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Abstract

The strategyproof classification problem deals with a setting where a decisio
maker must classify a set of input points with binary labels, while minimizieg th
expected error. The labels of the input points are reported by selegtézt agents,
who might lie in order to obtain a classifier that more closely matches their own
labels, thereby creating a bias in the data; this motivates the desigatloful
mechanisms that discourage false reports.

In this paper we give strategyproof mechanisms for the classificatiigm
in two restricted settings: (i) there are only two classifiers, and (ii) all aga®sts
interested in @haredset of input points. We show that these plausible assumptions
lead to strong positive results. In particular, we demonstrate that vasatioa
random dictator mechanism, that are truthful, can guarantee appitekroptimal
outcomes with respect tany family of classifiers. Moreover, these results are
tight in the sense that they match the best possible approximation ratio thiag ca
guaranteed by any truthful mechanism.

We further show how our mechanisms can be used for learning clas§ifien
sampled data, and provide PAC-style generalization bounds on theategparor.
Interestingly, our results can be applied to problems in the context ofusafields
beyond classification, including facility location and judgment aggregation.

Keywords: Mechanism design, Classification, Game theory, Approxomnat

1 Introduction

Consider a learning algorithm, which takes a labeled seaofges (“training data”)
as input, and outputs a binary classifier. The training dgfacally hand-constructed
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by human experts, is supposed to reflect the knowledge ofdberts on the current
domain. The basic requirement from such an algorithm is erajutee that the out-
put classifier minimizes the number of classification ermith respect to the ‘truth’
(according to the domain experts). Standard machineileaiiterature studies the
performance of such algorithms given various distribudiand concept classes (e.g.,
linear classifiers), sparse or noisy data, etc.

However in many real-life situations, the experts have aq®al interest in the
outcome of the algorithm, and therefore they cannot be asdumbe truthful. If an
expert can bias the learned classifier in her favor by lyihgntthe reported training
data will no longer reflect the properties of the domain (arethe properties of the
real training data). Optimizing a classifier based on suchupted data may result in
a very poor classifier, regardless of the guarantees sdgpjiéearning theory (which
assumes truthfulness).

We consider two interrelated settings. The first settingegisision-theoretica de-
cision must be made based on data reported by multiple reelfeisted agents. The
agents are concerned with the binary labels of a set of inputg Put another way,
the agents may disagree on the labels of the points of the ggace, and we do not
assume any underlying distribution. The utility of an agesith respect to a given
decision (i.e., a given classifier) is the number of pointsarich the label provided
by the classifier agrees with the agent’s own label. The gb#leodecision maker is
to choose a classifier that maximizes the social welfare—ine af utilities. As we
will see, results in this setting can also be applied to poid in the context of various
other fields, including facility location and judgment aggation.

The second setting ikarning-theoretic a variation of the standard Supervised
Classification problem. Samples are drawn from some digtab over the input space,
and are then labeled by experts. A classification mechargsgives the sampled data
as input, and outputs a classifier. Unlike the standardhggeiti machine learning (but
similarly to our first setting), the experts are assumed tedikinterested agents, and
may lie in order to increase their utility. This setting ma&gem far more involved than
the first, as it deals with generalization from partial daite dataset) to the underlying
distribution. However, we show that under the standardrapsions of learning theory,
the learning problem effectively reduces to finding a cleessthat best fits the available
data (i.e., to the first setting, above).

In both settings the decision maker (or mechanism, or lagraigorithm) aims to
find a classifier that classifies the available data as welbssiple. However, the agents
may misreport their labels in an attempt to influence the fileaision in their favor.
The result of a decision making process based on such biasedndy be completely
unexpected and difficult to analyze. ttuthful learning mechanism eliminates any
such bias and allows the decision maker to select a clasifiebest fits the reported
data, without having to take into account the hidden intere§the agents. In other
words, once we guarantee that agents are telling the tri@hmay concentrate on the
more standard goal of minimizing the error. In order to abtaithfulness, however,
we may need to trade off optimality. Our goal is to provide haidsms that are both
truthful and approximately optimal in terms of social we#fa



1.1 Restrictions on the domain

In recent work [29] we showed that in an unrestricted domiig effectively im-
possible to design truthful mechanisms that are close timapt This motivates the
investigation of restricted domains. In this paper we adgisseveral such restrictions,
described below.

1.1.1 Restricting the concept class: two functions

A seemingly simple case is when the concept class contalpsvem functions. This is
equivalent to a (binary) decision that has to be made baseatarpoints that are con-
trolled by multiple (possibly) selfish agents, where theislea affects all the agents.
The decision maker would like to make a decision which is stest, as much as
possible, with all the available data. However, in our styat setting the agents might
misreport their data in an attempt to influence the final dewcis their favor.

As a motivating example, consider a decision that has to bderbg the Work-
ers’ committee of the TAs in the Hebrew university, regagdam ongoing strike. Each
member of the committee (who represents one departmentuanas how many TAs
in his/her department are supporting the strike, and howyroapose it. A final de-
cision is being made based on the total support of the striappose tha60% of
the economics department is opposing the strike. Howelerrapresentative of the
economics department is majoring in game theory. Therefbecknows that for the
benefit of the majority of TAsn her departmentit would be better to state that every-
body objects to the strikk.

1.1.2 Restricting the dataset: shared inputs

Our main conceptual contribution in this paper, which leadstrong positive results,
is the assumption aghared inputs In the decision-theoretic setting, this means that
the agents share the same set of input points, and only disagrthe labels of these
points. In the learning-theoretic setting, the sharedtspssumption implies that the
agents are interested in a common distribution over thetigpace, but, once again,
differ with respect to the labels.

The first restriction we described did not address the is§sbared inputs. How-
ever, as the two possible classifiers are constant, theitigefithe input points (i.e.,
their location) is irrelevant—only their labels matter. ldenthe first restriction is in
fact a very special case of the latter (see also footnote 16).

As the shared inputs assumption is a weaker restriction disanming two func-
tions, the guarantees are also somewhat weaker. Nevesshéhey hold with respect
to any concept clasdVe believe that in many environments the requirement afesha
inputs is satisfied. As an example, consider a large orgtmivthat is trying to fight
congestion in an internal email system by designing a snpannsfilter. In order to
train the system, managers are asked to review the last 108ilsesent to the “all em-
ployees” mailing list (hence, shared inputs) and clas$iént as either “work-related”

1In an attempt to avoid such misrepresentation, major decisigually require to gather all TAs and hold
a standard voting procedure. However most decisions ara takemuch narrower quorum.



(positive label) or “spam” (negative label). Whereas the agamns will likely agree on
the classification of some of the messages (e.g., “Buy Viagr!!!” or “Christmas
Bonus for all employees”), it is likely that others (e.g.0&J)from the Sales department
goes on a lunch break”) would not be unanimously classifiedreldver, as each man-
ager is interested in filtering most of what he sees as spangrager might try to
compensate for the “mistakes” of his colleagues by mistépphis real opinion with
respect to some cases. For example, the manager of the R&Dtoemt, believing
that about 90% of the Sales messages are utterly unimportégint classifyall of
them as spam in order to reduce the congestion. The mana§etes, suspecting the
general opinion on her department, might do the exact ofptsprevent her e-mails
from being filtered. The fact that some users may not havel affiderstanding of the
learning algorithm, does not necessarily prevent them firging to bias it anyway.
Even if their strategy is not optimal for them, it still contmates the data.

Interestingly, our model for binary classification with sb@inputs is equivalent to
models that have been suggested in the literature for prabie seemingly unrelated
domains, including judgment aggregation, partition aggtien, facility location, and
voting (for a more detailed comparison, see Section 1.3 &gudisision).

Such a common classification/partition problem is decidinghe operation hours
of a shared resource. As a concrete example, consider arigndth a central heating
system (such buildings are common in Jerusalem and mamg @itiEurope). Every
tenant has certain hours in which he wants the heat to be gndbvayson when he
is home andff otherwise, since the cost is shared by all tenants). Theethold fee
is the same for all tenants, and thus there is no transferyafffsa A “classifier” is a
partition of the day (or week) ton andoff intervals. Further, there are constraints on
the final partition. For exampl@n intervals must be at least 3 hours long to achieve
better efficiency.

1.1.3 Realizable datasets

In some cases, learning is facilitated if we know that theratileast one “perfect”
classifier in our concept class (that is, a classifier thaaisgps all positive data points
in the dataset from the negative ones). Such datasets &d edllizable It is there-
fore possible that the labels of each agent will be realezadlen if there is no single
classifier that is perfect for all agents. We study how redilility, which can be seen as
another restriction on the dataset, affects the optimafithe proposed mechanisms in
the context of shared input.

1.2 Overview of our results

We wish to design classification mechanisms that achieveod gatcome in the face
of strategic behavior. By “good outcome” we mean that the@ouof the mechanism
provides an approximation of the optimal solutfor\Ve would also like our mech-
anisms to bestrategyproof(SP), that is, the agents must not be able to benefit from

2Approximation algorithms are frequently used in various demsai computer science in order to over-
come computational barriers. While we largely ignore issuesoafputational complexity, optimal algo-
rithms are typically not strategyproof; hence, the need fpraximation.



lying. These two key requirements are formalized and deinatesl with examples in
Section 2.

We begin by presenting mechanisms for the two-function lprabin Section 3.
The results of this section serve two purposes. First, tite tvorst-case analysis of
SP mechanisms provides a full picture of their power andtéitians in the binary
decision-making setting. Second, the focus on a simplengettiows us to explain in
detail subtle issues that are also important for the nextergeneral, setting.

We put forward a simple deterministic decision-making naagsm which is group
strategyproof (i.e., even coalitions of agents do not geomflying) and gives a 3-
approximation of the optimal global risk; in other wordse thumber of mislabeled
points is at most 3 times the minimum number. Moreover, wevghat no determinis-
tic strategyproof mechanism can do better. Interestinaéycircumvent this result by
designing a strategyprosdndomizedmechanism that gives a 2-approximation, and
further demonstrate that this is as far as randomizatiorialanus.

In Section 4, we turn to study the more general case, undeshtied inputs as-
sumption. We first show that SP deterministic mechanismaataguarantee a sub-
linear approximation ratio. We show that choosing a dictatarandom provides an
approximation ratio of 3 in expectation, even if agents haegghts, i.e., the decision
mechanism values some agents more than others (in that easendomly select a
dictator according to the weights). We then drive the apipnaxion even lower by
using a non-trivial selection of the dictator, matching ithwthe known lower bound of
3 - %; it is quite striking that these results hold with respecaty concept class. In
addition, we show that when datasets are realizable, antet&sT approximation ratio
(of 2 — %) can be guaranteed.

In each section we further show how the suggested mechamisrtise decision-
theoretic setting can be further exploited to attain simajaproximation results in the
learning-theoretic setting. We observe that in the legtireoretic setting, designing
strategyproof mechanisms is virtually impossible, sifere is an additional element
of randomness introduced by sampling the input space. Weftre relax the strate-
gyproof requirements, and instead investigate each of imwomparable strategic as-
sumptions: that agents do not lie if they cannot gain mone ¢hand that agents always
use a dominant strategy if one exists with respect to a spesfiple. We show that
under either assumption our randomized mechanisms cambdirectly on sampled
data while maintaining a bounded expected error. Our tlme®igve a connection be-
tween the number of samples and the expected error of theamischin each case, in
the spirit of PAC-learning algorithms [40].

1.2.1 Mechanisms with payments

An important remark is that in the strategyproof classifarasetting, standard eco-
nomic money-based mechanisms such as the Vickrey-Clarkee& (VCG) mecha-
nism (see, e.g., [32]) can be used to obtain good results.eMenvour setting admits
strategyproof mechanisms that do wellen without assuming that money is avail-
able Achieving our goals without resorting to payments is hjgtésirable, since
often payments cannot be made due to legal or ethical coasioies. Moreover, in
internet environments VCG style payments are notoriousficdlt to implement, due



to banking and security issues. Hence, we follow the exarsgldy previous work
on strategyproof learning models (e.g., [10], see belowddnsidering approximation
mechanisms that do not require payments.

1.3 Related work

This paper lies at the intersection of several areas, imuchechanism design, judg-
ment aggregation, and learning. We cluster the related Wwpdreas.

1.3.1 Approximate mechanism design without money

Mechanisms that deal with strategic behavior of agents baem proposed recently
for a large range of applications. While certain restricsiomay allow the design of
optimal SP mechanisms [39], often this is not the case, apbajmation is required.
This observation gave rise to the agenda of approximate amésin design without
money (AMDw/oM).

Below, we overview some SP mechanisms for machine learmisiggms in detail,
and compare them to our work. These, however, constitutepesfacet of the large
variety of problems to which AMDw/oM can be applied. Appnaite mechanisms
without payments have been proposed for facility locatioatching [3, 15], resource
allocation [18, 19, 33], scheduling [23], and even aucti@g.

1.3.2 Strategyproof learning algorithms

The work most closely related to ours is a paper by Dekel €tL8]. Their work fo-
cused on regression learning, where the labels are realensmabd one is interested
in the distancesetween the mechanism’s outputs and the labels. Excephifovery
significant difference, the settings that we study and oatgare very similar to theirs.
Dekel et al. provided upper and lower bounds on the apprdidmaatio achieved by
supervised regression mechanisms in this model. Notabipesof our bounds re-
semble the bounds in their regression setting. Moreowuaiiagi intuitions sometimes
apply to both settings, although it seems the results of ettimg cannot be analytically
mapped to the other. Dekel et al. also concentrate on mesthanwithout payments,
but their results hold only with respect to very specific fiime classes (as they do not
assume shared inputs; see, e.g., Theorems 4.1 and 4.2 p\#hlso demand weaker
assumptions for some of our generalization theorems, lilgexidowing for stronger re-
sults.

Strategyproof regression has also been studied by Peeite-d&hd Perote [34].
They suggested several mechanisms and compared them éoleaiing algorithms
in a strategic setting. Unlike Dekel et al., they evaluatertmechanisms empirically
rather than analytically, with respect to some specific mggions on the strategic be-
havior of the agents.

Another rather closely related work by the same authors ésdts of a negative
flavor. Perote and Peroteire[35] put forward a model of unsuperviselistering
where each agent controls a single poiriRth(i.e., its reported location). A clustering
mechanism aggregates these locations and outputs agradiid a set of centroids.



They show that if every agent wants to be close to some cénttan under very weak
restrictions on the clustering mechanism thalgaysexists a beneficial manipulation,
that is, there are no reasonable (deterministic) clugjeriachanisms that are SP.

1.3.3 Judgment and partition aggregation

While the motivation for our model stems from theary classificationproblem in
machine learning, very similar models have been used taideserious problems of
judgment aggregation. In particular, a list of binary isstieat must be decided upon
is essentially equivalent to a dataset with binary labeisil&rly, a suggestion to split
a finite set into two parts can also be replaced with labelsdgh element in the set.

Properties of mechanisms for judgment/partition aggiegdtave been discussed
extensively in the literature since the 1970’s [42, 30, 2416. A recent paper that
deals explicitly with manipulations is by Dokow and Holzm@m], which charac-
terizes strategyproof aggregation rules (that can alsotegpreted as classification
mechanisms in our framework).

Our current work differs in two important ways from the Iaéure on judgment
aggregation. First, we explicitly measure the quality afgwmsed mechanisms (in the
spirit of AMDw/oM), which enables us to compare SP mechasismone another.
Second, we study not only deterministic mechanisms, botralsdomizedones. We
believe that the notion of approximation, and the use of eamdation (both a com-
mon practice in computer science) can also contribute tstildy of more “standard”
judgment aggregation settings. The current paper is a demadion of this approach.

1.3.4 Facility location

In the facility location problem, agents report their ldoat(usually in some metric
space), and the mechanism outputs a location for a faciidy is close, on average,
to all agents. SP location mechanisms for various topofolgéve been suggested and
studied (see, e.g., [1, 26], and [36], which also providelearoverview of the field).

Consider a dataset labeled by several agents, and a binaeywwose dimensions
correspond to the samples in the dataset. It is not hard iéywbat classification
with shared inputs is equivalent to facility location on thierary cube, where the label
vector of each agent corresponds directly to a specific ¥etehis cube. Similarly,
any concept class (which defines the allowed labellingsesponds to a set of vertices
which constitutes the allowed locations. A classificatioactranism then seeks the
optimal classification (i.e., theptimal vertex within this restricted set.

Although our main focus in the context of binary classifioatis the binary cube,
all of our mechanisms in this paper can be directly appliddddity location problems
in any metric space

An important note is that it is typically assumed that thecfedllowed locations
for the facility coincides with the possible locations oéthgents. This is equivalent to
the assumption ofealizability in our classification model. We study SP mechanisms
both with and without this assumption.



1.3.5 Voting

A finite set of classifiers can also be thought of as a class mdidates in a voting
scenario, where the experts are casting the votes. While apehnspective is some-
times useful (see, for example, [29]), the preferencesiimgare typically much more
expressive.

We can, however, model any preference profile with a propgrrtispace. Suppose
that we have a set of candidates; consider the binary cubretfre last section, where
every dimension (i.e., a sample in the dataset) corresporaizair of candidatesThe
allowed set of vertices (i.e., the concept class) resttlwsoutcome to vertices that
correspond to a linear order over the candidates. The asgmgb realizability in this
setting is interpreted aationality of the voters. The optimal classification mechanism,
which minimizes the average distance to all voters, is edeint to the Kemeny-Young
voting rule [22]. Therefore, SP classification mechanisiaus loe interpreted in this
setting as strategyproof approximations of the Kemenyrgotwle. It is important to
note, however, that strategyproofness in our mabels notcoincide with the similar
requirement in voting (as in the typical voting setting otiilg identity of the winner is
considered).

1.3.6 Other related work

There is a significant body of work on learning in the face aéapwhere the noise can
be either random or adversarial (see, e.g., [6, 25]). D8lygnd Dekel and Shamir [11]
study settings more similar to ours, where the learninggssdés modeled as a game
between a classifier and an adversary. However, in thesegtqgegoal is to do well
in the face of noisy or biased data, rather than provide itiEsin a way that prevents
the dataset from being manipulated in the first place.

Further afield, it is worth mentioning several examples ftbaliterature that apply
machine learning techniques in order to resolve probleras@momics or game theory.
Balcan et al. [4] apply SP machine learning algorithms torldadders’ valuations in
auctions. However, the authors achieve truthfulness byileg from agents that are
not directly influenced by the outcome that relies on thedorted data. This is not
possible in our setting, adl agents are affected by the selected classifier. Other papers
such as Procaccia et al. [37] suggest learning algorithatsetiiable better preference
aggregation, but do not consider strategic behavior of tleéety. Finally, there has
been some recent work on automated mechanism design usimgdaees from ma-
chine learning [7, 8]. Although the designed mechanismgexgaired to be truthful,
the learning algorithm itself does not handle private infation, and thus truthfulness
is irrelevant.

2 Model and Notations

We start by introducing our model and notations for the desisheoretic setting; ad-
ditional definitions for the learning-theoretic setting @iven subsequently.
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Figure 1: An instance with shared inputs. Hefé,= R?, C is the class of linear
separators oveR?, andn = 3. The data points( of all three agents are identical, but
the labels, i.e., their types, are different. The best diasgrom C with respect to each
S, is also shown (the arrow marks the positive halfspace of éparmtor). Only the
rightmost dataset is realizable.

2.1 Binary Classification with Multiple Experts

Let X be an input space, which we assume to be either a finite setvog sobset of
R?. A classifieror conceptc is a functionc : X — {+, —} from the input space to
thelabels{+, —}. A concept clas§ is a set of such concepts. For example, the class
of linear separators ovéR? is the set of concepts that are defined by the parameters
a € R andb € R, and map a point € R? to + ifand only ifa-x + b > 0.

Denote the set adgentsby I = {1,...,n}, n > 2. The agents are interested in a
(finite) set ofk data pointsX € X’*. In this paper we assume thatis sharedamong
the agents, that is, all the agents are equally interestedcéh data point idX. This
plausible assumption, as we shall see, allows us to obtaprisingly strong results.
Naturally, the points inX are common knowledge.

Each agent has a privatgpe its labels for the points inX. Specifically, agent
i € I holds a functiort; : X — {+, —}, which maps every point € X to the label
Y;(x) thati attributes tor. Each agent € I is also assignedweightw;, which reflects
its relative importance; by normalizing the weights we casume thad ,_; w; = 1.
Let

S; ={(z,Yi(z)) : x € X}

be the partiatiatasebof agenti, and letS = (54, ..., .S, ) denote the comple@ataset
S; is said to berealizablew.r.t. a concept clas§ if there isc € C which perfectly
separates the positive samples from the negative onés.idfrealizable for all € I,
then S is said to bendividually realizable Figure 1 shows an example of a dataset
with a shared set of points.

We use the common 0-1 loss function to measure the errorri$ké or negative
utility, of agent: € I with respect to a conceptis simply the relative number of errors
thatc makes on its dataset. Formally,

Ri(e, $) = 1Y e(w) ol = 1 3 ela) #Vilo)] (1)

(z,y)E€S; zeX

SWhen the datasef consists of sampled data, the appropriate terenipirical risk This distinction
will become significant in Sections 3.3 and 4.3.



where[A] denotes the indicator function of the boolean expressiorNote thatS;

is realizable if and only ifnin.c¢c R;(¢, S) = 0. In contrast to most standard learning
scenarios, in our model there is no “ground truth”, and thiedlve is to classify in a
way that will be most satisfactory to the agents. Thusgilobal riskis defined as

$) =Y wiRi(e.) =1 N wi felr) £Yi@] . @)

el iel xeX

2.2 Mechanism Properties

A deterministic mechanisi receives as input a datasgf' and outputs a classifier
¢ € C. Note that sinc& is finite, there are only finitely many different ways to ciss
the data; thus, RM (5), S) for all i € I and R(M(S), S) are well-defined. This will
no longer be the case in the learning-theoretic settingyrevive will need to slightly
modify our definitions.

A randomized mechanisimidentified with a probability distributiopy overS xC.
We restrict our attention to probabilities with a finite sopp That is, for every dataset
S, the mechanismvl returnsc € C, with a probability ofpm (¢|S).

When measuring the risk, we are interested ind¢kpectechumber of errors that
the mechanism makes on the given dataset. Formally,

Ri(M(S),5) =Ep, [Ri(c,9) | 8] =Y pulc|9) - Ri(c, ), (3)
ceC
and the global risk is defined analogously.
For any (complete or partial) datasgt C S, the best available classifier with
respect to the datas8t s referred to as thempirical risk minimizeferm) —a common
term in the machine learning literature. Formally,

erm(S’) = argmin... Z [e(z) # 4] - 4)

(z,y)€S’

For the complete dataset, we denote the best classifier(I$y), and its risk byr*(.S)
(or simplyc*, r* if S is clear from the context). That is,

c*(S) = erm(S) = argmin... Ry (c, S)

andr*(S) = Ry(c*(9),.9).

The simple mechanism that always computes and reemmgS) is referred to as
the ERM mechanism (with block lettersS).If there is more than one optimal clas-
sifier, we assume th&RM returns one of them arbitrarily. Similarly, a mechanism
which returns the best classifier with respect to a partiths of a specific agent
(e.g.,erm(Sy)) is called adictator mechanism

4We implicitly assume that information regarding the weightthefagents is contained in the dataset.
5Actual algorithms to compute ttegm may raise various practical problems that depend on the domain,
such as computational complexity. However, such problems atrgvithin the scope of this paper. Since
anerm always exists and the number of data points is finite, thera sgorithm that computes a&rm in
finite time.
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If r* = 0 thenc* is said to beperfect Note that the existence of a perfect classifier
in C implies that all partial datasets are realizable, but theverse does not hold.

We measure the quality of the outcome of a mechanism usingtémelard notion
of multiplicative approximation

Definition 2.1. A mechanisnM is an a-approximatiormechanism if for any dataset
Sit holds that R(M(S), S) < a - r*(9).

Note that randomized mechanisms are only required to a#tjgjgmoximation in
expectation, and not necessarily with high probability.

We emphasize that the real labels of the input points araferimformation, and
an agent may report different labels than the ones indidagdd. We denote byt; :
X — {+,—} the reported labels of agent We also denote by; = {(z,Y;(z))
x € X} the reported partial dataset of agenand byS = (S, ..., S,) the reported
dataset.

Strategyproofnesinplies that reporting the truthful types is a dominant tetyg
for all agents. For a datasStandi: € I, let S_; be the complete dataset without the

partial dataset of agent

Definition 2.2. A (deterministic or randomized) mechanidfnis strategyproo{SP) if
for every datase$, for everyi € I, and for everys;,

R/(M(S), ) < Ri(M(S;,5-:), 5) - ()

Our goal is to design mechanisms that are both SP and guaraites worst-case
approximation ratio.

There is an inherent tradeoff between strategyproofnesgyaad approximation.
TheERM mechanism (which always retureen(.S)), for example, is a 1-approximation
mechanism, but is not SP (as we show in the next section). ©otkier hand, a mecha-
nism that selects agent 1 adiatator, and returngrm(.S; ), is clearly SP but in general
may give a very bad approximation (e.g., if all other agergagtee with agent 1).

We remark that for randomized mechanisms, some make adistinbetween
strategyproofneda expectatior{as Definition 2.2 implies), anghiversal strategyproof-
ness The latter, stronger definition requires that an agent ecagain from lying even
after the randomization takes place. Interestingly, tre,fiveaker notion of strate-
gyproofness is sufficient for our lower bounds, but our ugpminds satisfy universal
strategyproofness.

3 Choosing from Two Classifiers

In this section we consider a very simple concept classaiing only two classifiers.
For ease of exposition we assume that there is a positiveifidaiz:, and a negative
classifierc_, such that (v) ="+", c_(x) =*—"for any z € X. Our concept class
C = {e4,c_} can be thought of as choosing between a glqusiitive decisiorand
negative decisigrrespectively.

11



Remark 1. Although we define our concept claésis containing two specific classi-
fiers, our results easily extend éweryconcept class of size 2 (provided that there is at
least one datapoint € X on which the two concepts disagree). Indeed, the part of the
dataset on which the concepts agree can only improve theoajppation ratio, and on

the other hand we can always give examples where all datagaia in conflict. Thus
both upper and lower bounds still hold.

We start with some observations that will allow us to simpbiur model in this
setting. Note that the identity of each data point is not irtgodt, only thefraction of
positive and negative labels that each agent attributdsetdataset. We can also think
of this setting as if each agent controlslifferent set of points{;, where the size of
each such partial dataset is proportional to the agent'ghteWith this interpretation
our model becomes even simpler, as both the weight and tleedfypach agent are
completely defined by theumberof “positive points” and “negative points” it controls.

Consider our TA committee example from the introduction. d&a count each TA
as a single data point (which is positive if it supports thiéks}, and the representative
of each department reports the opinions of all TAs. The weigldepartment in this
case would be proportional to the number of workers.

We denote the number of points controlled by ageby m; = |X;| = |S;|, and
the size of the full dataset by, = |S| = >, _; m;. This notation will be used in this
section instead of. We further denote the number of positive and negative daitap
by P, = |{{z,y) € S; : y = +}|,andN; = m; — P, = |{{z,y) € S; : y = —}|. For
conveniencewe alsolét =3, ; P, N = >, ; N;. We emphasize thdt;, N; }ics
contains all the information relevant to our problem and tbeus replaces.

With these alternative notations, the private risk of cgiedor agenti is the same
as in Equation (1), only replacing with m,;. The risk is further simplified in the
two-function case:

Pl‘ i , if c=c_
2. le@) #4l= { N% oo e ()

7'(:1:1/ €s;

We update the definition of the global risk as follows:

Ri(e.S) =Y 'R N el # 4. W)

el . (ry YES

Similarly to the private risk, R(c, S) is eitherP/m (for c_) or N/m (for c;). Note
that by takingw; = =, this is a special case of Equation (2).

Unfortunately, if we choosERM as our mechanism, then even in this simple set-
ting the agents may lie in order to decrease their subjedtke

Example 3.1. (lllustrated in Figure 2) Agent 1 controls 3 examples: 2 piesi and

1 negative. Agent 2 controls 2 examples, both negative.eShare is a majority of
negative example&§RM would returnc_; agent 1 would suffer a subjective risk of
2/3. On the other hand, if agent 1 reported his negative exangdbetpositive as well,
ERM would returnc,., with a subjective risk of only 1/3 for agent 1. Indeed, nbt t
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Truthful dataset Strategic dataset

Figure 2:ERM is not strategyproof. Agent 1 changes one of its points fregetive
to positive, thus changing the risk minimizer fram to ¢, to agent 1's advantage. In
this illustration,X = R2.

an agent’s utility is measured with respect to its real lahehther than with respect to
the reported labels. O

It is easy to see, however, that an agent cannot gain by lylreniit only controls
one point. For instance, if an agent has a positive pointEERM returnsc_, falsely
reporting a negative label will only reinforce the mecharigsdecision. This is in
striking contrast to the regression learning setting aersid in Dekel et al. [10], where
the deepest technical results concern the single-poin&gent scenario.

Despite the fact theERM is not SP, we would still like to use the optimal concept
in order to evaluate other concepts and mechanisms. Frowchefirdtion of theerm,
we have that

r* = Ry(c*,S) = min{R;(c4, 5),Rr(c—,S)} = min {N, P} .

m m

3.1 Deterministic Mechanisms

Denote byc; theerm on S;, i.e.,c; = ¢y if P, > N; andc_ otherwise. Clearly; is
the best classifier agentan hope for. Consider the mechanism given as Mechanism 1.

Mechanism 1THE PROJECTEDMAJORITY MECHANISM (PM)
Based on the labels of each agéhtV;, calculate;. Define each agent anagative
agentif ¢; = c_, and as aositive agentf ¢; = c,..
Denote byP’ = Zmzc+ m; the number of examples that belong to positive agents,
and similarlyN’ =3, . _. m; =m — P'.
if P’ > N'thenreturn c,.
else returnc_.
end if

Remark 2. Informally we state that in our current setting, we can obtaimilar ap-
proximation results even under mechanisms that are not &®naing agents lie only
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when this is beneficial to them. Nevertheless, strategypess gives us a very clean
framework to analyze mechanisms in the face of strategiavieh When we discuss
our learning theoretic framework, where obtaining strategofness is next to impos-
sible, we shall apply the former, less elegant, type of aigly

We will show that this mechanism has the excellent gamerétieoproperty of
beinggroup strategyproaf no coalition of players can gain by lying. In other words,
if some agent in the coalition strictly gains from the joiig, Isome other agent in the
coalition must strictly lose. While technically simple,gHirst result demonstrates the
key principles of strategyproof mechanisms.

Theorem 3.2. Mechanism 1 is a 3-approximation group-SP mechanism.

Proof. We first show group strategyproofness. LtC I. We can assume without
loss of generality that either all agents ihare positive or all of them are negative,
since a positive (resp., negative) agent cannot gain framg if the mechanism returns
cy (resp.,c_). Again without loss of generality, the agents are all pesitTherefore,
if some agent is to benefit from lying, the mechanism has tarmet_ on the truthful
dataset. However, since the mechanism considers all aigeBt$o be positive agents
when the truthful dataset is given, an agenfrcan only hope to influence the out-
come by reporting a majority of negative examples. Howetis, only increasedV’,
reinforcing the mechanism’s decision to retarn

It remains to demonstrate that the approximation ratio islaisned. We assume
without loss of generality that the mechanism returngdi.e., P’ > N’. We first
prove that if the mechanism returned the positive conceeaatl /4 of the examples
are indeed positive, that i§, > tm.

Indeed, clearly?’ > % > N’ otherwise we would get = c_. Now, if an agent is
positive(c; = c4), at least half of its examples are also positive. Thus

, Iy Iy 2 2’
el ic;=Cy i:ci=c4
and hence? > £~ > =
Now, we know that? + N = m, sON = m — P < m — (%) = 3 < 3P,
Clearly if the mechanism decided “correctly”, i.€,> m/2, then

N
RI(CaS) = RI(C+7S) = E =7

Otherwise, ifP < m/2, then

N
R[(C, S) = R[(C+,S) = E

P
<3— =3Ry(c_,S) =3r".
m

In any case we have that;R, S) < 3r*, proving that Mechanism 1 is indeed a 3-
approximation mechanism. |

As 3-approximation is achieved by such a trivial mechaniasm would naturally
like to know whether it is possible to get a better approxioratatio, without waiving
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Figure 3: The examples of each agent in the three dataseth@ma (fort = 2). Agent
1 can make dataset Il look like dataset Il and vice versa pgmténg false labels. The
same goes for agent 2 regarding datasets | and 1.

the SP property. We show that thisniet the case by proving a matching lower bound
on the best possible approximation ratio achievable by am&thanism. Note that the
lower bound only requires strategyproofness, not grougiegiyproofness.

Theorem 3.3. Lete > 0. There is nq3 — ¢)-approximation strategyproof mechanism.

Proof. To prove the bound, we present 3 different datasets. We shatvany SP
mechanism must return the same result on all of them, whitéhereconcept inC
yields an approximation ratio g8 — ¢) in all three.

Lete > 0. We willusel = {1, 2}, and an integet = ¢(¢) to be defined later. Note
that in all three dataseta; = mqo = 2t + 1. We define the three datasets as follows
(see Figure 3 for an illustration):

e SI: P =2t4+1,Ny=0;P,=t,No=t+1
o S P =2t4+1,N,=0;P,=0,Ny =2t +1
o SHI:p =t 4+ 1 Ny =t;P,=0,No=2t+1

LetM be some strategyproof mechanism. Then it must holduhat! ) = M (S17).
Indeed, otherwise assume first tha{S’) = ¢, andM(S!) = c_. Notice that the
only difference between the two settings is agent 2’s labglgent 2's truthful labels
are as inS’, his subjectiveerm is c_. Therefore, he can report his labels to be as in
S11 (i.e., all negative) and obtain . Now, if M (S7) = c¢_ andM (S?) = ¢, , agent 2
can gain by deviating frons’/ to S’. A symmetric argument, with respect to agent 1
(that in all settings prefers; ) shows thaM (S77) = M (S1HT).
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So, without loss of generality assume that M (S7) = M(S'1) = M (S =
¢, (otherwise, symmetric arguments yield the same resul@réfore:

N+ Ny  3t+1

R 111y _ R IITy _ _ )
(e, S77) =Ryr(cy, 57°7) - Yo (8)
On the other hand, the negative concept is much better:

t+1

r* =Ri(e-, 5" = At +2

By combining the last two equations:
Ri(e, STy 3% 3t+1

* t+1
r s t+1

Let us sett > %; then the last expression is strictly greater ti3an ¢, and thus
Rr(c,ST1T) > (3 — ¢)r*. We conclude that any SP mechanism cannot have an ap-
proximation ratio of3 — e. ]

3.2 Randomized mechanisms

What if we let our mechanism flip coins? Can we find an SP randednizechanism
that beats (in expectation) the 3-approximation detestimiower bound? To answer
the question we first recall the definition of the risk of suahechanism given in (3).

For our simple concept clag$ = {c, c_}, a randomized mechanism is defined
only by the probability of returning a positive or negativancept, givenS. Accord-
ingly, the risk (both private and global) is

R(M(S)7S) =D+ R(C-F’S) +p—- R(C_,S) ’

wherep,, p_ stand forpm (¢ | S) andpm (c— | S).
We start our investigation of SP randomized mechanisms tapkshing a lower
bound of 2 on their approximation ratio.

Theorem 3.4. Lete > 0. There is nq2 — ¢)-approximation strategyproof randomized
mechanism.

The proof, along with all the remaining proofs of this segfi@ppears in Ap-
pendix A.

We presently put forward a randomized SP 2-approximatiochagism, thereby
matching the lower bound with an upper bound. However we fiirgpose a simpler
mechanism and analyze where it fails: The natural thing tevdold be to calculate
P’ and N’ as in our deterministic Projected Majority Mechanism arnehtsimply to
selectc,. with probability P/ /m andec_ with probability N’ /m. We refer to this simple
mechanism as theeighted random dictatamechanism\(VRD), for reasons that will
become apparent in Section 4. Lnfortunately, this simple randomization (which is
clearly SP) cannot even beat the deterministic bouritl-efe, as demonstrated by the
following example.

6This procedure is equivalent to randomly selecting an agéhtprobability proportional to its weight,
and using its preferred classifier to classify the entirasiett— henc&Veighted Random Dictator
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Example 3.5. Consider the dataset of n agents with the following examples: one
agentwithP; = t+1, N; = t, andn— 1 additional agents each holdirizj + 1 negative
examples. ThuB =t+1; N = (n—1)(2t+1) butP’ = 2t+1; N' = (n—1)(2t+1).
The optimal classifier maké®| = ¢ + 1 mistakes, thus* = ££L. On the other hand,
the expected number of mistakes made by the mechanism is

! /

m - RyWRD(S), §) =p_ - [P| 4 ps [N = " (t41) + T ((n — 1)(2t 4 1) 41

(n—1)(2t + 1) 2+ 1
=~ (t+1 —(2nt —t—1
nata1) CFDF gy @t )
7(n—1)(t+1)+2nt+n—t—17
— - - —
o nt+n—t—14+2nt+n—t—1 3nt+2n—2t—2
n n '

We have that the approximation ratio of this mechanism isast

R;(WRD M —2t—2 1500 2
7 ( (S),5) _ 3nt+2n — 2t togog £ (9)
r* n(t+1) n

Thus, for every > 0, there is a large-enough such that the approximation ratio is
worse tharg — 2 — e O

Note that in this example all agents control datasets of dneessize &t + 1). A
similar example can be crafted with two weighted agents, byging the datasets of
agent2,...,n to a single, heavier, agent. This example will provide uswaitower
bound of3 — 2w, , wherew;, is the weight of the lighter agent.

Crucially, an adjusted, less intuitive randomization cartee trick.

Mechanism 2The Square Weighted Dictator Mechanis&RD)

ComputeP’ and N’ as in Mechanism 1.
Returnc, or c_ with probability proportional td P")?, (N')?, respectively.

Theorem 3.6. Mechanism 2 is a group-SRapproximation randomized mechanism.

There are, in fact, multiple ways to achieve a 2-approxiomatising different ran-
domizations onV’ and P’. In a previous version of this paper we suggested one such
alternative randomization [28]. A third procedure folloas a special case from the
CRD mechanism described in Section 4.1.

3.3 Binary Decision in a Learning Theoretic Setting

In this section we extend our simple setting to a more gemeazghine learning frame-
work. Our previous results will be leveraged to obtain pdulelearning theoretic
results.
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Instead of looking at a fixed set of examples and selectingctimeept that fits
them best, we now turn to look aampled datasetsThat is, we assume that there is
some fixed and known distributidlx € A(X) (whereA(A) is the set of probability
distributions over a set), which represents thiaterestthat agents have in different
parts of the input space. According to our shared input apiam the distribution of
interest is the same for all agents.

In addition, each agent € I now has a private functiol; : X — {+,—},
which assigns a label to every point in the input space. QbsiratY;, along with
the distributionDy, induces a (private) distributiof?; over inputs and labels, i.e.,
D; € A(X x {+,—1}). This distribution determines the type of agént

The new definition of the subjective risk naturally exterls previous setting by
expressing the errors a concept makes with respect to thréodtson D;:

Ri(¢) = E(@y)~p, [[c(z) # Y]] = Eany [[e(z) # Yi(2)]] - (10)

The global risk is calculated similarly to how it was prevébudefined, as the weighted
average of the private risk, i.e.,

Ri(c) =Y wi-Ri(e). (11)

icl

For ease of exposition, we will assume in this section tHaagénts have equal
weight. Thus, R(c) = 2 3., Ri(c). In Section 4.3, when discussing the more
general problem, we will not use this assumption.

Similarly, we can no longer compare the outcome of our meisharno *(5),
as this notion of the optimal risk assumes a fixed datasetraslean instance of the
learning-theoretic setting consists of a setd@dtributions We therefore define the
minimal risk as

o = inf R . 12
Pmin = inf 1(c) (12)

Although in the general case might be an open set, in our simple two-function
settingC is finite, andr,;, = min{R;(c_), Rr(c4)}.

Note that we cannot directly evaluate the risk in this leagrtheoretic framework;
we may only sample points from the agents’ distributions asklthe agents to label
them. We then try to minimize threal global risk, using thempirical riskas a proxy?
The empirical risk is the risk on the sampled dataset, asatfinthe previous section.

Remark 3. A subtle point is that the mechanism we present is not styptegf, and in
factno mechanisnthat gets sampled data points as input is strategyproofeéaldeven
if there is only a single agent, which gives greater weightegative points (according
toD,), it might be the case that, by miserable chance, the agsatigpled dataset only
contains positive points. Thus there is some non-zero ityathat the agent will
have an incentive to “lie” by reporting negative labels.

"The results in this section can also be generalized to vgyieights by sampling for each agent a
number of points proportional to its weight, yet still largeoegh.

8This is similar to an oracle model, where we have no direct actethe distribution, but we can ask
yes/no questions about it. The major difference is that imeadel the “oracle” may lie! (Perhaps tBghinx
model would be a better name)
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We note that even allowing payments would not guarantegegiyproofness in
our example, as it contains only one agent. This fact may seermadictory to the
revelation principle (see, e.g., [32]), but not if we rectiht truthful mechanisms are
only guaranteed to exist unddirect revelationIn our domain, direct revelation means
that the agents must be asked to explicitly select the €laistiey prefer. However in
the learning-theoretic setting the agents only revealrtipeéferences indirectly, by
submitting their preferred labels on the sampled data mint

3.3.1 Three Game-Theoretic Assumptions

While full strategyproofness is too much to ask for, we calh stake assumptions
on the behavior of agents that will allow us to formally arzalythe outcome of our
mechanisms. We exploit this very simple setting to clarffg tistinction between
three alternative game-theoretic assumptions on agesitsivior.

The e-truthfulness assumption. The first assumption is that agents will not lie un-
less their expected gain from this liedsleaste. This assumption is stronger than the
rationality assumption in the decision-making settingerehwe demanded this only
for e = 0. In Section 4.3 we refer to this assumption as the “Truthfppfach”. This

is the approach taken for example by Dekel et al. [10].

The pure rationality assumption. A second assumption is that agents illvays
play a dominant strategy, if one is available to them. Thstekice of dominant strate-
gies depends on the mechanism, as well as on the datasetgeamitbw arbitrary be-
havior when such a strategy does not exist. This assumialsd stronger than the
standard rationality assumption (which does not assumghizigyabout agents’ behav-
ior when truth-telling is suboptimal), but it is incompalalwith the first assumption.
In Section 4.3 we refer to this assumption as the “rationgkagch”. It is important
to note that the rational approach entails that agents nav& bomplete knowledge
of their own distribution. This implicit assumption is nadgessary under the truthful
approach.

The weak truthfulness assumption. The third assumption, which is also the weak-
est, requires that an agent is truthful if this is a weakly g@mt strategy, i.e., if it
cannot gain by lying.

An agent that always obeys the first, second or third assomgticalled:-truthful,
purely rational or weakly truthfu) respectively. Note that botfitruthful agents (for
anye > 0) and purely rational agents are always weakly truthful cithmeans that the
third assumption is indeed the weakest.

In this section we employ the third assumption as it supplgewith the strongest
results. Thus the results in this section are “stronger“wag than the results of Dekel
et al. [10] (regression) and the results in Section 4 (diassion)?

%In fact, a simple variant of the proofs in Section 4.3 could bedily applied to the binary decision
problem (as it is a special case of shared inputs, and hasraledW/C dimension), yielding an approxi-
mation ratio that is close to 2. However, this bound would drdyd under either of the first two strategic
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Remark 4. We offer a simple scenario that will highlight the substahtifference
between the different assumptions. Suppose we employrthefianality assumption,
and consider the following simple mechanism: sample onetgmm Dy, and let
all agents label this single point. If an agent labels thenpgiositively, the agent is
positive; otherwise it is negative. Now apply either Medeam1 or Mechanism 2.
This clearly gives us approximation upper bounds of 3 andspeetively, using only
one sampled data point. In contrast, théruthfulness assumption will not guarantee
anything in this case. This suggests that the differencevdet the assumptions is
non-trivial. Compare also with the analysis of the two firgpeoaches in Section 4.3.

Mechanism 3The Binary Learning MechanisnSFD)

for each agent € I do
Samplem’ = m; points i.i.d. fromDy.
Denotei’s set of data points a&; = {x; 1,...,Zim }-
Ask agent; to label X;.
Denote?i = {<Ii7j,?i(l’i7j)>};‘n:,1.

end for

Use Mechanism 2 of = {S4,...,S,}, return SRD(S).

The risk of the mechanism is computed as the expectatioreafsk of the outcome
classifier, where the expectation is taken over both rangations: the sampling of the
data points, and the randomization performedi®D. Formally (for both private and
global risk), -

R(SRD) = Ex~(px)= [R(SRD(S))] , (13)

where the labels ok in S are set according to our strategic assumptions.

We presently establish a theorem that explicitly statesithmber of examples we
need to sample in order to properly estimate the real risk. willeget that, in ex-
pectation (taken over the randomness of the sampling puveeghd Mechanism 2's
randomization), Mechanism 3 yields close to a 2-approxonatvith relatively few
examples, even in the face of strategic behavior.

Theorem 3.7. Given sampled datasets, assume weak truthfulness. Farary, there
ism’ (polynomial inln(n) and %) such that by sampling:’ points for each agent, it
holds that -

R[(SRD) < 27min + €.

Specifically, samplingn’ > 50 % In(122) will suffice.

While the proof is quite technical, it can be sketched as floMechanism 2 is
SP with respect to the (already sampled) dat&séthus if an agent’s sampled dataset
faithfully represents its true distribution, and the agsrgtrongly inclined towards,
or c_, the agent still cannot benefit by lying (by the weak truthéds assumption). If
an agent is almost indifferent between andc_, it might wish to lie—but crucially,
such an agent contributes little to the global risk.

assumptions.
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4 Classification with Shared Inputs

We begin with an analysis of the decision-theoretic settidg in Section 3, these
results will later be applied to the learning-theoretidiagt

In this section, we assume that all agents control the satr&f glata points. The
size of this dataset is denoted by The total number of labeled data points from all
agents is thus» = n - k. However, as our mechanisms in this section use only a single
agentk is effectively the size of the input being used.

4.1 Deterministic Mechanisms

We start by examining an extremely simple deterministic m@tsm. Recall that
erm(S’) is the concept € C that minimizes the risk w.r.t5” C S (see Equation (4)).
Our mechanism simply lets the heaviest agent dictate whiohept is chosen.

Mechanism 4The Heaviest Dictator MechanisrAD)
h « argmax.; w;. // (Leth € I be an agent with maximal weight)
return erm (Sy).

If more than oneerm exists, return one of them arbitrarily. The mechanism is
clearly SP: the heaviest dictatibhas no interest to lie, since its best concept is selected,;
all other agents are simply ignored, and therefore have aspreto lie either. We have
the following result.

Theorem 4.1. Let|I| = n. For every concept clagsand any datase$, Mechanism 4
is an SP(2n — 1)-approximation mechanism.

Recall the central negative result regarding determmistechanisms with non-
restricted input.

Theorem 4.2(Meir, Procaccia, and Rosenschein [29There exist concept classes for
which any deterministic SP mechanism has an approximatitio of at least(m),
wherem is the total size of the full dataset.

We therefore see that the restriction to shared inputs lipemoving the depen-
dency on the size of the dataset, but nevertheless an appatan ratio that increases
linearly with the number of agents is not very appealing. Eesv, it turns out that us-
ing deterministic mechanisms we cannot do better with Egpesvery concept class.
Indeed, a slight variation of Theorem 4.2 gives us the falhgwresult.

Theorem 4.3. Suppose there are agents with shared inputs. There exist concept
classes for which any deterministic SP mechanism has arpajppation ratio of at
least(n), even if all the weights are equal.

The proof of the theorem is a minor variation of the proof oE®tem 4.2, which
applies the Gibbard-Satterthwaite impossibility theoféi) 38].

Theorem 4.3 implies that Mechanism 4 is optimal, up to a @oristas a generic
mechanism that applies to any concept class. Of coursepémific concept classes

21



one can do much better, as shown in Section 3. One could haparthosing further
restrictions on the dataset, such as realizability, wounlabée the design of better SP
mechanisms. However, recent results show thatthe) bound remains even if all
datasets are realizable [13].

4.2 Randomized Mechanisms

In order to break the lower bound given by Theorem 4.3, we eynplsimple ran-
domization. We will see that this randomization yields astant approximation ratio
with respect to any concept cla@esnder our assumption of shared inputs, of course).
Moreover, if the agents have uniform weights, then this rma@m cannot be further
improved.

Mechanism 5The Weighted Random Dictato'{RD) mechanism
select agent with probability w;.
return erm (S;).

Consider Mechanism 5, which is clearly SP. The followingotieen bounds its
approximation ratio for different cases.

Theorem 4.4. For every concept clags and for any datasef, Mechanism 5 is an SP
(3 — 2wmin )-approximation mechanism, whewg,;,, = min;c; w;. Moreover, ifS is
individually realizable, theri2 — 2w, )-approximation is guaranteed.

When all agents have the same weight, we haveuhat = % We therefore have
the following corollary which follows directly from Theone4.4.

Corollary 4.5. Let|I| = n, and assume all agents have equal weights. For every
concept clasg and for any datase$, Mechanism 5 is an SB — 2)-approximation
mechanismg — % whensS is individually realizable).

The last corollary also follows as a special case from resué will see in Sec-
tion 4.2.2.

Itis possible to show that the analysis of Mechanism 5 idtigideed, consider the
outcome of the mechanism for the concept class c, }. In this case, the mechanism
is essentially equivalent to the naive randomized mechapigsented in Section 3.2,
and yields the same outcome. Therefore, Example 3.5 givightldower bound on
the approximation ratio of the mechanism, matching the uppand given in Theo-
rems 4.4 and 4.5. A similar example can be easily constrioteslery concept class
of size at least two.

4.2.1 Isthe WRD mechanism optimal?

Itis natural to ask whether better (randomized) SP mechenéxist. For specific con-
cept classes, the answer to this question is positive, asmignated by Theorem 3.6.
For general concept classes, the following lower bound dswm
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Theorem 4.6(Meir, Almagor, Michaely and Rosenschein [27Buppose there are
agents with shared inputs. There exist concept classesHmhvany randomized SP
mechanism has an approximation ratio of at ledst % even if all the weights are
equal.

Theorem 4.6 shows that when weights are uniform, WD mechanism (i.e.,
selecting a dictator uniformly at random) is in fact optimghat is, no SP mechanism
can do better. However, the mechanism is suboptimal forlwedydatasets, as it only
guarantees & approximation in this case.

We next turn to close this gap, presenting new mechanismd#a theWRD
mechanism on weighted datasets, matching the lower bowed @i Theorem 4.6.

4.2.2 Improving the upper bound for weighted agents

Theorem 4.6 in fact tells us that we must pick a dictator atloam to have an SP
mechanism. However we are still free to define the prob#slivf selecting different
agents, and we may take agents’ weights into account. WR® mechanism is an
example of such a randomization, but we can design others.

Recall that in the two-function scenario, we performed atinogd randomization
by using theSRD mechanism. As a first attempt to improve the upper bound, we
translate theSRD mechanism to the current settify That is, the mechanism would
select every dictator € I with probability proportional tav?. Unfortunately, while
SRD does attain some improvement over YW&D mechanism, it is still suboptimal,
even forn = 3.

Proposition 4.7. There is a dataset with three agents, such that

2
R;(SRD(S), S) > 2.4 - r* > <3 - n) .

A similar counterexample exists for individually realitallatasets, where the ap-
proximation ratio ofSRDis abovel.39 (i.e., strictly above — % for n = 3). We there-
fore must take a somewhat different approach in the sefeofithe dictator. Consider
the mechanism€RD andRRD, where the latter is a small variation of the former.

Mechanism 6The Convex-weight Random Dictator MechanisRD)
foreachi € I, setp] = 5-5—.
_ 1 '
computen,, = S
select agent with probabilityp; = cwp!.
return erm (S;).

The CRD andRRD mechanisms are clearly SP, as the probabilities are unedfec
by the reported labels.

Theorem 4.8. The following hold for Mechanism 6:

10we slightly abuse notation here and use the n&R®, although it is no longer equivalent to Mecha-
nism 2.
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Mechanism 7The Realizable-weight Random Dictator MechaniftRD)
h < argmax,; w;.
if wy, > 3 then
return erm (Sp,).
end if

- / Wy
for eachi € I, setpli = 50

computely, = = ;.

2uierPi -
select agent with probabilityp; = Sywp!.
return erm (S;).

0 Oy <2— %
o CRD has an approximation ratio of + ax, i.e., at mos8 — 2.

o if Sis individually realizable, then the approximation rati® ¥ + 1, i.e., at
most2 — 1.

By Theorem 4.6, no SP mechanism can do better on a generaetiatahe worst
case, thu€RD is optimal. However, if the dataset is known to be individpataliz-
able,CRD is suboptimal, anéRRD is strictly better (in the worst case).

Theorem 4.9. The following hold for Mechanism 7:
© Bw S 1- %
o RRD has an approximation ratio of at mo$t and at leasB (in the worst case).

o if S is individually realizable, then the approximation rati® i + Sy, i.e., at
most2 — 2.

Observe that for two agents tRE&RD simply selects the heavier dictator. Thus if the
dataset is not realizable, the approximation ratio can d@gtsas3, which accounts
for the lower bound in the non-realizable case.

The CRD mechanism matches the lower boundsday set of weighted agents,
thereby showing that the uniform weight case is, in facthtieest. The situation with
theRRD mechanism is similar—no randomization of dictators can dteheHowever,
it is still an open question whether there are better, mophisticated, randomized
mechanisms for the realizable case. The natural conjeetatdd be that there are
none, as Dokow et al. proved for deterministic mechanisrgk [1

Note that when weights are uniform, then BBD, RRD, SRD andWRD mech-
anisms all coincidé! Thus Theorem 4.5 also follows as a special case from Theo-
rems 4.8, 4.9.

Curiously, RRD is better tharCRD when the dataset in known to be realizable,
whereas in the general case the converse is true. Therefalifferent mechanism
should be used, depending on our assumptions on the datasetver, the mechanism

HUThere is a tiny exception here: when= 2, w1 = wy = 3, thenRRD returns an arbitrary dictator,
rather than random. However in this case any outcome is a bappation.
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must be decided om-priori—we cannot select betwe&@RD andRRD after observing
the labels, as this would not be strategyproof!

4.2.3 Applying the mechanisms to the two-function setting

Suppose thaf = {4, —}. We can join together all positive agents, and all negative
agents, and construct an instance with two meta-agentssevveights are propor-
tional to P/, N’ (as defined in Section 3.1). THRRRD mechanism then simply selects
the heavier meta-agent (equivalently to ®& mechanism), and thus guarantees an
approximation ratio o8. TheCRD mechanism, applied to this setting, guarantees an
approximation ratio o — % =3 — 2 = 2. It therefore supplies us with an alternative

2
2-approximation SP mechanism for the two-function setting

4.3 The Learning-Theoretic Setting

In this section we leverage the upper bounds which werenatain the decision-
theoretic setting to obtain results in a machine-learniagnework. That is, we present
a learning mechanism that guarantees a constant appraxmudtthe optimal risk in
expectation, even in the face of strategic behavior.

We use the notations and definitions introduced in SectiBn\8here the prefer-
ences of each agent are represented by a funttiont’ — {4+, —}.1? Reinterpreting
our shared input assumption in the learning-theoretiaggtive assume that all agents
havethe sameorobability distributionDx over X', which reflects the relative impor-
tance that the agents attribute to different input poitits;distributionDx is common
knowledge.

The private risk of a classifiere C is computed according to Equation (10):

Ri(¢) = Exnpy [[e(2) # Yi(@)]] -

That is, according to thexpectechumber of errors that makes w.r.t. the distribution
Dx. As for the global risk, it is computed according to Equatfbh), i.e.

Ri(c) = sz‘Rz‘(C) :

iel

The goal of our mechanisms is to find classifiers with low ridkle therefore
compare them to the best risk that is attainable by concepfs and thusr,,;,, =
inf.cc Ry (¢). Equation (12) is a special case of this definitiondoe {c_,c, }.

Our goal is, once again, to design mechanisms with risk ¢mseptimal. However,
constructing an SP mechanism that learns from sampled slatarly impossible (as
explained in Remark 3). Hence, we weaken the strategypessfrequirement, and
analyze the performance of our mechanisms under each ofrghéwb strategic as-
sumptions described in Section 3.3: theruthfulness assumption, which states that
agents do not lie unless they gain at leastnd the pure rationality assumption, under
which agents always play a weakly dominant strategy if ongtex

1275 with the theorems in Section 4.1, our results in this seawvil follow as a special case from the
more general model, where agents have distributions oveatieds.
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4.3.1 Thee-Truthfulness Assumption

An e-strategyproof mechanism is one where agents cannot gaia timane by lying.
We show below that, similarly to Dekel et al. [10], the reswf Section 4.2 can be
employed to obtain a mechanism that is “usualystrategyproof. We focus on the
following mechanism.

Mechanism 8The Generic Learning Mechanisrﬁl\Rf))
Samplek data points i.i.d. fronDx (denote the sampled points B).
for each agent € I do
Ask agent to label X;.
Denotegi = {<$],?1(.’E])>};€:1
end for
Use Mechanism 5 08 = {S1,...,S,}, return CRD (S).

We denote by R(Eﬁf)) the expected risk of Mechanism 8, where the expectation
is taken over the randomness of the sampling and the randmof&echanism 5, just
as in Equation (13) in the two-function setting:

R(CRD) = Ex.(py)+ [RICRD(S))] ,

where the labels ok in S are set according to our varying strategic assumptions.

We wish to formulate a theorem that asserts that, given dnsagiples, the ex-
pected risk of Mechanism 8 is relatively small under theuthfulness assumption.
The exact number of samples needed depends on the comkhaitdrness of the
function class; this is usually measured using some notiarlass complexity, such
as the VC dimension (see, e.g., [21]). For instance, the Waedsion of the class of
linear separators ové@ is d + 1. We do not dwell on this point too much, and instead
assume that the dimension is bounded.

Theorem 4.10. Assume all agents aketruthful, and letC be any concept class with
a bounded dimension. For ary> 0, there isk (polynomial in% andlIn(n)) s.t. if
at leastk datapoints are sampled, then the expected risk of Mecha8israt most
(3 — %) * Trmin + €.

The proof sketch is as follows:

(a) There is a high probability that the random sample is &jpae., close to the
actual interest of the agents.

(b) Whenever the sample is good for some agent, this agentapitirt truthfully (un-
der thee-truthfulness assumption).

(c) When the sample is good for all agents, the risk of MeclmaBiss close to the risk
of Mechanism 5, and thus we have almost-a 2-approximation.

(d) Otherwise the risk can be high, but this has a small effe¢he total expected risk,
as it occurs with low probability.
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We prove Theorem 4.10 along these lines in Appendix B.2, apglg an exact
upper bound on the number of samples required for the thetréimid.

4.3.2 The Pure Rationality Assumption

Recall that under the pure rationality assumption, an agékalways use a dominant
strategy, when one exists. We once again consider the peafare of Mechanism 8.
Note that since our mechanism uses a dictator, each adexs a weakly dominant
strategy. In order to see that, observe that there is sorasifidgic; that minimizes the
risk w.r.t. the whole distributioD;.1® The dominant strategy of agehis to label the
sampled dataset according ta3;. Note that this does not mean thags being truthful,
as itis possible that;(x) # Y;(z) (see Remark 3).

Theorem 4.11. Assume all agents are purely rational, and ¢ebe any concept class
with a bounded dimension. For amy> 0, there isk (polynomialonly in %) s.t. if
at leastk datapoints are sampled, then the expected risk of Mecha8igrat most
(3 - %) * Tmin T €.

Interestingly, the alternative assumption improved tmega complexity: the num-
ber of required samples no longer depends:ppnly on % In a somewhat counter-
intuitive way, the rationality assumption provides us witktter bounds without using
the notion of truthfulness at all. This can be explained lgy/ftitt that aational (i.e.,
self-interested) labeling of the dataset is a better proxgrt agent’s real type than a
truthful labeling. Indeed, this strange claim is true sitlee sampling process might
produce a set of point¥ that represents the agent’s distribution in an inaccurate v

5 Discussion

We first review our results in the decision making settingntm the learning theoretic
setting, and finally present some directions for future aese

Decision Making Setting

We started by studying the simple case where there are onlpossible decisions. In
this setting there is an almost trivial mechanism that isugrstrategyproof, and guar-
antees a 3-approximation ratio. While there are no bettarhintistic mechanisms,
we showed how a specific randomization can be used to achi@vapproximation
ratio, while maintaining the group-SP property.

For the more general case, we showed that a simple randdéonizdtthe dictator
(the WRD mechanism) achieves the best possible approximation wdten agents
have uniform weights, but falls short in the weighted case tién presented a new
mechanism that closes this gap and obtains optimal appetiimresults in the general
case CRD). In the weighted realizable case, we presented a mechah&mmatches

B3There is a fine issue here regarding the finiteness of the ponlzss, that we deal with in the proof.
14As we explained in Remark 3, the revelation principle doesappty here, since the agents do not report
their full preferences.
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All Classes (shared inputs) Binary decision
general dataset$ realizable datasets

HD O(n) (Th.4.1) = O(n) = O(n)
PM - - 3 (Th.3.2)
[ lower bound]] Q(n) (Th.43)| Q(n) [13] || 3 (Th33) |

Table 1: Summary of results (deterministic mechanismsg ddrresponding theorem
for each result appears in parentheses.

All Classes (shared inputs) Binary decision
general datasets \ realizable datasets

WRD 3 (Th.4.4) 2 (Th.4.4) = 3
SRD > 2.4 (Prop.4.7) > 1.39 2(Th.3.6)
CRD 3—2 (Th4.) 2—1 (Th.4.8) 2
RRD >3 (Th.4.9) 2—2 (Th.4.9) 3
best upper bound — 2 (CRD) — 2 (RRD) 2 (SRD,CRD)
lower bound 3—2 (Th.4.6[27]) ? 2 (Th.3.4)

Table 2: Summary of results (randomized mechanisms). Wctome that the upper
bound for realizable datasets is tight, but this remainspgma@uestion.

the best known results with uniform weights. However it il sin open question
whether this bound is tight, as no non-trivial lower boundslkanown.

We showed that these approximation results stand in shatpasbto the determin-
istic case, where no deterministic mechanism can guaranteastant approximation
ratio. The trivial selection of the heaviest agent as a thicia the best deterministic SP
mechanism at hand. Results also highlight the power of theeshinputs assumption,
as they allow us to break the lower bounds that hold in the géoase [29].

All these results (summarized in Tables 1 and 2) may helpsaetimakers—both
human and automated—in reaching a decision that approXimai@ximizes social
welfare, when data might be biased by conflicting interests.

Implications for Facility location

As we hinted in the introduction, our classification modei b& seen as facility loca-
tion in metric spaces, where the particular space that wésuke binary cube. In fact,
the2 — % bound in Theorem 4.5 follows directly from a folk result irciiéty location,
and has been employed, for example, by Alon et al. [2]. We madt describe our
results in the decision-theoretic setting in the wider eshbf metric spaces, thereby
extending and generalizing the mentioned folk theorem.
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Let (¥, d) be a metric spac®. Let F = {fi,..., f,} be a finite set of points in
F, where each poinf; has an attached weight; reflecting its importance. Define
d(f, F) as the (weighted) average distance frérto F', and letf* € F be the point
that minimizes this distance, i.e.,

[* = argmin. z d(f, F') = argmin; » Zwid(f, fi)-

i<n

We are interested in selecting one of the pointB'jthat will be as close as possible
to all other points. The restriction is that this selectionstnbe “blind”. That is, we
must select without knowing the actual distances. All wevkaoe the weights of the
n points. Clearly, if weights are uniform, one can do no betiti@n simply picking
a random point inF. The following inequality, which is a folk theorem, boundet
expected distance achieved in this process.

LS a,p < (2 - 2) a(f*, ). (14)
n i<n n

As we informally explained before, the upper bounds on thEr@pmation ratio
of theWRD mechanism (e.g., the realizable part of Theorem 4.5) carebeed from
Eqg. (14) by defining a metric over classifiers, reflecting tfaetion of the data space
on which they disagree. In the uniform-weight, realizaldee; thaVRD mechanism
picks an agent at random, and thus its risk is exactly theageedistance between
each agent’s optimal classifier and the other agents. Thealadetails appear in Ap-
pendix B, where we also supply an analog for the non-redbzedise, and extend our
bounds to weighted agents.

Moreover, the full proofs show that all mechanisms of Sectdattain the speci-
fied approximation ratios in a more general model, where thate labels are non-
deterministic, and datasets are given in the form of a (Mdistribution over X’ x
{+,—}.18 The theorems in Section 4, under the standard model we gegsémith
deterministic labels), follow as a special case.

Implications for Partition and Judgment aggregation

Given a subsek of R? (and in particular an interval), partitions &f just form another
metric space. Informally, the distance between two part#is exactly the volume they
disagree on. The set of all partitions that are allowed dtnss the concept clags

A similar approach to the Judgment aggregation problemiregisome additional
assumptions, since issues on the agenda cannot alwaysb#ydiompared and quan-
tified. We will clarify this using the following simple exar®(the Doctrinal paradox,
see e.g. [14]): The agenda contains the three logical esipresX = (a,b,a A b).
Legal assignments are those that are also logically cemsigt.g.(1, 1, 1) is legal, but
(1,1,0) is not). We can therefore naturally defii@s the set of all legal assignments
(IC] = 4 in this case). The “datasef then contains the opinion of every judge over

|t is in fact sufficient to assume thdis apseudo-metrid.e., it is possible thai(f, f’) = 0for f # f'.
16The datasets in Section 3 can be viewed as a single data pittimon-deterministic labels. The proba-
bilities of a positive/negative label for agendre proportional t@®; and N;, respectively.
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the correct assignment. Consistency of the judges’ opindmmcides with the require-
ment thatS is individually realizable. The subtle issue is that a-prithere is no reason
to say that, for exampléd,, 1,0) is closer to(1, 1, 1) than to(0, 0,0). However if we
assign a fixed weight to every issue on the agenda (that ajegidan agree on) then
we have a natural metric, and we are back at the “shared igeditthg of Section 4.
Our suggested mechanisms can therefore be used to randatega assignment that
is close — on average — to the opinions of the judges. It is itlapdto note however
that if the judges disagree on the importance of certairesssthhen approximation is
not well-defined, and even strategyproofness is no longaragteed.

Dokow and Holzman [14] characterized those agendas forhwfdeterministic)
non-dictatorial aggregation rules extét. Our randomizations guarantee a constant
bound on the social welfare undany agendabut it is likely that under some fam-
ilies of agendas (such as those characterized by Dokow atmirida), an even better
outcome can be guaranteed.

We should mention in this context a recent paper by Nehamja {8fich studies
approximate judgment aggregation rules from a differemleggnwithout considering
incentives or welfare at all. Rather, the paper charaastiales whose properties (e.g.
consistency) only approximately hold. We hope to exploeegpplicability of similar
relaxations to other domains in our future work.

Learning-Theoretic Setting

In all cases where a constant upper bound on the approximegim was available,
we showed how to use the SP decision mechanism to implemaenirg mechanisms
with a bounded expected risk. More precisely, our mechasisample a finite number
of data points from a given distribution, which are therealabeled by self-interested
agents. The expected risk of the mechanism (where expattistitaken over both
sampling procedure and internal randomization) is contptréhe expected risk (over
the given distribution) of the best classifier in the concglpss. This allows us to
achieve an approximation ratio that is arbitrarily closé®approximation guaranteed
in the decision theoretic setting@:when there are only two classifiers, ahe % when
there are more (provided that all agents sample from the sistréoution). When the
optimal risk itself is high (say, above— 10%) then such results are not very useful.
With low optimal risk, a constant approximation ratio2obr 3 is quite good, especially
since it applies across all concept classes and all ditiitms!

We made a distinction between alternative game-theorssigraptions on agents’
behavior, showing how the different assumptions affecttkehanism and the number
of required samples.

Our results in the learning theoretic setting contributéhto design of algorithms
that can function well in non-cooperative environments. al¢® promote understand-
ing of the underlying assumptions on agents’ behavior ith®nvironments, and how
these may affect the learning process.

1"Dokow and Holzman [14] did not require strategyproofness,diffierent properties that are closely
related.
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Future Work

Future research may provide answers to some of the questiohsft open, and ex-
pand this young hybrid field in new directions. More effici&R mechanisms may be
crafted to handle specific concept classes. Further extessif the SP classification
model we presented may be considered: formalizations oltiaer the PAC-like one
we suggested; different loss functions; alternative gémeeretic assumptions as well
as restrictions on the structure of the dataset. It is alssipte to alter the model by
allowing different types of strategic behavior, such asregsrting thdocation of the
data points rather than their labels.

All of these directions may reveal new parts of the overattyrie and promote
a better understanding of the conditions under which Shilegrcan take place ef-
fectively. This, in turn, might supply us with new insightsgarding our results and
regarding their relationship to other areas.
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A Proofs of Section 3

Theorem 3.4. Lete > 0. There is nq2 — ¢)-approximation strategyproof randomized
mechanism.

Proof. We will use the same datasets used in the proof of TheorenaBd3illustrated
in Figure 3. LetM be an SP randomized mechanism, and denotgdy: | S) its
probability of outputting: given S.

We first show that the mechanism chooses the positive hygistidth the same
probability in all three datasets.

Lemma A.L. pm(cy | ST) = pm(cs | ST) = pm(es | ST).

Proof. As in the proof of Theorem 3.3, the agents can make one ddtaselike
another dataset. iy (c. | ST) # pm(cy | STF) then agent 2 will report its labels in
a way that guarantees a higher probability-of Similarly, py(c1 | ST1) # pu(cy |
STy implies that agent 1 can increase the probability oby lying. O

Denote
pr =pulcs | ST) =pulcs | S™) =pmlcs | S,

and
p-=pulc- | S =pule- | S™) =pm(c- [ STT).
Without loss of generality, > % > p_. Then:

R[(M (SIII),SIII) _ p+RI(C+,SIII) +p,R1(C,,SIII)

o 3t+41 t+1
TP g TP g
Sl Bt+1 1 t41 1
=2 442 2 4t+2 2
whereas P41
* _ Ry(c_.SHIy — _
r I(C) ) 4.t+2
Fort > 1 it holds that
Ry (M(STH1), STy 4t 42 1
= =2 >2—c€.
* 2(t+1) t+1

As before, ifp_ > p,, a symmetric argument shows that(R1(S7), S7) > (2 —
e)r*. Therefore no SP mechanism can achiey2 & ¢)-approximation, even through
randomization. [ ]

Theorem 3.6. Mechanism 2 is a group strategyproof 2-approximation randeed
mechanism.
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Proof. Similarly to Mechanism 1, Mechanism 2 is clearly group SRgsideclaring a
false label may only increase the probability of obtainingassifier that labels cor-
rectly less than half of the agent’s examples, thus incngalie subjective expected
risk.

Assume without loss of generality that > P, i.e., that the negative classifier
is better. Denote by = % the total weight of all agents that suppert.

LemmaA.2. 1 —r* < 1H2p%,

Proof. The largest possible number of negative examples is adhieden all the
negative agents control only negative examples, and afigb#ive agents control only
a slight majority of positive labels. Formalliy < N’ + %, and thus:

N N P l-w 14w

—*: = < — _— = = —\
L=r Rifer) m*m+2m v 2 2

It must follow thatr* = 1 — (1 — r*) > 15%. By dividing the two inequalities,

ﬂi < 1%%; thus the lemma is proved. O

w?Ry(c_,8) + (1 —w)?R(cy, S)

R/ (SRD(S), S) =

w? + (1 —w)?
2 % 1— 21_ * U)27”'*+ 1—’LU21+U)T'*
_wrr+ A —w)(l—r) < ( iy (from Lemma A.2)
w? + (1 —w)? w? + (1 —w)?
w?r* + (1 — w)(1 + w)r* 1 .
= — r
w? + (1 —w)? 2w? —2w+1
< 1/27" =2r,
where the last inequality holds sin2e? — 2w + 1 has a minimum inv = % |

Theorem 3.7. Given sampled datasets, assume weak truthfulness. Fot any,
there ism’ (polynomial inln(n) and %) such that by sampling»’ points for each
agent, it holds that

R[(SfF\?b) < 27min + €.

Specifically, samplingn’ > 50 % In(12%) will suffice.

Proof. In this proof we will differentiate the real risk, as defineat the learning-
theoretic setting, from thempirical risk on a given sample, as defined in the simple
setting. The empirical risk will be denoted by

Ri(e,8)=— 3 [el@) #4)

(z,y)€S

Also, to simplify notation we replacﬁfR’vDWith justM throughout the proof. Note that
M can equally stand for any other group strategypraajpproximation mechanism
(including CRD, and the mechanism presented in [28]).
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Without loss of generality we assume thdt= R;(c_) < R;(cy). Notice that
if * = Ry(c*) = Ry(c_) > L — 3e then any concept our mechanism returns will
trivially attain a risk of at most + 3¢ < r* 4 6¢. Therefore, we can assume for the
rest of this proof that

Rr(c-) +3e < % <Ry(es) — 3e. (15)

Let us introduce some new notations and definitions. Dematelata set with the
real labels byS; = {(z;;,Yi(xi;))}j<m; S = {S1,...,S.}. Note that the mecha-
nism has no direct access$o but only to the reported labels as they appedf.in

DefineG as the event “the empirical and real risk differ by at madstr all agents”;
formally: R

Ve € {eq, e}, Vi eI, |Ri(c, S;) — Ri(c)] <e. (16)

LemmaA.3. Lets > 0. If m’ > 55 In(22), then with probability of at least — 6, G
occurs.

Proof. Fix ¢ € I. Consider the everit;(z) = +, and its indicator random variable
[Y:(z) = +]. We can rewrite the empirical and real risk as the sum anddbectation
of this variable:

Ri(c-) = Eqnpy [[Yi(z) = +]] = Ea gy~ [[y = +]]

ﬁi(cf,si):% > [[Yi(x)=+ﬂ=% > =+l

(z,y)€S; (z,y)E€S;

SincesS; is sampled i.i.d. fronD;, the empirical risk is the sum of independent Bernoulli
random variables with expectation(R_). We derive from the Chernoff bound that for
any data set of sizg5;| = m/:

Pr[[Ri(c_, S;) — Ri(c_)| > ] < 2¢2™
Takingm’ > 51> In(22), we get:
Pr[-G] = Pr[3i € I, |Ri(c_, S;) — Ri(c_)| > ¢
< ZPT[|§i(C—7Si) —Ri(e-)| > €

iel

/ §
< |I|2€_2€2m <n— =79,
n

where the first inequality is due to the union bound. O

Note that since
IRi(c_, 8;) — Ri(c_)| = |Ri(c4, Si) — Riley ),

it is enough to show the above for .
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If G occurs, then from (16) and the triangle inequality it holdattfor all ¢ €
{cy,c_}andi eI,

Re(e) ~Re(e, ) < 2 L Ri(e) Rl 8)] < e (17)

i€l

Using (17) we could have bounded the risk\d{.S), but unfortunately this would
not do as the mechanism may only accésand notS. In order to bound RIM(5)),
we need to know, or estimate, how the agents label their ebemn@o handle this
problem, we will first analyze which agents may gain by lyiagd then define a new
data setS with the following two properties: no agent has motivatiorlie (thus we
can assess the result of runnikigon S), and.S, S are very similar.

We now divide! into two types of agentst’ = {i € I : |R;(c—) — 3| < €}, and
I" = I\ I'. For each agente I, we denote byP;, N; the number of positive/negative
examples the agent controls f). Note thatP; = m/R;(c_, S;). Since R(c_) <
Rr(c4) we may assume without loss of generality that all agénts I’ preferc,
(otherwise lying only lowers the expected risk of our medam). Agents inI”, on
the other hand, cannot benefit by lying, singemust reflect’s truthful preferences,
and Mechanism 2 (which is used by Mechanism 3 in step 3) is SP.

For each agentdefine a new set of examplé&s as follows:

o lficI” S =S

o If i € I, defineP; = P; + [em'] and letS; containP; positive examples and

m' — P; negative ones.
Lemma A.4. If G occurs, then for all agents i
N; < P <= Ri(c_) > Ri(cy)

Proof. If i € I"” then w.l.0o.9. R(c—) < R;(c4+) — 2¢, thus from (16)

P, =P, =m'Ri(c_,S;) <m/(Ri(c-) +e)
<m/(Ri(cy) —€) <m/'Ri(cy, Si) = N; = N;.

If ¢ € I’ then according to our assumption
Ri(ct) < Ri(c-) < Ri(cy) + 2e.
Moreover, by the definition of’;,
P, >P +m'e; N; <N; —me.
Thus

P, > P +m'e =m/Ri(c_,S;) +m'e > m'Ry(c_)
> m'Ri(ey) > m'(lfii(c+,Si) —€) >N, —mle> N;.
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Lemma A.4 implies that, it¥ occurs, agents cannot do better than resounder
Mechanism 3, sincé; reflects the real preferences of agénhow, if agent; reports
truthfully, thenP; = P;. If i decides to lie, it may report more positive labels, but
cannot gain from reporting more thdh such labels, and, crucially, the mechanism’s
outcome will not change in this case. The immediate restittaswe can assume:

_ 1_— 1 -~ -
P<P=Y -P, <Y —P =P,
- n *Zn

and, since the expected riskMf only increases with the number of positive examples
(the probability of Mechanism 3 choosing the positive dfgsincreases),

R/(M(S)) < Ri(M(5)) < Ry (M(3)). (18)
We can now concentrate on bounding the empirical risi§ on
Lemma A.5. If G occurs,
Ve e {cy, e}, |Ri(c) = Re(c,S)| < 3e. (29)
As in Lemma A.3, it will suffice to show this only far_.
Proof. From (16), form’ > 1,

P+ [m'e] _ Pi+mle+1
Ri(c,§) = Lt = + [m/€] < bitmlet

/

m’ - m

~

< = 42 =Ry(c_,S) +2 <Ry(c_)+e+ 2 =Ry(c )+ 3e.

3w 3|

From (15) and (19)

Ri(c_,8) <Ry(c) + 3¢ <Ry(cy) — 3¢ < Ry(ey, 5) (20)
Soc_ is also empirically the best concept f6f Mechanism 2 guarantees:
Ri(M(S),8) < 2Rs(c_, S) (21)

Furthermore, since the risk of Mechanism 3 is a convex coattuin of the risk of
cy,c_, we get from (19),

Ri(M(S)) < Ri(M(S),5) + 3¢ (22)
Finally, by using (18), (22), (21) and (20) in this order, wet that if G occurs:

R/ (M(S)) < R;(M(S)) < R;(M(S),8) + 3¢ < 2R (c_, S) + 3¢
< 2(Rr(e-) + 3€) 4 3e = 21" + ¢

If G does not occur, the risk cannot exceed 1. Thus by applyinghai.3 with

§ = e = £ we find that form’ > 50 1 In(02):

R;(SRD) < Pr[G](2r* + 9¢) + Pr[-G)]1 < 2r* + 9¢ + € < 2r* + ¢/,

as required. [ |
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B Proofs of Section 4

B.1 Proofs of Upper Bounds under Shared Inputs
(Sections 4.1, 4.2)

We formulate and prove our results in a somewhat more gerneydeél, in which the
preferences of each agent are encoded by a distributidmerrétan a deterministic
function. The new model extends the one presented in Settigth two components:
(a) some data points may receive more attention than otfigitie preferences of each
agent can reflect uncertainty, or indeterminism, regarttieglabel of a specific data
point. The theorems in Section 4 follow easily as a specisé¢ cén addition, the use
of distributions makes the proofs in the generalizationisadSection 4.3) easier and
more natural.

For that purpose we replace the profile of finite datasets (Si,...,S,) with
a profile of distributions?” = (Fy,..., F,) overX x {—,+}. The marginal of all
distributions overX is the same. We denote this marginal By, and take it as a
measure of the interest that the agents have in differetd pathe input space. L&{
be the set of all deterministic functions: X — {—, +}. In particularC C H.

We adjust the definition of the private and global risk to Hardlistributions.

The private risk ofi € H to agent w.r.t. the profileF’ is thus defined as

As usual, the global risk is defined as

Ri(h,F) =Y wiR;(h,F).
iel
As with discrete dataset$; is said to be realizable w.r.t. a concept cléss H if
there is a concept € C such that R(c, F;) = 0.
Every distributionp on X x {—, 4} induces a non-deterministic functigip from
X to labels. FormallyPr(f,(x) = +|z) = E, )~ [[y = +]|], and for convenience
we denote this probability by, () € [0,1]. Similarly,

I, (@) =1=F,(2) =Pr(fp(z) = —|2) = E@yy~p [y = =] | 2]

4

We denote byF the set of all such non-deterministic functions. Note tHat F,
and thus every concept claGss also a subset of.

A special case is whem = F;, in which casef; = f, conveys the preferences of
agenti. We assume that agents’ preferences are independentptreigefy two agents
i # j, foreveryz € X and everyy,y’ € {—, +},

Pr(fi(e) =y, fj(@) =y | 2) = Pr(fu(z) =y [ 2) Pr(f;() = o' [ 2) . (23)

Definition B.1. We define thdistancebetween two classifiers (w.r.t. a fixed distribution
Fx € A(X)), as the part of space they label differently. Formally:

d(f7 f/) = de (f7 fl> = Eszx [PI‘(f((L’) 7& f/(l‘) | x)] . (24)
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LetC C H any concept class, then the following holds.
VeeC,\Vjel, d(fj,c) =Rj(c, F). (25)

The proof of Equation (25) is as follows.

Rj(C, F) EE(I,y}ij H[C( ) 7é y]] INFX Z PI' y ‘ ) 7& yﬂ

ye{— +}

=Er, [£,(@)e(@) £ ]+ T, (@)e(z) # +1]

J

=Epy [Pr(fj(2) = — | 2)[e(z) # =] + Pr(f;(z) = + | 2)[c(z) # +]
=Epy [Pr(fj(z) = = c(z) = + | 2) + Pr(f;(z) = +,¢(z) = — | 2)]
=Epy [Pr(fj(z) # c(z) | 2)] = d(c, f;) (from (24).)

Recall thate; = argmin... R;(c, F) andc* = argmin... Ry (c, F).
As a special case of Equation (25), we get that

Vi,]( (Cz»f]) (CuF))' (26)

Vi € I (c¢; = argmin.cc d(c, fi)) - (27)

The following lemma can be seen as a formalization of theestant that our
decision-making setting is equivalent to facility locati;n some metric space (the
binary cube).

Lemma B.2. d is reflexive, non-negative, symmetric and satisfies thedt@inequal-
ity.

Proof. Non-negativity and symmetry are trivial.

d(f, f) =Ezury [Pr(f(z) # f(z) | )] = Exory [0] = 0, thus itis reflexive as well.
We prove the triangle inequality. Lgt f’, f”/ € F. Note that disagreement gfand

1" requires that at least one of them disagrees Witlihus for allz € X

Pr(f(z) # f"(x) | 2) =Pr(f(z) # f'(2), f'(x) = f"(z) | z)
+Pr(f(x) = f'(2), f'(x) # [ (2) | x)
<Pr(f(z) # f'(z) | 2) + Pr(f'(z) # f"(2) | @),
and therefore
(f7 f”) 1~Fx [Pr(f(x) f
<Eonry [Pr(f(z) # f'(2)
=Ey;~ry [Pr(f(z) # f'(2)
=d(f, f') +d(f', f").

Thus the triangle inequality holds. O

# f(x) | )]
| 2) +Pr(f'(z) # f(x) | )]
| )]+ Bonry [Pr(f'(z) # f7(2) | 2)]
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Lemma B.3.

ZwiRI(ci,F) = Z Zwiwjd(q’ i)

iel
Proof.
ZwiRI(Ci;F) :ZwiR1<CiaF
il i
_Zw7 (ij C“ ) :ZZwiwjd(ci,fj). O
i g
Lemma B.4.
Zzwzwj f’l)f_}) < ( 2wmin) r*
Proof.
Zzwzw] fwf] Zzw’bw] f’mfj) (Sinced(fi7fi) = 0)
) i jF#L
< Z Z ww; (d(fi, ¢*) +d(c”, fj))+ (Triangle Inequality)
i JFi
= wid(fi )Y wi+ Y wi Yy wid(fjc”)
i J#i i j#i

—sz fz» ]-_wz +sz (ij fj? wid(fiaC*))
—sz fz, 1_wz)+r — w; (fiaC*))

<sz fz7 wmin) +T* _wmind(fiac*))
— Wmin Zwl ( fla +T*sz wminzwid(fiaC*)>
:(1 — wmin)r +r* — wminr* = (2 - 27~Umin)7ﬂ*- O

Note that Equation (14) is derived as a special case of themkemhen weights are
uniform.

We can now use these lemmas to bound the approximation rfadier snechanism
in this extended setting. We begin with the simpler, deteistic mechanism.
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Theorem 4.1'. Let|I| = n. For every concept clagsand anyprofile F', Mechanism 4
is an SP(2n — 1)-approximation mechanism.

Proof. We first find a lower bound on*:

r* —RI B sz z F sz z (28)

el el

>w;d(c, f;) > %d(c*,fj) (sincej is heaviest)

Then we upper bound the risk of:

R[(HD(F),F) RI ij sz ijfz —w] c]?fj +sz ijfz

icl 1#£]

Swj f] +sz c]a d<C*7f'L))
i#])
(from the triangle inequality)

d(cj,c Zwl—i—Zw, i) =d(cj, ¢ sz+7‘

i#j] iel i#]
Sd(cj,c*)n% +r* (w; = %)
<r* + nT_l(d(cj’ fi) +d(f;,¢)) (triangle inequality)
<r* 4 ”T_lw(c*, i) (from (27))
<+ P Loy (from (28))
=r*+(n—1)2r*=(2n—1)r u

Theorem 4.4’. For every concept class and for any datasef, Mechanism 5 is an
SP(3 — 2w,y )-approximation mechanism, wheug, ;;,, = min;c; w;. Moreover, ifS
is individually realizable, thelf2 — 2w,,;,,)-approximation is guaranteed.
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Proof. Using the lemmas above,

R/(WRD(F), F) = w;R(c;, F) = Zzwiwjd(fivcj)

i€l

< Z Zwm)j (fi, f;) +d(fs,c;))  (Triangle Inequality)

= Z Z ww;(d(f, f;) + d(f;,¢")) (from (27))
=> Zwiwj (Fi £) + 3 wid(fy,¢) > w

§(2Zf ;wnnn)r* +y wjd(ij, ) (:‘rom Lemma B.4)
=(2 = 2wmin)r* + Y w;R;(c", F) (from (25))

J
:(2 - zwmin)’r* + RI(C*7 F) = (3 - 2wrrlin)r*

Further, if we have an individually realizable profil¢/, then for any agenj,
d(fj,¢j) = Rj(c;, F') = 0 (from (25)), in which case

R;/(WRD(F szRI (ci;, F') < ZZwiwjd(fi,fj) < (2 = 2wppin ) .
g

el

Thus the proof of Theorem 4.4’ (and Theorem 4.4 as a spedal) ¢acompletell

Proposition 4.7. There is a dataset with three agents, such that

2
R/(SRD(S), S) > 241" > <3 - n)

Example B.5. We set our concept class tb= {c_,c;}. Assume w.l.o.g. that an
agent that is indifferent between the concepts dictates theoncept. Let, S, be all
positive. S5 contains exactly half negative samples. We set agentshige#s follows:
wy, = wy = 0.29, andws = 0.42.

Observe first that Rc—,S) = 0.79, whereasr* = Ry(c4,S) = 0.21. How-
ever, theSRD mechanism selects agent 3 (and thus the coneepivith probability of

0.422 ~
0397702004z = 0-511. Therefore,

R/ (SRD(S), 5) > 0.51-0.79 + 0.49 - 0.21 = 0.5058 > 2.4 -0.21 = 2.4 - 1*,

which proves the lower bound. O

Proposition B.6. There is an individually realizable datasgtwith three agents, such
that

2
Ri(SRD(S), ) > 1.39 - * > (2 _ ) -~

n
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Example B.7. We keef = {c_,c}. Let Sy, S5 be all positive, andS; be all nega-
tive. We set agents’ weights as follows; = wy = 0.363, andws = 0.274.
We have that Rc_, S) = 0.763, andr* = R;(c4, S) = 0.274. TheSRD mecha-

nism selects agent 3 with probability 9%63%8%5%.2742 =~ (0.222. Therefore,

R/ (SRD(S), S) > 0.222 - 0.763 4 0.778 - 0.274 > 0.382 > 1.39 - 0.274 = 1.39 - 1*,
which proves the lower bound for the realizable case. O
Theorem 4.8'. The following hold for Mechanism 6, w.r.t. apyofile F'

o aw<2-2

o CRD has an approximation ratio af, + 1, i.e., at mos8 — %

o if Sis individually realizable, then the approximation rati® ¥ + 1, i.e., at
most2 — 1.

Proof. We first prove thaty,, <2 — 2.

Letg(z) = 5. Note thatg is convex. Also, sincg_,_; w; = 1, we have that
1 2
~< ;w <1 (29)
(2

(aw)™' = Zp; = szﬁ = Zwig(wi)
el

i€l el
1 . .
29 (; w; - wl> = m (from Jensen'’s inequality)
1
= 2 3(1/n) from (29
S22 (from (29))

thusay, <2 — 2.

We denote byi(f, /') the number of disagreements betwgeandf’. f;, ¢; denote
the labels of agent, and the classifier i@ that is the closest to them (i.e.,c C that
minimizesd(c, f;)). For anyc, it holds that

Ri(c, F) =Y wiRi(c,F) =Y wjd(c, f;).

i€l i€l
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Note that for alki, d(c;, ¢*) < 2d(f;, ¢*), since otherwise* is closer tof; thanc;.

Ri(CRD(F), F) = > piRi(ci, F) = Y _p; ¥ wyd(cs, f;)
icl i€l jel
= Z Zpiwjd(civ fi) + piwid(ci, fi)
i€l \ j#i
< Z Zple sz d(C*, f])) + piwid(C*v fz)
i€l \ j#i
= Zpid(ci, ) Z wj + Z Zpiwjd(c
iel j;ﬁi i€l jel
awz Czac*)(l_wi)+ijd(0*afj)zpi
il jel i€l
< Qw Z 712d(fi,c*) + ijd(c
icl jel
Oéw+1 Z’U)J Olw"'l)RI( ) )
jeI

2 *
< (3—>r
n

Now, in the realizable cas¢; = ¢; for all i.

R/(CRD(F), F) =Y piRi(ci, F) =Y pi > wid(fi, f;) = > _pi »_wid(fi, f;)
i€l il jel iel  j#i
< ZZP#UJ fzz +d(fj7 )) (T.1.)
i€l j#i
= pid(firc) D> wi+ > pi > wjd(fy, )
i€l j#i iel  j#i
*sz fz; 17701 +sz wzd(fzaC*))
el iel
awz fw )(1_'“)1 +T szwz fza
icl iel
= S wid(fi ) + 17 () = Y pawvid(fi ")
iel i€l
= %"’r*(F) +r*(F) — Zpiwid(fi,c*)
iel
< (Sr+1)r@) < (2— 111) r(F),

which completes the proof.

Theorem 4.9. The following hold for Mechanism 7:
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o Bw<1-2
o RRD has an approximation ratio of at mostand at leasB (in the worst case).

o if S is individually realizable, then the approximation rati® i + Sy, i.e., at
most2 — 2.

Proof. Let g(z) =

=D m=) wit

_E w;q wz

el el iel
1
>q Wi W | = ———— (from Jensen’s inequality)
<; ) 1-2 Zie[ wzz
1
> f 2
> T (from (29))

thusfy <1-— =
For the upper bound, we will need the following.

LemmaB.8. Forall i € I, p; < 2w;.

Proof. Leth(z) = 5
w;
> nE—, (30)
J#i ];éz
Next,
wy w;
h(
Zl—Qw 1—2w1+21—2wj 1— 2w +Z (ws)
jerl
w; 1 —w;
> — .
kmﬁmlm@4> (by Eg. (30)
w; L w; 1—w;
_ 7 1 n—1 — 7 - Wy
1— 2wz + (TL )1 . 217;71111 1— le + 1— 21”::1?
W; + 1/2 - Ww; + 1 > w; n 1
“1-2w;, 1_9Y2 1-2w; 22227 1-2w; 2
n—1 n—1
Therefore,
—1
w; w; 1 w;
pi = 5wp2 = . < w; 1
jGZIlwij 1 — 2w; et 3 1 —2w;
w; w;
= = = 2wi. D
wi + 12w — w3
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We now bound the risk dRRD. We skip some steps that are detailed in the upper
bound proof of th&CRD mechanism.

R;(RRD(S szRI ¢i,S) = Zpid(civc*) ij + ZZpiw;‘d(C

i€l i€l J#i i€l jEI
:ﬁWZ]__wQ d(cza 1—’LU1 +Zw] 7fj)zpi
icl jel icl
2w; (1 — )
< Bw 1621 1 %w d(fi,c*) +r*(5)
B w;( 2wz) w; e .
_6‘";(1—2 d(fi, ) + 1—2wid(f“c )) +77(5)
= B Y _wid(f;,¢" +5WZI_;w,d(fi,c*)+r*<S>
i€l iel
= B () + B 3 g (i ) <D _pid(fi,c®) +2r%(8)
iel i€l
<2 wid(fi, ) + 2r*(S) = 2r*(S) + 2r*(S) = 4r*(9).
icl

In the realizable case, recall tht= ¢; for all i.

R/(RRD(S),S) = > piRi(ci,S) =D pi Y _wjd(fi, f;) =Y _pi Y wjd(fi, f;)

icl iel  jel iel  j#i
<Zzpzw1 .fu +d(fj7 )) (T.1)
i€l j#i
= pid(fi, ) wi+ Y pi Yy wjd(fj,c*)
i€l i i€l j#i
*sz fu 17’[01 +sz wld(fuc*))
el i€l
(1 * Wj * *
= Bw ; 2w, d(fi, ¢)(1 —w;) — Bw ; mwid(fuc ) +17(S)
o wi(l sz)
= 3 gy W) 7 (9)
= Bw »_wid(fi,c*) +17(8) = Bur™(S) +17(S)
iel
(148 (8) < (2 2) (5,
which proves the upper bound. |
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B.2 Proofs of Generalization Results (Section 4.3)

As in Section 3.3, we distinguish the notatiofciR(the risk w.r.t. the fixed input distri-
bution) fromR(¢, S) (the empirical risk, w.r.t. the sampled dataSgt For the proofs in
this section, we will also need the following fundamentaluléfrom machine learning
theory.

Theorem B.9(Vapnik and Chervonenkis [41])Letm be s.t.

Vo Vo
Let S be a dataset that contains data points sampled i.i.d. from a distributidn €
A(X x )). Then with probability of at least — 0,

VeecC (|R(c) “ R, S)| < e) (31)

where V¢ is a constant which dependsly on the concept clas§, and not on the
distributionD or on any other property of the problem.

Ve is known as th&/C-dimensiomf C, introduced in [41]. We do not give a formal
definition of Vi here. However, detailed and accessible overviews of bottihéGry
and PAC learning are abundant (for example, [12]). Whitemay be very large, or
even infinite in some cases, it is known to be finite for many mmmly used concept
classes (e.g., linear classifiers).

Theorem 4.10. Assume all agents aketruthful, and letC be any concept class with
a bounded dimension. For ary> 0, there isk (polynomial in% andln (n)) s.t. if
at leastk datapoints are sampled, then the expected risk of Mecha8israt most
(3 — %) * Trmin + €.

Proof. Let.S; = (X, Y;(X)) be the partial dataset of agenwith its true private labels.
Denote byQ; = Q;(¢) the event that

vcec(\Ri(c)—fei(QS)\ <e>. (32)

We emphasize thap); is a property ofS, i.e., for some random samplésthe
event(@; holds, whereas for others it does not hold. Our proof sketshrow be
reformulated as follows:

(a) Q; happens for all simultaneously with high probability.

(b) WheneverQ; occurs, agent will report truthfully (under thee-truthfulness as-
sumption).

(c) When allQ; occur, the risk of Mechanism 8 is bounded (By— 2) - rpin + €.

(d) Otherwise the risk can be high, but this has a small effe¢he total expected risk.
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Letd > 0. As S; isani.i.d. random sample frof;, then from Theorem B.9 every
@; occurs with probability of at leadt — § (provided that there are enough samples).
Also, from the union bound the probability of the evétit); is at leastl — §’, where

=12,
Lemma B.10. If @; occurs, then agernitcan gain at mosge by lying.

Proof. Assume agentis selected by the mechanism, otherwise it is trivially true
We denote by; € C the concept returned by the mechanism whegports truth-
fully, i.e., ¢; = argmin.. Ri(c, S;).
Letanyd € C,

~

R;(&) — Ri(d) =Ri(é&) — Ri(&,5;) + Ri(éi, S;) — Ri(c)
<|Ri(¢:) — Ri(c:, )|

+|Ri(c, S;) — Ri(¢)| (sinceé; is empirically optimal)
<€+ € =2, (from (32))
O

By Lemma B.10; cannot gain more tha2e by reportingc’. By takinge < <, we
complete the proof of parts (a) and (b) from the proof sketch.

Now, for part (c), we assum&();. Thus, from Lemma B.10 and theruthfulness
assumption, all agents are truthful (i.6.= S).

Lemma B.11. If S holds thatQ; occurs forall : € I, then
Ri(¢*(5),5) < Fmin + €
wherec*(S) = argmin, .. Ri(c, 9).

Proof. Foranyc € C, |R;(¢) — Ri(c, S;)| < ¢, from Equation (32). Therefore

ﬁl(c*(S) S) <R1 (c,89) = Zpl ,9) = Zpiﬁl(c S

el el
< Zpl z RI( )
el
and in particulaﬁ;(c*(S), S) < Tmin + €. U

We now bound the expected risk of the mechanism. We denotg bY) the (ran-
dom) classifier that is returned by Mechanism 6 on the irthuEor any random vari-
ableA, Ey [A | S]is the expectation oft over the random dictator selection for a fixed
datasefS. Similarly,Eg [A | 4] is the expectation ofl over the random sampling, given
thati is the selected dictator.
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E [Rr(em(8)) | ViQ;s] = Es [Em [Rr(em(S)) | ]| ViQ;] = Em [Es [Ri(em (9)) | 4,V5Q5]]
(changing the order of randomizations)

—ZPLES RI Ct ) ‘ { VJQJ]

el
<_piEs [Ri@(S), 8) + € | 1,5 (from (32))
1€
—z;pl]Es [Re(ei(5), 8:) | 4,%5Q;| +¢
(S
—Ey :ES [ﬁ,(cM (S), ) |i,VijH +e
<Ewm _ES {(3 — > Rr(c*(9),S) | z‘,VijH +e (from Theorem 4.8)
<Em :IES {(3 — i) (min +€) | i,Vij” +e (from Lemma B.11)

2 2 2 ’
=({3—— (rmin+€)+€§ 3—— 'Tmin+4€: 3— = Tmin + €,
n n n

which proves part (c) of the proof sketch.
Finally, we bound the total risk of the mechanism, taking fdinto account.

R/(CRD) =E [R;(cw(5))] = Es [Em [Ri(em (S)) | S]]
=Pr(VjQ;)Es [Em [Ri(em(9)) | S] | VjQ;]
+ Pr(=VjQ;)Es [Em [Ri(em (S)) | S] | =5Q;]
<Es [Em [Ri(em(S)) | S] | ViQ;] + 4" -1

=Es [Em [Rr(em(S)) | S] | ViQ,] + 0
(since all agents are truthful in this case)

2 2
S (3 - ) Tmin + 6l + 6/ - (3 - ) Tmin + 6//’
n n

as required. [ |

We conclude by computing the exact number of samples negdbtebhanism 8
under thes-truthfulness assumption.

Lemma B.12. If k > 64Y¢ log (256Y5%™), then

R/(CRD) < (3 - 2) Tanin + €.
n

Proof. From Theorem B.9, ifS,| > 1 )2 log ((6 )25*>, thenPr(—Q;(e*)) < 6* and
from the union bound it holds that

Pr(3j € 1,-Q;(€") < > =Q;(e*) < ns*.

jerl
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Takinge® < g andé* < 4, and unfolding all the residues we used in the proof,
we get that

— 2 2
R;(CRD) < (3 — ) Pmin < (3 — ) Tmin + 4" + 2n0*
n n

9 2
<|3——)7rmmn+ 4E + Qni =|3= =) min + ¢
n 8 4n n
while

s <<V>Ca> = o <<e/8>2vfe/4n>) = 0175 og (256%;5 n) |

O

Theorem 4.11. Assume all agents are purely rational, anddebe any concept class
with a bounded dimension. For ary> 0, there is ak (polynomialonly in é) s.t.if
at leastk datapoints are sampled, then the expected risk of MechaBimrat most
(3 - %) Tmin T €.

Proof. Note that the private distributior®®,, D>, ..., D,, induce a global joint dis-
tribution on the input space, defined Bs= )" , w;D;. We can alternatively de-
fine ru;n as the minimal risk of any concept w.r.t. the distributibn i.e., rpi, =
infeec Eqz,y)~p [[e(z) # y]]. We would like to analyze the outcome of Mechanism 8
and compare the empirical risk to the actual risk. Howeverhave a technical prob-
lem with doing so directly, sinc#; (as defined in the proof of Theorem 4.10) is sam-
pled i.i.d. fromD;, but not fromD.

In order to prove the theorem, we introducevisgtual mechanism(see Mecha-
nism 9). This mechanism generatesrathful datasetS, which can be used as an
i.i.d. sample from the joint distributio.

Mechanism 9The Virtual Learning Mechanism
Samplek data points i.i.d. fronDx (assume we get the same dataseds in Mech-
anism 8).
for each pointr € X do
Select agent with probability w;.
Add (z;,Y;(x)) to S.
end for
return ¢*(S) = erm(S).

The output of Mechanism @;°(.S), is the best concept (ify) for the real datase.
Note thatS is an i.i.d. sample fronD, but an actual mechanism such as Mechanism 8
cannot have access to the real laliéls-hence the termirtual mechanism.

We denote byI" = T'(¢) the event

Rr(c*(S)) < rmin + 2. (33)
Similarly to @; in the previous proof] is a property ofS, i.e., its occurrence

depends only on the sampling.
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Lemma B.13. If k = k(9, ¢) is large enough then
Pr(—=T) < 4.

Proof. This is an immediate corollary of Theorem B.9. As= argmin... Ri(c, S),
C is of a bounded dimension aiftlis sampled i.i.d. fronD, then for anye € C

R;(c*(S)) < Ri(c*(5), ) + e <Rj(c,8) + e < Ry(c) +e+e
holds with probability of at least — ¢, for a large enougk. In particular,
Pr(T) = Pr(R;(c*(S)) < Tmin +2¢) > 1 — 0.

O

It is still not clear how to approximate*(.S), as our mechanism only has access
to S. For that purpose, we define a new concept clagsC C as theprojection
of C on X. Formally, letHx C # be the class of all dichotomies o, i.e., all
hsth:X — {— +}®thenCx = C N Hx. In other wordsCx contains all
dichotomies ofX that are also allowed hg.

Denote bysS; the dataset with theeported labelof agenti, and bye; the best con-
ceptw.r.t. to this dataset. Thatis; = {(z,Y;(z))}.ex ande; = argmin... R;(c, S;).
Observe that*(S) € Cx andé; € Cx for all agents. This is the case since bé‘;rﬁj
are labeled versions of the sEt Thus any classifier that is computed w.tor S is
a dichotomy ofX (which minimizes some function that depends on the lab@s)de-
fine¢ = argmin.c. R;(c). Clearly R (¢) < R;(c*(5)), sincec*(S) is also a member
of Cx. Thus wheril" occurs, the inequality

R/(6) < Fmin + 26 (34)

also holds, directly as a special case of (33).

We next show how to approximateusing the generalized variant of Theorem 4.8,
as it appears in the appendix. Consider a prdfile= (D;,...,D,). This is a valid
profile with shared inputs; thus for any concept C, R(c) = R(c, F) for private and
global risk alike.

Lemma B.14. Let j be the selected dictator, then
¢; = argmin.cc. R;(c) = argmin... R;(c, F).

Proof. Recall thatz; = argmin,. ﬁj(c, S,;). Since we assumeglis purely rational,
he will always label all examples iX in a way that will minimize his private risk.
From the way Mechanism 8 works, only concept<ixn may be returned, and for
anyc € Cy, there is a labeling of s.t.c is returned. This labeling (c) is simply
Vz € X (y(v) = c(z)). Thus argmin_. R;(c) is the best that ageritcan hope for,
and he can also achieve it by reporting the appropriatesabgl d

18pyt differently, H y is a partition of# to equilivalence classes, according to their outcom&og@ X’.
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We now apply Theorem 4.8’ of, using the clas€x, getting
. 2\ 2 -
SRl F) < (32 2) () = (3- 2 Rate) (35)
jel
To see why this holds, observe that the left term is the expledsk of Mechanism 6
when the input is the profilé’ and the concept clags; andé is the globally optimal
classifier for this input. We emphasize that Equation @®jaysholds, independently

of the sampling or selection.
Finally, we bound the risk of the result concept:

Ri(CRD) =Es [Ew [Ri(cw) | ]
=Pr(T)Es [Em [Rr(cm) | S| T] + Pr(=T)Es [Em [R;(em) | S] | =T
<Es [Em [Rr(em) | S] | T]+46 -1 (from Lemma B.13)

=Eg [Z w;R(¢;(5)) | T] +4

jel
<Eg [(3 - i) R;(¢(9)) | T} +6 (from (35))

< (3 - Z) Es [(rmin + 2€) | T] +6 (from (34))

2 2
- (3 ) (Trnin+2€)+5: (3 > Tmin+6€+6.
n n

By takingd = € = % the proof is complete.
Similarly to Lemma B.12, it follows from Theorem B.9 that tag

V. V.
k> 49— log <343§>
€ €

is sufficient for Mechanism 8 to work well under the pure madtity assumption. W
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