∈ I, setp′i =
wi

2−2wi
.

computeαw = 1∑
i∈I p′

i

.

select agenti with probabilitypi = αwp′i.
return erm (Si).

TheCRD andRRD mechanisms are clearly SP, as the probabilities are unaffected
by the reported labels.

Theorem 4.8. The following hold for Mechanism 6:

10We slightly abuse notation here and use the nameSRD, although it is no longer equivalent to Mecha-
nism 2.
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Mechanism 7The Realizable-weight Random Dictator Mechanism (RRD)
h← argmaxi∈I wi.
if wh ≥

1
2 then

return erm (Sh).
end if
for eachi ∈ I, setp′i =

wi

1−2wi
.

computeβw = 1∑
i∈I p′

i

.

select agenti with probabilitypi = βwp′i.
return erm (Si).

◦ αw ≤ 2− 2
n .

◦ CRD has an approximation ratio of1 + αw, i.e., at most3− 2

n
.

◦ if S is individually realizable, then the approximation ratio is αw

2 + 1, i.e., at
most2− 1

n .

By Theorem 4.6, no SP mechanism can do better on a general dataset in the worst
case, thusCRD is optimal. However, if the dataset is known to be individually realiz-
able,CRD is suboptimal, andRRD is strictly better (in the worst case).

Theorem 4.9. The following hold for Mechanism 7:

◦ βw ≤ 1− 2
n .

◦ RRD has an approximation ratio of at most4, and at least3 (in the worst case).

◦ if S is individually realizable, then the approximation ratio is 1 + βw, i.e., at
most2− 2

n
.

Observe that for two agents theRRD simply selects the heavier dictator. Thus if the
dataset is not realizable, the approximation ratio can be ashigh as3, which accounts
for the lower bound in the non-realizable case.

The CRD mechanism matches the lower bounds forany set of weighted agents,
thereby showing that the uniform weight case is, in fact, thehardest. The situation with
theRRD mechanism is similar—no randomization of dictators can do better. However,
it is still an open question whether there are better, more sophisticated, randomized
mechanisms for the realizable case. The natural conjecturewould be that there are
none, as Dokow et al. proved for deterministic mechanisms [13].

Note that when weights are uniform, then theCRD, RRD, SRD andWRD mech-
anisms all coincide.11 Thus Theorem 4.5 also follows as a special case from Theo-
rems 4.8, 4.9.

Curiously,RRD is better thanCRD when the dataset in known to be realizable,
whereas in the general case the converse is true. Therefore,a different mechanism
should be used, depending on our assumptions on the dataset.However, the mechanism

11There is a tiny exception here: whenn = 2, w1 = w2 = 1

2
, thenRRD returns an arbitrary dictator,

rather than random. However in this case any outcome is a 1-approximation.
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must be decided ona-priori—we cannot select betweenCRD andRRD after observing
the labels, as this would not be strategyproof!

4.2.3 Applying the mechanisms to the two-function setting

Suppose thatC = {+,−}. We can join together all positive agents, and all negative
agents, and construct an instance with two meta-agents, whose weights are propor-
tional toP ′, N ′ (as defined in Section 3.1). TheRRD mechanism then simply selects
the heavier meta-agent (equivalently to thePM mechanism), and thus guarantees an
approximation ratio of3. TheCRD mechanism, applied to this setting, guarantees an
approximation ratio of3− 2

n = 3− 2
2 = 2. It therefore supplies us with an alternative

2-approximation SP mechanism for the two-function setting.

4.3 The Learning-Theoretic Setting

In this section we leverage the upper bounds which were attained in the decision-
theoretic setting to obtain results in a machine-learning framework. That is, we present
a learning mechanism that guarantees a constant approximation of the optimal risk in
expectation, even in the face of strategic behavior.

We use the notations and definitions introduced in Section 3.3, where the prefer-
ences of each agent are represented by a functionYi : X → {+,−}.12 Reinterpreting
our shared input assumption in the learning-theoretic setting, we assume that all agents
havethe sameprobability distributionDX overX , which reflects the relative impor-
tance that the agents attribute to different input points; the distributionDX is common
knowledge.

The private risk of a classifierc ∈ C is computed according to Equation (10):

Ri(c) = Ex∼DX
[Jc(x) 6= Yi(x)K] .

That is, according to theexpectednumber of errors thatc makes w.r.t. the distribution
DX . As for the global risk, it is computed according to Equation(11), i.e.

RI(c) =
∑

i∈I

wiRi(c) .

The goal of our mechanisms is to find classifiers with low risk.We therefore
compare them to the best risk that is attainable by concepts in C, and thusrmin =
infc∈C RI(c). Equation (12) is a special case of this definition forC = {c−, c+}.

Our goal is, once again, to design mechanisms with risk closeto optimal. However,
constructing an SP mechanism that learns from sampled data is nearly impossible (as
explained in Remark 3). Hence, we weaken the strategyproofness requirement, and
analyze the performance of our mechanisms under each of the first two strategic as-
sumptions described in Section 3.3: theǫ-truthfulness assumption, which states that
agents do not lie unless they gain at leastǫ; and the pure rationality assumption, under
which agents always play a weakly dominant strategy if one exists.

12As with the theorems in Section 4.1, our results in this section will follow as a special case from the
more general model, where agents have distributions over the labels.
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4.3.1 Theǫ-Truthfulness Assumption

An ǫ-strategyproof mechanism is one where agents cannot gain more thanǫ by lying.
We show below that, similarly to Dekel et al. [10], the results of Section 4.2 can be
employed to obtain a mechanism that is “usually”ǫ-strategyproof. We focus on the
following mechanism.

Mechanism 8The Generic Learning Mechanism (̃CRD)
Samplek data points i.i.d. fromDX (denote the sampled points byX).
for each agenti ∈ I do

Ask agenti to labelXi.
DenoteSi = {〈xj , Y i(xj)〉}

k
j=1.

end for
Use Mechanism 5 onS = {S1, . . . , Sn}, return CRD (S).

We denote by RI(C̃RD) the expected risk of Mechanism 8, where the expectation
is taken over the randomness of the sampling and the randomness of Mechanism 5, just
as in Equation (13) in the two-function setting:

R(C̃RD) = EX∼(DX)k
[
R(CRD(S))

]
,

where the labels ofX in S are set according to our varying strategic assumptions.
We wish to formulate a theorem that asserts that, given enough samples, the ex-

pected risk of Mechanism 8 is relatively small under theǫ-truthfulness assumption.
The exact number of samples needed depends on the combinatorial richness of the
function class; this is usually measured using some notion of class complexity, such
as the VC dimension (see, e.g., [21]). For instance, the VC dimension of the class of
linear separators overRd is d+1. We do not dwell on this point too much, and instead
assume that the dimension is bounded.

Theorem 4.10. Assume all agents areǫ-truthful, and letC be any concept class with
a bounded dimension. For anyǫ > 0, there isk (polynomial in 1

ǫ and ln(n)) s.t. if
at leastk datapoints are sampled, then the expected risk of Mechanism8 is at most(
3− 2

n

)
· rmin + ǫ.

The proof sketch is as follows:

(a) There is a high probability that the random sample is “good”, i.e., close to the
actual interest of the agents.

(b) Whenever the sample is good for some agent, this agent willreport truthfully (un-
der theǫ-truthfulness assumption).

(c) When the sample is good for all agents, the risk of Mechanism 8 is close to the risk
of Mechanism 5, and thus we have almost a3− 2

n -approximation.

(d) Otherwise the risk can be high, but this has a small effecton the total expected risk,
as it occurs with low probability.
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We prove Theorem 4.10 along these lines in Appendix B.2, and supply an exact
upper bound on the number of samples required for the theoremto hold.

4.3.2 The Pure Rationality Assumption

Recall that under the pure rationality assumption, an agentwill always use a dominant
strategy, when one exists. We once again consider the performance of Mechanism 8.
Note that since our mechanism uses a dictator, each agenti has a weakly dominant
strategy. In order to see that, observe that there is some classifierĉi that minimizes the
risk w.r.t. the whole distributionDi.13 The dominant strategy of agenti is to label the
sampled datasetX according tôci. Note that this does not mean thati is being truthful,
as it is possible that̂ci(x) 6= Yi(x) (see Remark 3).

Theorem 4.11. Assume all agents are purely rational, and letC be any concept class
with a bounded dimension. For anyǫ > 0, there isk (polynomialonly in 1

ǫ ) s.t. if
at leastk datapoints are sampled, then the expected risk of Mechanism8 is at most(
3− 2

n

)
· rmin + ǫ.

Interestingly, the alternative assumption improved the sample complexity: the num-
ber of required samples no longer depends onn, only on 1

ǫ . In a somewhat counter-
intuitive way, the rationality assumption provides us withbetter bounds without using
the notion of truthfulness at all. This can be explained by the fact that arational (i.e.,
self-interested) labeling of the dataset is a better proxy to an agent’s real type than a
truthful labeling. Indeed, this strange claim is true sincethe sampling process might
produce a set of pointsX that represents the agent’s distribution in an inaccurate way.14

5 Discussion

We first review our results in the decision making setting, then in the learning theoretic
setting, and finally present some directions for future research.

Decision Making Setting

We started by studying the simple case where there are only two possible decisions. In
this setting there is an almost trivial mechanism that is group strategyproof, and guar-
antees a 3-approximation ratio. While there are no better deterministic mechanisms,
we showed how a specific randomization can be used to achieve a2-approximation
ratio, while maintaining the group-SP property.

For the more general case, we showed that a simple randomization of the dictator
(the WRD mechanism) achieves the best possible approximation ratiowhen agents
have uniform weights, but falls short in the weighted case. We then presented a new
mechanism that closes this gap and obtains optimal approximation results in the general
case (CRD). In the weighted realizable case, we presented a mechanismthat matches

13There is a fine issue here regarding the finiteness of the concept class, that we deal with in the proof.
14As we explained in Remark 3, the revelation principle does notapply here, since the agents do not report

their full preferences.
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All Classes (shared inputs) Binary decision
general datasets realizable datasets

HD O(n) (Th.4.1) ⇒ O(n) ⇒ O(n)

PM - - 3 (Th.3.2)

lower bound Ω(n) (Th.4.3) Ω(n) [13] 3 (Th.3.3)

Table 1: Summary of results (deterministic mechanisms). The corresponding theorem
for each result appears in parentheses.

All Classes (shared inputs) Binary decision
general datasets realizable datasets

WRD 3 (Th.4.4) 2 (Th.4.4) ⇒ 3

SRD > 2.4 (Prop.4.7) > 1.39 2 (Th.3.6)

CRD 3− 2
n (Th.4.8) 2− 1

n (Th.4.8) 2

RRD ≥ 3 (Th.4.9) 2− 2
n (Th.4.9) 3

best upper bound 3− 2
n (CRD) 2− 2

n (RRD) 2 (SRD,CRD)

lower bound 3− 2
n (Th.4.6 [27]) ? 2 (Th.3.4)

Table 2: Summary of results (randomized mechanisms). We conjecture that the upper
bound for realizable datasets is tight, but this remains an open question.

the best known results with uniform weights. However it is still an open question
whether this bound is tight, as no non-trivial lower bounds are known.

We showed that these approximation results stand in sharp contrast to the determin-
istic case, where no deterministic mechanism can guaranteea constant approximation
ratio. The trivial selection of the heaviest agent as a dictator is the best deterministic SP
mechanism at hand. Results also highlight the power of the shared inputs assumption,
as they allow us to break the lower bounds that hold in the general case [29].

All these results (summarized in Tables 1 and 2) may help decision makers—both
human and automated—in reaching a decision that approximately maximizes social
welfare, when data might be biased by conflicting interests.

Implications for Facility location

As we hinted in the introduction, our classification model can be seen as facility loca-
tion in metric spaces, where the particular space that we useis the binary cube. In fact,
the2− 2

n bound in Theorem 4.5 follows directly from a folk result in facility location,
and has been employed, for example, by Alon et al. [2]. We willnext describe our
results in the decision-theoretic setting in the wider context of metric spaces, thereby
extending and generalizing the mentioned folk theorem.
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Let 〈F , d〉 be a metric space.15 Let F = {f1, . . . , fn} be a finite set of points in
F , where each pointfi has an attached weightwi reflecting its importance. Define
d(f, F ) as the (weighted) average distance fromf to F , and letf∗ ∈ F be the point
that minimizes this distance, i.e.,

f∗ = argminf∈F d(f, F ) = argminf∈F

∑

i≤n

wid(f, fi).

We are interested in selecting one of the points inF , that will be as close as possible
to all other points. The restriction is that this selection must be “blind”. That is, we
must select without knowing the actual distances. All we know are the weights of the
n points. Clearly, if weights are uniform, one can do no betterthan simply picking
a random point inF . The following inequality, which is a folk theorem, bounds the
expected distance achieved in this process.

1

n

∑

i≤n

d(fi, F ) ≤

(
2−

2

n

)
d(f∗, F ). (14)

As we informally explained before, the upper bounds on the approximation ratio
of theWRD mechanism (e.g., the realizable part of Theorem 4.5) can be derived from
Eq. (14) by defining a metric over classifiers, reflecting the fraction of the data space
on which they disagree. In the uniform-weight, realizable case, theWRD mechanism
picks an agent at random, and thus its risk is exactly the average distance between
each agent’s optimal classifier and the other agents. The formal details appear in Ap-
pendix B, where we also supply an analog for the non-realizable case, and extend our
bounds to weighted agents.

Moreover, the full proofs show that all mechanisms of Section 4 attain the speci-
fied approximation ratios in a more general model, where the private labels are non-
deterministic, and datasets are given in the form of a (private) distribution overX ×
{+,−}.16 The theorems in Section 4, under the standard model we presented (with
deterministic labels), follow as a special case.

Implications for Partition and Judgment aggregation

Given a subsetX of Rd (and in particular an interval), partitions ofX just form another
metric space. Informally, the distance between two partitions is exactly the volume they
disagree on. The set of all partitions that are allowed constitutes the concept classC.

A similar approach to the Judgment aggregation problem requires some additional
assumptions, since issues on the agenda cannot always be directly compared and quan-
tified. We will clarify this using the following simple example (the Doctrinal paradox,
see e.g. [14]): The agenda contains the three logical expressionsX = (a,b,a ∧ b).
Legal assignments are those that are also logically consistent (e.g.(1, 1, 1) is legal, but
(1, 1, 0) is not). We can therefore naturally defineC as the set of all legal assignments
(|C| = 4 in this case). The “dataset”S then contains the opinion of every judge over

15It is in fact sufficient to assume thatd is apseudo-metric, i.e., it is possible thatd(f, f ′) = 0 for f 6= f ′.
16The datasets in Section 3 can be viewed as a single data point with non-deterministic labels. The proba-

bilities of a positive/negative label for agenti are proportional toPi andNi, respectively.
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the correct assignment. Consistency of the judges’ opinions coincides with the require-
ment thatS is individually realizable. The subtle issue is that a-priori, there is no reason
to say that, for example,(1, 1, 0) is closer to(1, 1, 1) than to(0, 0, 0). However if we
assign a fixed weight to every issue on the agenda (that all judges can agree on) then
we have a natural metric, and we are back at the “shared input”setting of Section 4.
Our suggested mechanisms can therefore be used to randomizea legal assignment that
is close – on average – to the opinions of the judges. It is important to note however
that if the judges disagree on the importance of certain issues, then approximation is
not well-defined, and even strategyproofness is no longer guaranteed.

Dokow and Holzman [14] characterized those agendas for which (deterministic)
non-dictatorial aggregation rules exist.17 Our randomizations guarantee a constant
bound on the social welfare underany agenda, but it is likely that under some fam-
ilies of agendas (such as those characterized by Dokow and Holzman), an even better
outcome can be guaranteed.

We should mention in this context a recent paper by Nehama [31], which studies
approximate judgment aggregation rules from a different angle, without considering
incentives or welfare at all. Rather, the paper characterizes rules whose properties (e.g.
consistency) only approximately hold. We hope to explore the applicability of similar
relaxations to other domains in our future work.

Learning-Theoretic Setting

In all cases where a constant upper bound on the approximation ratio was available,
we showed how to use the SP decision mechanism to implement learning mechanisms
with a bounded expected risk. More precisely, our mechanisms sample a finite number
of data points from a given distribution, which are thereafter labeled by self-interested
agents. The expected risk of the mechanism (where expectation is taken over both
sampling procedure and internal randomization) is compared to the expected risk (over
the given distribution) of the best classifier in the conceptclass. This allows us to
achieve an approximation ratio that is arbitrarily close tothe approximation guaranteed
in the decision theoretic setting:2 when there are only two classifiers, and3− 2

n when
there are more (provided that all agents sample from the samedistribution). When the
optimal risk itself is high (say, above5 − 10%) then such results are not very useful.
With low optimal risk, a constant approximation ratio of2 or 3 is quite good, especially
since it applies across all concept classes and all distributions.

We made a distinction between alternative game-theoretic assumptions on agents’
behavior, showing how the different assumptions affect themechanism and the number
of required samples.

Our results in the learning theoretic setting contribute tothe design of algorithms
that can function well in non-cooperative environments. Wealso promote understand-
ing of the underlying assumptions on agents’ behavior in such environments, and how
these may affect the learning process.

17Dokow and Holzman [14] did not require strategyproofness, but different properties that are closely
related.

30



Future Work

Future research may provide answers to some of the questionswe left open, and ex-
pand this young hybrid field in new directions. More efficientSP mechanisms may be
crafted to handle specific concept classes. Further extensions of the SP classification
model we presented may be considered: formalizations otherthan the PAC-like one
we suggested; different loss functions; alternative game-theoretic assumptions as well
as restrictions on the structure of the dataset. It is also possible to alter the model by
allowing different types of strategic behavior, such as misreporting thelocationof the
data points rather than their labels.

All of these directions may reveal new parts of the overall picture and promote
a better understanding of the conditions under which SP learning can take place ef-
fectively. This, in turn, might supply us with new insights regarding our results and
regarding their relationship to other areas.
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A Proofs of Section 3

Theorem 3.4. Letǫ > 0. There is no(2− ǫ)-approximation strategyproof randomized
mechanism.

Proof. We will use the same datasets used in the proof of Theorem 3.3,and illustrated
in Figure 3. LetM be an SP randomized mechanism, and denote bypM (c | S) its
probability of outputtingc givenS.

We first show that the mechanism chooses the positive hypothesis with the same
probability in all three datasets.

Lemma A.1. pM(c+ | S
I) = pM(c+ | S

II) = pM(c+ | S
III).

Proof. As in the proof of Theorem 3.3, the agents can make one datasetlook like
another dataset. IfpM (c+ | S

I) 6= pM (c+ | S
II) then agent 2 will report its labels in

a way that guarantees a higher probability ofc−. Similarly, pM (c+ | S
II) 6= pM (c+ |

SIII) implies that agent 1 can increase the probability ofc+ by lying. �

Denote

p+ = pM (c+ | S
I) = pM (c+ | S

II) = pM (c+ | S
III) ,

and
p− = pM (c− | S

I) = pM (c− | S
II) = pM (c− | S

III) .

Without loss of generalityp+ ≥ 1
2 ≥ p−. Then:

RI(M(SIII), SIII) = p+RI(c+, S
III) + p−RI(c−, S

III)

= p+ ·
3t+ 1

4t+ 2
+ p− ·

t+ 1

4t+ 2

≥
1

2
·
3t+ 1

4t+ 2
+

1

2
·
t+ 1

4t+ 2
=

1

2
,

whereas

r∗ = RI(c−, S
III) =

t+ 1

4t+ 2
.

For t > 1
ǫ it holds that

RI(M(SIII), SIII)

r∗
=

4t+ 2

2(t+ 1)
= 2−

1

t+ 1
> 2− ǫ .

As before, ifp− > p+, a symmetric argument shows that RI(M(SI), SI) > (2 −
ǫ)r∗. Therefore no SP mechanism can achieve a(2 − ǫ)-approximation, even through
randomization. �

Theorem 3.6. Mechanism 2 is a group strategyproof 2-approximation randomized
mechanism.
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Proof. Similarly to Mechanism 1, Mechanism 2 is clearly group SP, since declaring a
false label may only increase the probability of obtaining aclassifier that labels cor-
rectly less than half of the agent’s examples, thus increasing the subjective expected
risk.

Assume without loss of generality thatN ≥ P , i.e., that the negative classifierc−
is better. Denote byw = N ′

m the total weight of all agents that supportc−.

Lemma A.2. 1− r∗ ≤ 1+w
1−w r∗.

Proof. The largest possible number of negative examples is achieved when all the
negative agents control only negative examples, and all thepositive agents control only
a slight majority of positive labels. Formally,N ≤ N ′ + P ′

2 , and thus:

1− r∗ = RI(c+) =
N

m
≤

N ′

m
+

P ′

2m
= w +

1− w

2
=

1 + w

2
.

It must follow thatr∗ = 1 − (1 − r∗) ≥ 1−w
2 . By dividing the two inequalities,

1−r∗

r∗ ≤ 1+w
1−w ; thus the lemma is proved. �

RI(SRD(S), S) =
w2RI(c−, S) + (1− w)2RI(c+, S)

w2 + (1− w)2

=
w2r∗ + (1− w)2(1− r∗)

w2 + (1− w)2
≤

w2r∗ + (1− w)2 1+w
1−w r∗

w2 + (1− w)2
(from Lemma A.2)

=
w2r∗ + (1− w)(1 + w)r∗

w2 + (1− w)2
=

1

2w2 − 2w + 1
r∗

≤
1

1/2
r∗ = 2r∗,

where the last inequality holds since2w2 − 2w + 1 has a minimum inw = 1
2 . �

Theorem 3.7. Given sampled datasets, assume weak truthfulness. For anyǫ > 0,
there ism′ (polynomial in ln(n) and 1

ǫ ) such that by samplingm′ points for each
agent, it holds that

RI(S̃RD) ≤ 2rmin + ǫ.

Specifically, samplingm′ > 50 1
ǫ2 ln(

10n
ǫ ) will suffice.

Proof. In this proof we will differentiate the real risk, as defined for the learning-
theoretic setting, from theempirical risk on a given sample, as defined in the simple
setting. The empirical risk will be denoted by

R̂I(c, S) =
1

m

∑

〈x,y〉∈S

Jc(x) 6= yK.

Also, to simplify notation we replacẽSRDwith justM throughout the proof. Note that
M can equally stand for any other group strategyproof2-approximation mechanism
(includingCRD, and the mechanism presented in [28]).
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Without loss of generality we assume thatr∗ = RI(c−) < RI(c+). Notice that
if r∗ = RI(c

∗) = RI(c−) > 1
2 − 3ǫ then any concept our mechanism returns will

trivially attain a risk of at most12 + 3ǫ ≤ r∗ + 6ǫ. Therefore, we can assume for the
rest of this proof that

RI(c−) + 3ǫ ≤
1

2
≤ RI(c+)− 3ǫ. (15)

Let us introduce some new notations and definitions. Denote the data set with the
real labels bySi = {〈xi,j , Yi(xi,j)〉}j≤m′ ;S = {S1, . . . , Sn}. Note that the mecha-
nism has no direct access toS, but only to the reported labels as they appear inS.

DefineG as the event “the empirical and real risk differ by at mostǫ for all agents”;
formally:

∀c ∈ {c+, c−}, ∀i ∈ I, |R̂i(c, Si)− Ri(c)| < ǫ. (16)

Lemma A.3. Let δ > 0. If m′ > 1
2ǫ2 ln(

2n
δ ), then with probability of at least1− δ, G

occurs.

Proof. Fix i ∈ I. Consider the eventYi(x) = +, and its indicator random variable
JYi(x) = +K. We can rewrite the empirical and real risk as the sum and the expectation
of this variable:

Ri(c−) = Ex∼DX
[JYi(x) = +K] = E(x,y)∼Di

[Jy = +K]

R̂i(c−, Si) =
1

m′

∑

(x,y)∈Si

JYi(x) = +K =
1

m′

∑

(x,y)∈Si

Jy = +K

SinceSi is sampled i.i.d. fromDi, the empirical risk is the sum of independent Bernoulli
random variables with expectation Ri(c−). We derive from the Chernoff bound that for
any data set of size|Si| = m′:

Pr[|R̂i(c−, Si)− Ri(c−)| > ǫ] < 2e−2ǫ2m′

Takingm′ > 1
2ǫ2 ln(

2n
δ ), we get:

Pr[¬G] = Pr[∃i ∈ I, |R̂i(c−, Si)− Ri(c−)| > ǫ]

≤
∑

i∈I

Pr[|R̂i(c−, Si)− Ri(c−)| > ǫ]

≤ |I|2e−2ǫ2m′

< n
δ

n
= δ,

where the first inequality is due to the union bound. �

Note that since

|R̂i(c−, Si)− Ri(c−)| = |R̂i(c+, Si)− Ri(c+)|,

it is enough to show the above forc−.
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If G occurs, then from (16) and the triangle inequality it holds that for all c ∈
{c+, c−} andi ∈ I,

|RI(c)− R̂I(c, S)| ≤
∑

i∈I

1

n
|Ri(c)− R̂i(c, S)| ≤ ǫ. (17)

Using (17) we could have bounded the risk ofM(S), but unfortunately this would
not do as the mechanism may only accessS and notS. In order to bound RI(M(S)),
we need to know, or estimate, how the agents label their examples. To handle this
problem, we will first analyze which agents may gain by lying,and then define a new
data setS̃ with the following two properties: no agent has motivation to lie (thus we
can assess the result of runningM on S̃), andS̃, S are very similar.

We now divideI into two types of agents:I ′ = {i ∈ I : |Ri(c−) −
1
2 | < ǫ}, and

I ′′ = I \ I ′. For each agenti ∈ I, we denote byPi, Ni the number of positive/negative
examples the agent controls inSi. Note thatPi = m′R̂i(c−, Si). Since RI(c−) <
RI(c+) we may assume without loss of generality that all agentsi ∈ I ′ prefer c+
(otherwise lying only lowers the expected risk of our mechanism). Agents inI ′′, on
the other hand, cannot benefit by lying, sinceSi must reflecti’s truthful preferences,
and Mechanism 2 (which is used by Mechanism 3 in step 3) is SP.

For each agenti define a new set of examples̃Si as follows:

• If i ∈ I ′′, S̃i = Si.

• If i ∈ I ′, defineP̃i = Pi + ⌈ǫm
′⌉ and letS̃i containP̃i positive examples and

m′ − P̃i negative ones.

Lemma A.4. If G occurs, then for all agents inI

Ñi ≤ P̃i ⇐⇒ Ri(c−) ≥ Ri(c+)

Proof. If i ∈ I ′′ then w.l.o.g. Ri(c−) ≤ Ri(c+)− 2ǫ, thus from (16)

P̃i = Pi = m′R̂i(c−, Si) ≤ m′(Ri(c−) + ǫ)

≤ m′(Ri(c+)− ǫ) ≤ m′R̂i(c+, Si) = Ni = Ñi.

If i ∈ I ′ then according to our assumption

Ri(c+) ≤ Ri(c−) ≤ Ri(c+) + 2ǫ.

Moreover, by the definition of̃Pi,

P̃i ≥ Pi +m′ǫ ; Ñi ≤ Ni −m′ǫ.

Thus

P̃i ≥ Pi +m′ǫ = m′R̂i(c−, Si) +m′ǫ ≥ m′Ri(c−)

≥ m′Ri(c+) ≥ m′(R̂i(c+, Si)− ǫ) ≥ Ni −m′ǫ ≥ Ñi.
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Lemma A.4 implies that, ifG occurs, agents cannot do better than reportS̃ under
Mechanism 3, sincẽSi reflects the real preferences of agenti. Now, if agenti reports
truthfully, thenP i = Pi. If i decides to lie, it may report more positive labels, but
cannot gain from reporting more thañPi such labels, and, crucially, the mechanism’s
outcome will not change in this case. The immediate result isthat we can assume:

P ≤ P =
∑

i∈I

1

n
P i ≤

∑

i∈I

1

n
P̃i = P̃ ,

and, since the expected risk ofM only increases with the number of positive examples
(the probability of Mechanism 3 choosing the positive classifier increases),

RI(M(S)) ≤ RI(M(S)) ≤ RI(M(S̃)). (18)

We can now concentrate on bounding the empirical risk onS̃.

Lemma A.5. If G occurs,

∀c ∈ {c+, c−}, |RI(c)− R̂I(c, S̃)| ≤ 3ǫ. (19)

As in Lemma A.3, it will suffice to show this only forc−.
Proof. From (16), form′ > 1

ǫ ,

R̂I(c−, S̃) =
P̃i

m′
=

Pi + ⌈m
′ǫ⌉

m′
≤

Pi +m′ǫ+ 1

m′

≤
Pi

m

′

+ 2ǫ = R̂I(c−, S) + 2ǫ ≤ RI(c−) + ǫ+ 2ǫ = RI(c−) + 3ǫ.

From (15) and (19)

R̂I(c−, S̃) ≤ RI(c−) + 3ǫ ≤ RI(c+)− 3ǫ ≤ R̂I(c+, S̃) (20)

Soc− is also empirically the best concept forS̃; Mechanism 2 guarantees:

R̂I(M(S̃), S̃) ≤ 2R̂I(c−, S̃) (21)

Furthermore, since the risk of Mechanism 3 is a convex combination of the risk of
c+, c−, we get from (19),

RI(M(S̃)) ≤ R̂I(M(S̃), S̃) + 3ǫ (22)

Finally, by using (18), (22), (21) and (20) in this order, we get that ifG occurs:

RI(M(S)) ≤ RI(M(S̃)) ≤ R̂I(M(S̃), S̃) + 3ǫ ≤ 2R̂I(c−, S̃) + 3ǫ

≤ 2(RI(c−) + 3ǫ) + 3ǫ = 2r∗ + 9ǫ

If G does not occur, the risk cannot exceed 1. Thus by applying Lemma A.3 with
δ = ǫ = ǫ′

10 we find that form′ > 50 1
ǫ′2 ln(

10n
ǫ′ ):

RI(S̃RD) ≤ Pr[G](2r∗ + 9ǫ) + Pr[¬G)]1 ≤ 2r∗ + 9ǫ+ ǫ ≤ 2r∗ + ǫ′,

as required. �
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B Proofs of Section 4

B.1 Proofs of Upper Bounds under Shared Inputs
(Sections 4.1, 4.2)

We formulate and prove our results in a somewhat more generalmodel, in which the
preferences of each agent are encoded by a distribution, rather than a deterministic
function. The new model extends the one presented in Section4 with two components:
(a) some data points may receive more attention than others;(b) the preferences of each
agent can reflect uncertainty, or indeterminism, regardingthe label of a specific data
point. The theorems in Section 4 follow easily as a special case. In addition, the use
of distributions makes the proofs in the generalization section (Section 4.3) easier and
more natural.

For that purpose we replace the profile of finite datasetsS = 〈S1, . . . , Sn〉 with
a profile of distributionsF = 〈F1, . . . , Fn〉 overX × {−,+}. The marginal of all
distributions overX is the same. We denote this marginal byFX , and take it as a
measure of the interest that the agents have in different parts of the input space. LetH
be the set of all deterministic functionsh : X → {−,+}. In particular,C ⊆ H.

We adjust the definition of the private and global risk to handle distributions.
The private risk ofh ∈ H to agenti w.r.t. the profileF is thus defined as

Ri(h, F ) = E〈x,y〉∼Fi
[Jh(x) 6= yK] .

As usual, the global risk is defined as

RI(h, F ) =
∑

i∈I

wiRi(h, F ).

As with discrete datasets,Fi is said to be realizable w.r.t. a concept classC ⊆ H if
there is a conceptc ∈ C such that Ri(c, Fi) = 0.

Every distributionp onX × {−,+} induces a non-deterministic functionfp from
X to labels. Formally,Pr(fp(x) = +|x) = E〈x,y〉∼p [Jy = +K|x], and for convenience
we denote this probability byfp(x) ∈ [0, 1]. Similarly,

f
p
(x) = 1− fp(x) = Pr(fp(x) = −|x) = E〈x,y〉∼p [Jy = −K | x] .

We denote byF the set of all such non-deterministic functions. Note thatH ⊂ F ,
and thus every concept classC is also a subset ofF .

A special case is whenp = Fi, in which casefi ≡ fp conveys the preferences of
agenti. We assume that agents’ preferences are independent; thus for every two agents
i 6= j, for everyx ∈ X and everyy, y′ ∈ {−,+},

Pr(fi(x) = y, fj(x) = y′ | x) = Pr(fi(x) = y | x) Pr(fj(x) = y′ | x) . (23)

Definition B.1. We define thedistancebetween two classifiers (w.r.t. a fixed distribution
FX ∈ ∆(X )), as the part of space they label differently. Formally:

d(f, f ′) = dFX
(f, f ′) = Ex∼FX

[Pr(f(x) 6= f ′(x) | x)] . (24)

37



Let C ⊆ H any concept class, then the following holds.

∀c ∈ C, ∀j ∈ I, d(fj , c) = Rj(c, F ). (25)

The proof of Equation (25) is as follows.

Rj(c, F ) ≡E〈x,y〉∼Fj
[Jc(x) 6= yK] = Ex∼FX


 ∑

y∈{−,+}

Pr
y∼Fj

(y | x)Jc(x) 6= yK




=EFX

[
f
j
(x)Jc(x) 6= −K + f j(x)Jc(x) 6= +K

]

=EFX
[Pr(fj(x) = − | x)Jc(x) 6= −K + Pr(fj(x) = + | x)Jc(x) 6= +K]

=EFX
[Pr(fj(x) = −, c(x) = + | x) + Pr(fj(x) = +, c(x) = − | x)]

=EFX
[Pr(fj(x) 6= c(x) | x)] = d(c, fj) (from (24).)

Recall thatci = argminc∈C Ri(c, F ) andc∗ = argminc∈C RI(c, F ).
As a special case of Equation (25), we get that

∀i, j (d(ci, fj) = Rj(ci, F )) . (26)

∀i ∈ I
(
ci = argminc∈C d(c, fi)

)
. (27)

The following lemma can be seen as a formalization of the statement that our
decision-making setting is equivalent to facility location in some metric space (the
binary cube).

Lemma B.2. d is reflexive, non-negative, symmetric and satisfies the triangle inequal-
ity.

Proof. Non-negativity and symmetry are trivial.
d(f, f) = Ex∼FX

[Pr(f(x) 6= f(x) | x)] = Ex∼FX
[0] = 0, thus it is reflexive as well.

We prove the triangle inequality. Letf, f ′, f ′′ ∈ F . Note that disagreement off and
f ′′ requires that at least one of them disagrees withf ′; thus for allx ∈ X

Pr(f(x) 6= f ′′(x) | x) =Pr(f(x) 6= f ′(x), f ′(x) = f ′′(x) | x)

+ Pr(f(x) = f ′(x), f ′(x) 6= f ′′(x) | x)

≤Pr(f(x) 6= f ′(x) | x) + Pr(f ′(x) 6= f ′′(x) | x),

and therefore

d(f, f ′′) =Ex∼FX
[Pr(f(x) 6= f ′′(x) | x)]

≤Ex∼FX
[Pr(f(x) 6= f ′(x) | x) + Pr(f ′(x) 6= f ′′(x) | x)]

=Ex∼FX
[Pr(f(x) 6= f ′(x) | x)] + Ex∼FX

[Pr(f ′(x) 6= f ′′(x) | x)]

=d(f, f ′) + d(f ′, f ′′).

Thus the triangle inequality holds. �
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Lemma B.3. ∑

i∈I

wiRI(ci, F ) =
∑

i

∑

j

wiwjd(ci, fj)

Proof.

∑

i∈I

wiRI(ci, F ) =
∑

i

wiRI(ci, F )

=
∑

i

wi


∑

j

wjRj(ci, F )


 =

∑

i

∑

j

wiwjd(ci, fj). �

Lemma B.4. ∑

i

∑

j

wiwjd(fi, fj) ≤ (2− 2wmin) r
∗

Proof.

∑

i

∑

j

wiwjd(fi, fj) =
∑

i

∑

j 6=i

wiwjd(fi, fj) (sinced(fi, fi) = 0)

≤
∑

i

∑

j 6=i

wiwj(d(fi, c
∗) + d(c∗, fj))+ (Triangle Inequality)

=
∑

i

wid(fi, c
∗)
∑

j 6=i

wj +
∑

i

wi

∑

j 6=i

wjd(fj , c
∗)

=
∑

i

wid(fi, c
∗)(1− wi) +

∑

i

wi


∑

j

wjd(fj , c
∗)− wid(fi, c

∗)




=
∑

i

wi (d(fi, c
∗)(1− wi) + r∗ − wid(fi, c

∗))

≤
∑

i

wi (d(fi, c
∗)(1− wmin) + r∗ − wmind(fi, c

∗))

=(1− wmin)
∑

i

wi

(
d(fi, c

∗) + r∗
∑

i

wi − wmin

∑

i

wid(fi, c
∗)

)

=(1− wmin)r
∗ + r∗ − wminr

∗ = (2− 2wmin)r
∗. �

Note that Equation (14) is derived as a special case of the lemma when weights are
uniform.

We can now use these lemmas to bound the approximation ratio of our mechanism
in this extended setting. We begin with the simpler, deterministic mechanism.
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Theorem 4.1’. Let |I| = n. For every concept classC and anyprofileF , Mechanism 4
is an SP(2n− 1)-approximation mechanism.

Proof. We first find a lower bound onr∗:

r∗ =RI(c
∗, F ) =

∑

i∈I

wiRi(c
∗, F ) =

∑

i∈I

wid(c
∗, fi) (28)

≥wjd(c
∗, fj) ≥

1

n
d(c∗, fj) (sincej is heaviest)

Then we upper bound the risk ofcj :

RI(HD(F ), F ) =RI(cj , F ) =
∑

i∈I

wid(cj , fi) = wjd(cj , fj) +
∑

i6=j

wid(cj , fi)

≤wjd(c
∗, fj) +

∑

i6=j

wi(d(cj , c
∗) + d(c∗, fi))

(from the triangle inequality)

=d(cj , c
∗)
∑

i6=j

wi +
∑

i∈I

wid(c
∗, fi) = d(cj , c

∗)
∑

i6=j

wi + r∗

≤d(cj , c
∗)
n− 1

n
+ r∗ (wj ≥

1
n )

≤r∗ +
n− 1

n
(d(cj , fj) + d(fj , c

∗)) (triangle inequality)

≤r∗ +
n− 1

n
2d(c∗, fj) (from (27))

≤r∗ +
n− 1

n
2n · r∗ (from (28))

=r∗ + (n− 1)2r∗ = (2n− 1)r∗ �

Theorem 4.4’. For every concept classC and for any datasetS, Mechanism 5 is an
SP(3− 2wmin)-approximation mechanism, wherewmin = mini∈I wi. Moreover, ifS
is individually realizable, then(2− 2wmin)-approximation is guaranteed.
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Proof. Using the lemmas above,

RI(WRD(F ), F ) =
∑

i∈I

wiRI(ci, F ) =
∑

i

∑

j

wiwjd(fi, cj)

≤
∑

i

∑

j

wiwj(d(fi, fj) + d(fj , cj)) (Triangle Inequality)

≤
∑

i

∑

j

wiwj(d(fi, fj) + d(fj , c
∗)) (from (27))

=
∑

i

∑

j

wiwjd(fi, fj) +
∑

j

wjd(fj , c
∗)
∑

i

wi

≤(2− 2wmin)r
∗ +

∑

j

wjd(fj , c
∗) (from Lemma B.4)

=(2− 2wmin)r
∗ +

∑

j

wjRj(c
∗, F ) (from (25))

=(2− 2wmin)r
∗ + RI(c

∗, F ) = (3− 2wmin)r
∗

Further, if we have an individually realizable profileF ′, then for any agentj,
d(fj , cj) = Rj(cj , F

′) = 0 (from (25)), in which case

RI(WRD(F ′), F ′) =
∑

i∈I

wiRI(ci, F
′) ≤

∑

i

∑

j

wiwjd(fi, fj) ≤ (2− 2wmin)r
∗ .

Thus the proof of Theorem 4.4’ (and Theorem 4.4 as a special case) is complete.�

Proposition 4.7. There is a datasetS with three agents, such that

RI(SRD(S), S) > 2.4 · r∗ >

(
3−

2

n

)
r∗.

Example B.5. We set our concept class toC = {c−, c+}. Assume w.l.o.g. that an
agent that is indifferent between the concepts dictates thec− concept. LetS1, S2 be all
positive.S3 contains exactly half negative samples. We set agents’ weights as follows:
w1 = w2 = 0.29, andw3 = 0.42.

Observe first that RI(c−, S) = 0.79, whereasr∗ = RI(c+, S) = 0.21. How-
ever, theSRD mechanism selects agent 3 (and thus the conceptc−) with probability of

0.422

0.292+0.292+0.422
∼= 0.511. Therefore,

RI(SRD(S), S) > 0.51 · 0.79 + 0.49 · 0.21 = 0.5058 > 2.4 · 0.21 = 2.4 · r∗,

which proves the lower bound. ♦

Proposition B.6. There is an individually realizable datasetS with three agents, such
that

RI(SRD(S), S) > 1.39 · r∗ >

(
2−

2

n

)
r∗.

41



Example B.7. We keepC = {c−, c+}. LetS1, S2 be all positive, andS3 be all nega-
tive. We set agents’ weights as follows:w1 = w2 = 0.363, andw3 = 0.274.

We have that RI(c−, S) = 0.763, andr∗ = RI(c+, S) = 0.274. TheSRD mecha-
nism selects agent 3 with probability of 0.2742

0.3632+0.3632+0.2742
∼= 0.222. Therefore,

RI(SRD(S), S) > 0.222 · 0.763 + 0.778 · 0.274 > 0.382 > 1.39 · 0.274 = 1.39 · r∗,

which proves the lower bound for the realizable case. ♦

Theorem 4.8’. The following hold for Mechanism 6, w.r.t. anyprofileF :

◦ αw ≤ 2− 2
n .

◦ CRD has an approximation ratio ofαw + 1, i.e., at most3− 2

n
.

◦ if S is individually realizable, then the approximation ratio is αw

2 + 1, i.e., at
most2− 1

n .

Proof. We first prove thatαw ≤ 2− 2
n .

Let g(x) = 1
2−2x . Note thatg is convex. Also, since

∑
i∈I wi = 1, we have that

1

n
≤
∑

i∈I

w2
i ≤ 1. (29)

(αw)−1 =
∑

i∈I

p′i =
∑

i∈I

wi
1

2− 2wi
=
∑

i∈I

wig(wi)

≥ g

(
∑

i∈I

wi · wi

)
=

1

2− 2
∑

i∈I w
2
i

(from Jensen’s inequality)

≥
1

2− 2(1/n)
, (from (29))

thusαw ≤ 2− 2
n .

We denote byd(f, f ′) the number of disagreements betweenf andf ′. fi, ci denote
the labels of agenti, and the classifier inC that is the closest to them (i.e.,c ∈ C that
minimizesd(c, fi)). For anyc, it holds that

RI(c, F ) =
∑

i∈I

wiRi(c, F ) =
∑

i∈I

wid(c, fi).
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Note that for alli, d(ci, c∗) ≤ 2d(fi, c
∗), since otherwisec∗ is closer tofi thanci.

RI(CRD(F ), F ) =
∑

i∈I

piRI(ci, F ) =
∑

i∈I

pi
∑

j∈I

wjd(ci, fj)

=
∑

i∈I


∑

j 6=i

piwjd(ci, fj) + piwid(ci, fi)




≤
∑

i∈I


∑

j 6=i

piwj(d(ci, c
∗) + d(c∗, fj)) + piwid(c

∗, fi)




=
∑

i∈I

pid(ci, c
∗)
∑

j 6=i

wj +
∑

i∈I

∑

j∈I

piwjd(c
∗, fj)

= αw

∑

i∈I

wi

2(1− wi)
d(ci, c

∗)(1− wi) +
∑

j∈I

wjd(c
∗, fj)

∑

i∈I

pi

≤ αw

∑

i∈I

wi

2
2d(fi, c

∗) +
∑

j∈I

wjd(c
∗, fj)

= (αw + 1)
∑

j∈I

wjd(c
∗, fj) = (αw + 1)RI(c

∗, F )

≤

(
3−

2

n

)
r∗

Now, in the realizable case,fi = ci for all i.

RI(CRD(F ), F ) =
∑

i∈I

piRI(ci, F ) =
∑

i∈I

pi
∑

j∈I

wjd(fi, fj) =
∑

i∈I

pi
∑

j 6=i

wjd(fi, fj)

≤
∑

i∈I

∑

j 6=i

piwj(d(fi, c
∗) + d(fj , c

∗)) (T.I.)

=
∑

i∈I

pid(fi, c
∗)
∑

j 6=i

wj +
∑

i∈I

pi
∑

j 6=i

wjd(fj , c
∗)

=
∑

i∈I

pid(fi, c
∗)(1− wi) +

∑

i∈I

pi(r
∗(F )− wid(fi, c

∗))

= αw

∑

i∈I

wi

2(1− wi)
d(fi, c

∗)(1− wi) + r∗(F )−
∑

i∈I

piwid(fi, c
∗)

=
αw

2

∑

i∈I

wid(fi, c
∗) + r∗(F )−

∑

i∈I

piwid(fi, c
∗)

=
αw

2
r∗(F ) + r∗(F )−

∑

i∈I

piwid(fi, c
∗)

≤
(αw

2
+ 1
)
r∗(F ) ≤

(
2−

1

n

)
r∗(F ),

which completes the proof. �

Theorem 4.9. The following hold for Mechanism 7:
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◦ βw ≤ 1− 2
n .

◦ RRD has an approximation ratio of at most4, and at least3 (in the worst case).

◦ if S is individually realizable, then the approximation ratio is 1 + βw, i.e., at
most2− 2

n
.

Proof. Let q(x) = 1
1−2x . Note thatq is convex.

(βw)−1 =
∑

i∈I

p′i =
∑

i∈I

wi
1

1− 2wi
=
∑

i∈I

wiq(wi)

≥ q

(
∑

i∈I

wi · wi

)
=

1

1− 2
∑

i∈I w
2
i

(from Jensen’s inequality)

≥
1

1− 2(1/n)
, (from (29))

thusβw ≤ 1− 2
n .

For the upper bound, we will need the following.

Lemma B.8. For all i ∈ I, pi ≤ 2wi.

Proof. Let h(x) = x
1−2x . Note thath is convex. Thus by Jensen’s inequality

1

n− 1

∑

j 6=i

h(wj) ≥ h(
1

n− 1

∑

j 6=i

wj) = h(
1− wi

n− 1
). (30)

Next,
∑

j∈I

wj

1− 2wj
=

wi

1− 2wi
+
∑

j 6=i

wj

1− 2wj
=

wi

1− 2wi
+
∑

j 6=i

h(wj)

≥
wi

1− 2wi
+ (n− 1)h

(
1− wi

n− 1

)
(by Eq. (30))

=
wi

1− 2wi
+ (n− 1)

1−wi

n−1

1− 2 1−wi

n−1

=
wi

1− 2wi
+

1− wi

1− 2 1−wi

n−1

≥
wi

1− 2wi
+

1/2

1− 2 1/2
n−1

=
wi

1− 2wi
+

1

2n−2
n−1

>
wi

1− 2wi
+

1

2
.

Therefore,

pi = βwp′i =


∑

j∈I

wj

1− 2wj




−1

wi

1− 2wi
<

1
wi

1−2wi
+ 1

2

·
wi

1− 2wi

=
wi

wi +
1−2wi

2

=
wi

wi − wi +
1
2

= 2wi. �
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We now bound the risk ofRRD. We skip some steps that are detailed in the upper
bound proof of theCRD mechanism.

RI(RRD(S), S) =
∑

i∈I

piRI(ci, S) =
∑

i∈I

pid(ci, c
∗)
∑

j 6=i

wj +
∑

i∈I

∑

j∈I

piwjd(c
∗, fj)

= βw

∑

i∈I

wi

1− 2wi
d(ci, c

∗)(1− wi) +
∑

j∈I

wjd(c
∗, fj)

∑

i∈I

pi

≤ βw

∑

i∈I

2wi(1− wi)

1− 2wi
d(fi, c

∗) + r∗(S)

= βw

∑

i∈I

(
wi(1− 2wi)

1− 2wi
d(fi, c

∗) +
wi

1− 2wi
d(fi, c

∗)

)
+ r∗(S)

= βw

∑

i∈I

wid(fi, c
∗) + βw

∑

i∈I

wi

1− 2wi
d(fi, c

∗) + r∗(S)

= βwr∗(S) + βw

∑

i∈I

wi

1− 2wi
d(fi, c

∗) + r∗(S) ≤
∑

i∈I

pid(fi, c
∗) + 2r∗(S)

≤ 2
∑

i∈I

wid(fi, c
∗) + 2r∗(S) = 2r∗(S) + 2r∗(S) = 4r∗(S).

In the realizable case, recall thatfi = ci for all i.

RI(RRD(S), S) =
∑

i∈I

piRI(ci, S) =
∑

i∈I

pi
∑

j∈I

wjd(fi, fj) =
∑

i∈I

pi
∑

j 6=i

wjd(fi, fj)

≤
∑

i∈I

∑

j 6=i

piwj(d(fi, c
∗) + d(fj , c

∗)) (T.I.)

=
∑

i∈I

pid(fi, c
∗)
∑

j 6=i

wj +
∑

i∈I

pi
∑

j 6=i

wjd(fj , c
∗)

=
∑

i∈I

pid(fi, c
∗)(1− wi) +

∑

i∈I

pi(r
∗(S)− wid(fi, c

∗))

= βw

∑

i∈I

wi

1− 2wi
d(fi, c

∗)(1− wi)− βw

∑

i∈I

wi

1− 2wi
wid(fi, c

∗) + r∗(S)

= βw

∑

i∈I

wi(1− 2wi)

1− 2wi
d(fi, c

∗) + r∗(S)

= βw

∑

i∈I

wid(fi, c
∗) + r∗(S) = βwr∗(S) + r∗(S)

= (1 + βw) r∗(S) ≤

(
2−

2

n

)
r∗(S),

which proves the upper bound. �
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B.2 Proofs of Generalization Results (Section 4.3)

As in Section 3.3, we distinguish the notation R(c) (the risk w.r.t. the fixed input distri-
bution) fromR̂(c, S) (the empirical risk, w.r.t. the sampled datasetS). For the proofs in
this section, we will also need the following fundamental result from machine learning
theory.

Theorem B.9(Vapnik and Chervonenkis [41]). Letm be s.t.

m >
VC

ǫ2
log

(
VC

ǫ2δ

)
.

LetS be a dataset that containsm data points sampled i.i.d. from a distributionD ∈
∆(X × Y). Then with probability of at least1− δ,

∀c ∈ C
(
|R(c)− R̂(c, S)| < ǫ

)
(31)

whereVC is a constant which dependsonly on the concept classC, and not on the
distributionD or on any other property of the problem.

VC is known as theVC-dimensionof C, introduced in [41]. We do not give a formal
definition ofVC here. However, detailed and accessible overviews of both VCtheory
and PAC learning are abundant (for example, [12]). WhileVC may be very large, or
even infinite in some cases, it is known to be finite for many commonly used concept
classes (e.g., linear classifiers).

Theorem 4.10. Assume all agents areǫ-truthful, and letC be any concept class with
a bounded dimension. For anyǫ > 0, there isk (polynomial in 1

ǫ and ln (n)) s.t. if
at leastk datapoints are sampled, then the expected risk of Mechanism8 is at most(
3− 2

n

)
· rmin + ǫ.

Proof. LetSi = 〈X,Yi(X)〉 be the partial dataset of agenti, with its true private labels.
Denote byQi = Qi(ǫ) the event that

∀c ∈ C
(
|Ri(c)− R̂i(c, S)| < ǫ

)
. (32)

We emphasize thatQi is a property ofS, i.e., for some random samplesS the
eventQi holds, whereas for others it does not hold. Our proof sketch can now be
reformulated as follows:

(a) Qi happens for alli simultaneously with high probability.

(b) WheneverQi occurs, agenti will report truthfully (under theǫ-truthfulness as-
sumption).

(c) When allQi occur, the risk of Mechanism 8 is bounded by
(
3− 2

n

)
· rmin + ǫ.

(d) Otherwise the risk can be high, but this has a small effecton the total expected risk.

46



Let δ > 0. AsSi is an i.i.d. random sample fromDi, then from Theorem B.9 every
Qi occurs with probability of at least1 − δ (provided that there are enough samples).
Also, from the union bound the probability of the event∀jQj is at least1− δ′, where
δ = δ′

n .

Lemma B.10. If Qi occurs, then agenti can gain at most2ǫ by lying.

Proof. Assume agenti is selected by the mechanism, otherwise it is trivially true.
We denote bŷci ∈ C the concept returned by the mechanism wheni reports truth-

fully, i.e., ĉi = argminc∈C R̂i(c, Si).
Let anyc′ ∈ C,

Ri(ĉi)− Ri(c
′) =Ri(ĉi)− R̂i(ĉi, Si) + R̂i(ĉi, Si)− Ri(c

′)

≤|Ri(ĉi)− R̂i(ĉi, Si)|

+ |R̂i(c
′, Si)− Ri(c

′)| (sinceĉi is empirically optimal)

<ǫ+ ǫ = 2ǫ, (from (32))

�

By Lemma B.10,i cannot gain more than2ǫ by reportingc′. By takingǫ < ǫ′

2 , we
complete the proof of parts (a) and (b) from the proof sketch.

Now, for part (c), we assume∀iQi. Thus, from Lemma B.10 and theǫ-truthfulness
assumption, all agents are truthful (i.e.,S = S).

Lemma B.11. If S holds thatQi occurs forall i ∈ I, then

R̂I(c
∗(S), S) ≤ rmin + ǫ,

wherec∗(S) = argminc∈C R̂I(c, S).

Proof. For anyc ∈ C, |Ri(c)− R̂i(c, Si)| < ǫ, from Equation (32). Therefore

R̂I(c
∗(S), S) ≤R̂I(c, S) =

∑

i∈I

piR̂i(c, S) =
∑

i∈I

piR̂i(c, Si)

<
∑

i∈I

pi(Ri(c) + ǫ) = RI(c) + ǫ,

and in particular̂RI(c
∗(S), S) < rmin + ǫ. �

We now bound the expected risk of the mechanism. We denote bycM (S) the (ran-
dom) classifier that is returned by Mechanism 6 on the inputS. For any random vari-
ableA,EM [A | S] is the expectation ofA over the random dictator selection for a fixed
datasetS. Similarly,ES [A | i] is the expectation ofA over the random sampling, given
thati is the selected dictator.
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E [RI(cM (S)) | ∀jQj ] = ES [EM [RI(cM (S)) | S] | ∀jQj ] = EM [ES [RI(cM (S)) | i, ∀jQj ]]

(changing the order of randomizations)

=
∑

i∈I

piES [RI(ĉi(S)) | i, ∀jQj ]

≤
∑

i∈I

piES

[
R̂I(ĉi(S), Si) + ǫ | i, ∀jQj

]
(from (32))

=
∑

i∈I

piES

[
R̂I(ĉi(S), Si) | i, ∀jQj

]
+ ǫ

=EM

[
ES

[
R̂I(cM (S), S) | i, ∀jQj

]]
+ ǫ

≤EM

[
ES

[(
3−

2

n

)
R̂I(c

∗(S), S) | i, ∀jQj

]]
+ ǫ (from Theorem 4.8)

≤EM

[
ES

[(
3−

2

n

)
(rmin + ǫ) | i, ∀jQj

]]
+ ǫ (from Lemma B.11)

=

(
3−

2

n

)
(rmin + ǫ) + ǫ ≤

(
3−

2

n

)
· rmin + 4ǫ =

(
3−

2

n

)
rmin + ǫ′,

which proves part (c) of the proof sketch.
Finally, we bound the total risk of the mechanism, taking part (d) into account.

RI(C̃RD) =E
[
RI(cM (S))

]
= ES

[
EM
[
RI(cM (S)) | S

]]

=Pr(∀jQj)ES

[
EM
[
RI(cM (S)) | S

]
| ∀jQj

]

+ Pr(¬∀jQj)ES

[
EM
[
RI(cM (S)) | S

]
| ¬∀jQj

]

≤ES

[
EM
[
RI(cM (S)) | S

]
| ∀jQj

]
+ δ′ · 1

=ES [EM [RI(cM (S)) | S] | ∀jQj ] + δ′

(since all agents are truthful in this case)

≤

(
3−

2

n

)
rmin + δ′ + ǫ′ =

(
3−

2

n

)
rmin + ǫ′′,

as required. �

We conclude by computing the exact number of samples needed by Mechanism 8
under theǫ-truthfulness assumption.

Lemma B.12. If k > 64VC

ǫ2 log
(
256VC ·n

ǫ3

)
, then

RI(C̃RD) ≤

(
3−

2

n

)
rmin + ǫ.

Proof. From Theorem B.9, if|Sj | >
VC

(ǫ∗)2 log
(

VC

(ǫ∗)2δ∗

)
, thenPr(¬Qj(ǫ

∗)) < δ∗ and

from the union bound it holds that

Pr(∃j ∈ I,¬Qj(ǫ
∗)) ≤

∑

j∈I

¬Qj(ǫ
∗) < nδ∗.
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Taking ǫ∗ < ǫ
8 andδ∗ < ǫ

4n , and unfolding all the residues we used in the proof,
we get that

RI(C̃RD) ≤

(
3−

2

n

)
rmin ≤

(
3−

2

n

)
rmin + 4ǫ∗ + 2nδ∗

<

(
3−

2

n

)
rmin + 4

ǫ

8
+ 2n

ǫ

4n
=

(
3−

2

n

)
rmin + ǫ,

while

VC

(ǫ∗)2
log

(
VC

(ǫ∗)2δ∗

)
=

VC

(ǫ/8)2
log

(
VC

(ǫ/8)2(ǫ/4n)

)
= 64

VC

ǫ2
log

(
256

VC · n

ǫ3

)
.

�

Theorem 4.11. Assume all agents are purely rational, and letC be any concept class
with a bounded dimension. For anyǫ > 0, there is ak (polynomialonly in 1

ǫ ) s.t. if
at leastk datapoints are sampled, then the expected risk of Mechanism8 is at most(
3− 2

n

)
rmin + ǫ.

Proof. Note that the private distributionsD1,D2, . . . ,Dn induce a global joint dis-
tribution on the input space, defined asD =

∑n
i=1 wiDi. We can alternatively de-

fine rmin as the minimal risk of any concept w.r.t. the distributionD, i.e., rmin =
infc∈C E(x,y)∼D [Jc(x) 6= yK]. We would like to analyze the outcome of Mechanism 8
and compare the empirical risk to the actual risk. However, we have a technical prob-
lem with doing so directly, sinceSi (as defined in the proof of Theorem 4.10) is sam-
pled i.i.d. fromDi, but not fromD.

In order to prove the theorem, we introduce avirtual mechanism(see Mecha-
nism 9). This mechanism generates atruthful datasetS, which can be used as an
i.i.d. sample from the joint distributionD.

Mechanism 9The Virtual Learning Mechanism
Samplek data points i.i.d. fromDX (assume we get the same datasetX as in Mech-
anism 8).
for each pointx ∈ X do

Select agenti with probabilitywi.
Add 〈xj , Yi(x)〉 to S.

end for
return c∗(S) = erm(S).

The output of Mechanism 9,c∗(S), is the best concept (inC) for the real datasetS.
Note thatS is an i.i.d. sample fromD, but an actual mechanism such as Mechanism 8
cannot have access to the real labelsYi—hence the termvirtual mechanism.

We denote byT = T (ǫ) the event

RI(c
∗(S)) < rmin + 2ǫ. (33)

Similarly to Qj in the previous proof,T is a property ofS, i.e., its occurrence
depends only on the sampling.
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Lemma B.13. If k = k(δ, ǫ) is large enough then

Pr(¬T ) < δ.

Proof. This is an immediate corollary of Theorem B.9. Asc∗ = argminc∈C R̂I(c, S),
C is of a bounded dimension andS is sampled i.i.d. fromD, then for anyc ∈ C

RI(c
∗(S)) < R̂I(c

∗(S), S) + ǫ ≤ R̂I(c, S) + ǫ < RI(c) + ǫ+ ǫ

holds with probability of at least1− δ, for a large enoughk. In particular,

Pr(T ) = Pr(RI(c
∗(S)) < rmin + 2ǫ) > 1− δ.

�

It is still not clear how to approximatec∗(S), as our mechanism only has access
to S. For that purpose, we define a new concept classCX ⊆ C as theprojection
of C on X. Formally, letHX ⊆ H be the class of all dichotomies ofX, i.e., all
h s.t. h : X → {−,+},18 thenCX = C ∩ HX . In other words,CX contains all
dichotomies ofX that are also allowed byC.

Denote bySi the dataset with thereported labelsof agenti, and byĉi the best con-
cept w.r.t. to this dataset. That is,Si = {〈x, Y i(x)〉}x∈X andĉi = argminc∈C R̂i(c, Si).
Observe thatc∗(S) ∈ CX andĉj ∈ CX for all agents. This is the case since bothS, Sj

are labeled versions of the setX. Thus any classifier that is computed w.r.t.S or Sj is
a dichotomy ofX (which minimizes some function that depends on the labels).We de-
fine c̃ = argminc∈CX

RI(c). Clearly RI(c̃) ≤ RI(c
∗(S)), sincec∗(S) is also a member

of CX . Thus whenT occurs, the inequality

RI(c̃) < rmin + 2ǫ (34)

also holds, directly as a special case of (33).
We next show how to approximatẽc using the generalized variant of Theorem 4.8,

as it appears in the appendix. Consider a profileF = 〈D1, . . . ,Dn〉. This is a valid
profile with shared inputs; thus for any conceptc ∈ C, R(c) = R(c, F ) for private and
global risk alike.

Lemma B.14. Let j be the selected dictator, then

ĉj = argminc∈CX
Rj(c) = argminc∈CX

Rj(c, F ).

Proof. Recall that̂cj ≡ argminc∈C R̂j(c, Sj). Since we assumedj is purely rational,
he will always label all examples inX in a way that will minimize his private risk.
From the way Mechanism 8 works, only concepts inCX may be returned, and for
any c ∈ CX , there is a labeling ofX s.t. c is returned. This labelingY (c) is simply
∀x ∈ X (y(x) = c(x)). Thus argminc∈CX

Rj(c) is the best that agentj can hope for,
and he can also achieve it by reporting the appropriate labelsY j . �

18Put differently,HX is a partition ofH to equilivalence classes, according to their outcome onX ⊆ X .
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We now apply Theorem 4.8’ onF , using the classCX , getting

∑

j∈I

pjRI(ĉj , F ) ≤

(
3−

2

n

)
r∗(F ) =

(
3−

2

n

)
RI(c̃). (35)

To see why this holds, observe that the left term is the expected risk of Mechanism 6
when the input is the profileF and the concept classCX ; andc̃ is the globally optimal
classifier for this input. We emphasize that Equation (35)alwaysholds, independently
of the sampling or selection.

Finally, we bound the risk of the result concept:

RI(C̃RD) =ES [EM [RI(cM ) | S]]

=Pr(T )ES [EM [RI(cM ) | S] | T ] + Pr(¬T )ES [EM [RI(cM ) | S] | ¬T ]

≤ES [EM [RI(cM ) | S] | T ] + δ · 1 (from Lemma B.13)

=ES


∑

j∈I

wjRI(ĉj(S)) | T


+ δ

≤ES

[(
3−

2

n

)
RI(c̃(S)) | T

]
+ δ (from (35))

<

(
3−

2

n

)
ES [(rmin + 2ǫ) | T ] + δ (from (34))

=

(
3−

2

n

)
(rmin + 2ǫ) + δ =

(
3−

2

n

)
rmin + 6ǫ+ δ.

By takingδ = ǫ = ǫ′

7 , the proof is complete.
Similarly to Lemma B.12, it follows from Theorem B.9 that taking

k > 49
VC

ǫ2
log

(
343

VC

ǫ3

)

is sufficient for Mechanism 8 to work well under the pure rationality assumption. �
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