
Algorithms for the Coalitional Manipulation Problem∗

Michael Zuckerman† Ariel D. Procaccia‡ Jeffrey S. Rosenschein§

Abstract

We investigate the problem of coalitional manipulation in elections, which is known to be
hard in a variety of voting rules. We put forward efficient algorithms for the problem in Borda,
Maximin and Plurality with Runoff, and analyze their windows of error. Specifically, given an
instance on which an algorithm fails, we bound the additional power the manipulators need in
order to succeed. We finally discuss the implications of our results with respect to the popular
approach of employing computational hardness to preclude manipulation.

Keywords: Computational social choice, Voting, Manipulation, Computational complexity

1 Introduction

Social choice theory is an extremely well-studied subfield of economics. In recent years, interest
in the computational aspects of social choice, and in particular in the computational aspects of
voting, has sharply increased.

In an election, a set of voters submit their (linear) preferences (i.e., rankings) over a set of
candidates. The winner of the election is designated by a voting rule, which is basically a map-
ping from the space of possible preference profiles into candidates. A thorn in the side of social
choice theory is formulated in the famous Gibbard-Satterthwaite Theorem [15, 26]. This theorem
essentially states that for any voting rule that is not a dictatorship, there are elections in which
at least one of the voters would benefit by lying. A dictatorship is a voting rule where one of the
voters—the dictator—single-handedly decides the outcome of the election.

Since the 1970s, when this impossibility result was established, an enormous amount of effort
has been invested in discovering ways to circumvent it. Two prominent and well-established ways
are allowing payments [29, 4, 16], or restricting the voters’ preferences [20].

In this paper, we wish to discuss a third path—the “path less taken”, if you will—which has
been explored by computer scientists. The Gibbard-Satterthwaite Theorem implies that in theory,
voters are able to manipulate elections, i.e., bend them to their advantage by lying. But in practice,
deciding which lie to employ may prove to be a hard computational problem; after all, there are a
superpolynomial number of possibilities of ranking the candidates.

∗A significantly shorter version of this paper (with most of the proofs omitted) appeared in the Proceedings of
the Nineteenth ACM-SIAM Symposium on Discrete Algorithms (SODA-08). This work was also presented at the
Dagstuhl Workshop on Computational Issues in Social Choice, October 2007.

†School of Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel,
email: michez@cs.huji.ac.il. The author thanks Noam Nisan for a generous grant which supported this work.

‡Microsoft Israel R&D Center, 13 Shenka Street, Herzliya 46725, Israel, email: arielpro@gmail.com. The author
was supported in this work by the Adams Fellowship Program of the Israel Academy of Sciences and Humanities.

§School of Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel,
email: jeff@cs.huji.ac.il

1

Indeed, Bartholdi et al. [3] put forward a voting rule where manipulation is NP-hard. In
another important paper, Bartholdi and Orlin [2] greatly strengthened the approach by proving
that the important Single Transferable Vote (STV) rule is hard to manipulate.

This line of research has enjoyed new life in recent years thanks to the influential work of
Conitzer, Sandholm, and Lang [7].1 The foregoing paper studied the complexity of coalitional
manipulation. In this setting, there is a coalition of potentially untruthful voters, attempting to
coordinate their ballots so as to get their favorite candidate elected. The authors further assume
that the votes are weighted: some voters have more power than others. Conitzer et al. show
that in a variety of prominent voting rules, coalitional manipulation is NP-hard, even if there
are only a constant number of candidates (for more details, see Section 2). This work has been
extended in numerous directions, by different authors [12, 18, 25, 5, 8]; Elkind and Lipmaa [9], for
example, strengthened the abovementioned results about coalitional manipulation by employing
cryptographic techniques.

In short, computational complexity is by now a well-established method of circumventing the
Gibbard-Satterthwaite Theorem. Unfortunately, a shortcoming of the results we mentioned above
is that they are worst-case hardness results, and thus provide a poor obstacle against potential
manipulators. Recent work regarding the frequency of manipulation has argued that with many
worst-case hard-to-manipulate voting rules, a potential manipulator may be able to compute a
manipulation in typical settings [6, 13]. In particular, Procaccia and Rosenschein [24, 23] have
established some theoretical results regarding the frequency of success of an algorithm for the
coalitional manipulation problem. The matter was further discussed by Erdélyi et al. [11]. In
spite of this, the question of the tractability of the manipulation problem, and in particular of the
coalitional manipulation problem, in typical settings is still wide-open.

Our Approach and Results. We wish to convince the reader that, indeed, the coalitional
manipulation problem can be efficiently solved in typical settings under some prominent voting
rules, but our approach differs from all previous work. We present efficient heuristic algorithms for
the problem that provide theoretical guarantees. Indeed, we characterize small windows of instances
on which our algorithms may fail; the algorithms are proven to succeed on all other instances.

Specifically, we prove the following results regarding three of the most prominent voting rules (in
which coalitional manipulation is known to be NP-hard even for a constant number of candidates):

Theorem.

1. In the Borda rule, if there exists a manipulation for an instance with certain weights, Algo-
rithm 2 will succeed when given an extra manipulator with maximal weight.

2. In the Plurality with Runoff rule, if there exists a manipulation for an instance with certain
weights, Algorithm 3 will succeed when given an extra manipulator with maximal weight.

3. In the Maximin rule, if there exists a manipulation for an instance with certain weights,
Algorithm 1 will succeed when given two copies of the set of manipulators.

Significance in Artificial Intelligence. The sharply increased interest in computational as-
pects of voting is motivated by numerous applications of voting techniques and paradigms to prob-
lems in Artificial Intelligence (AI). These applications include work in AI subfields as diverse as
Planning [10], Automated Scheduling [17], Recommender Systems [14], Collaborative Filtering [22],
Information Extraction [27], and Computational Linguistics [21].

1Historical note: although we cite the JACM 2007 paper, this work originated in a AAAI 2002 paper.

2

Unfortunately, in the application of voting to AI, some of the problems investigated in Social
Choice Theory, and in particular the issue of manipulation, become especially acute. Indeed,
multiagent systems are often inhabited by heterogeneous, self-interested agents. Such agents, unlike
human beings, can be designed to be rational, and constantly engaged in computations meant to
increase their utility. In particular, a self-interested agent could seize the opportunity to manipulate
an election to its benefit if such an opportunity were computationally easy to recognize (unless
specifically programmed not to).

The agenda of circumventing the Gibbard-Satterthwaite Theorem via computational complexity
is, once again, most relevant and compelling when the voters are software agents that populate a
multiagent system, since the effective, bounded rationality of such agents is practically governed
by the laws of computational complexity. This is why the agenda has become a prominent one
in AI, with numerous papers on the subject published in the major AI conferences over the last
five years. As of yet, there are few papers on frequency of manipulation, rather than on its worst-
case complexity. We feel that this line of work on frequency of manipulation may influence the
entire direction of the computational social choice research agenda (see Section 5 for more details
regarding work on frequency of manipulation).

Structure of the Article. In Section 2 we describe the major voting rules and formulate the
coalitional manipulation problem. In Section 3 we present and analyze our algorithms in three
subsections: Borda, Plurality with Runoff, and Maximin. We provide some results regarding an
unweighted setting in Section 4. In Section 5 we describe related work at length. Finally, we discuss
our approach in Section 6.

2 Voting Rules and Manipulation Problems

An election consists of a set C = {c1, . . . , cm} of candidates and a set S = {v1, . . . , v|S|} of voters.
Each voter provides a total order on the candidates. To put it differently, each voter submits a
ranking of the candidates. The voting setting also includes a voting rule, which is a function from
the set of all possible combinations of votes to C.

We shall discuss the following voting rules (whenever the voting rule is based on scores, the
candidate with the highest score wins):

• Scoring rules. Let ~α = 〈α1, . . . , αm〉 be a vector of non-negative integers such that α1 ≥ α2 ≥
. . . ≥ αm. For each voter, a candidate receives α1 points if it is ranked first by the voter, α2 if
it is ranked second, etc. The score of a candidate is the total number of points the candidate
receives. The scoring rules that we will consider are: Borda, where ~α = 〈m− 1,m− 2, . . . , 0〉;
Veto, where ~α = 〈1, 1, . . . , 1, 0〉; and Plurality, where ~α = 〈1, 0, . . . , 0〉.

• Maximin. For any two distinct candidates x and y, let N(x, y) be the number of voters who
prefer x to y. The maximin score of x is σ(x) = miny 6=x N(x, y).

• Copeland. For any two distinct candidates x and y, let C(x, y) = +1 if N(x, y) > N(y, x) (in
this case we say that x beats y in their pairwise election), C(x, y) = 0 if N(x, y) = N(y, x),
and C(x, y) = −1 if N(x, y) < N(y, x). The Copeland score of candidate x is σ(x) =
∑

y 6=x C(x, y).

• Plurality with Runoff. In this rule, a first round eliminates all candidates except the two with
the highest plurality scores. The second round determines the winner between these two by
their pairwise election.

3

In some settings the voters are weighted. A weight function is a mapping w : S → N. When
voters are weighted, the above rules are applied by considering a voter of weight l to be l different
voters.

Definition 2.1.

1. In the Constructive Coalitional Weighted Manipulation (CCWM) problem in a
voting rule F , we are given a set C of candidates, with a distinguished candidate p ∈ C, a set
of weighted voters S that already cast their votes (these are the truthful voters), and a list
of weights W for a set of voters T that still have not cast their votes (the manipulators). We
are asked whether there is a way to cast the votes in T such that p wins the election under
the voting rule F .

2. Constructive Coalitional Unweighted Manipulation (CCUM) problem is a special
case of CCWM problem where all the weights equal 1.

Remark 2.2. We implicitly assume in both questions that the manipulators have full knowledge
about the other votes. Unless explicitly stated otherwise, we also assume that ties are broken
adversarially to the manipulators, so if p ties with another candidate, p loses. The latter assumption
is equivalent to formulating the manipulation problems in their unique winner version, when one
assumes that all candidates with maximal score win, but asks that p be the only winner.

Theorem 2.3 ([7]). The CCWM problem in Borda, Veto, Maximin, Copeland, and Plurality with
Runoff is NP-complete, even when the number of candidates is constant.

Throughout this paper we will use the convention that |C| = m, |S| = N and |T | = n.
Whenever the voting rule is based on scores, we will denote by σS,j(c) the accumulated score of
candidate c from the voters in S and the first j voters of T (fixing some order on the voters of
T). Whenever it is clear from the context that S is fixed, we will use simply σj(c) for the same.
Also, for G ⊆ C, 0 ≤ j ≤ n we will write σj(G) = {σj(g) | g ∈ G}. For two lists A,B (ordered
multisets), we denote by A + B the list that is obtained after B is appended to A.

3 Weighted Coalitional Manipulation

We begin our contribution by presenting a general greedy algorithm for the coalitional manipulation
problem. Some of our main results concern this algorithm or its restriction to scoring rules.

The greedy algorithm is given as Algorithm 1. It works as follows: the manipulators, according
to descending weights, each rank p first and rank the other candidates in a way that minimizes
their maximum score. This algorithm is a generalization of the one that appeared in Bartholdi et
al. [3].

Definition 3.1. We refer to an iteration of the main for loop in lines 4–12 of the algorithm as a
stage of the algorithm.

We will use the fact that for many voting rules, if there exists a manipulation for a coalition of
manipulators with weight list W , then there exists a manipulation for a coalition of manipulators
with weight list W ′ where W ′ ⊇ W . Normally, if the coalition is too small then there is no
manipulation, and this is indeed what the algorithm will report. On the other hand, if the coalition
is large enough, then the greedy algorithm will find the manipulation. So there remains a window
of error, where for some coalitions there could exist a manipulation, but the algorithm may not
find it. We are interested in bounding the size of this window. We first formulate the monotonicity
property described above.

4

Algorithm 1 Decides CCWM

1: procedure Greedy(C, p,XS ,W) ⊲ XS is the set of preferences of voters in S, W is the list
of weights for voters in T , |W | = |T | = n

2: sort(W) ⊲ Sort the weights in descending order
3: X ← ∅ ⊲ Will contain the preferences of T
4: for j = 1, . . . , n do ⊲ Iterate over voters by descending weights
5: Pj ← (p) ⊲ Put p at the first place of the j-th preference list
6: for t = 2, . . . ,m do ⊲ Iterate over places of j-th preference list
7: ⊲ Evaluate the score of each candidate if j would put it at the next available place
8: Pick c ∈ argminc∈C\Pj

{Score of c from XS ∪X ∪ {Pj + {c}}}
9: Pj = Pj + {c} ⊲ Add c to j’s preference list

10: end for

11: X ← X ∪ {Pj}
12: end for

13: XT ← X
14: if argmaxc∈C{Score of c based on XS ∪XT } = {p} then

15: return true ⊲ p wins
16: else

17: return false

18: end if

19: end procedure

Definition 3.2. In the context of the CCWM problem, a voting rule is said to be monotone in
weights if it satisfies the following property: whenever there is a manipulation making p win for
manipulator set T with weight list W , there is also a manipulation making p win for manipulator
set T ′ with weight list W ′, where T ′ ⊇ T , W ′ ⊇W .

Monotonicity in weights is a prerequisite for the type of analysis we wish to present. However,
surprisingly, not all the basic voting rules have this property; in particular, the prominent Copeland
rule does not possess it. We show this by example in Appendix A.

3.1 Borda

In this subsection, we analyze the performance of Algorithm 1 with respect to the Borda voting
rule. Note that, in the context of scoring rules, Algorithm 1 reduces to Algorithm 2. This algorithm
first appeared in Procaccia and Rosenschein [24]. In this specific instantiation of Algorithm 1, we
do not require sorting of the manipulator weights, as this does not play a part in our analysis.

Lemma 3.3. Scoring rules are monotone in weights.

Proof. Let C be the candidate set; p ∈ C is the preferred candidate, S is the set of truthful voters,
and W are the weights for the manipulators T . Denote |C| = m, |S| = N, |W | = |T | = n. It
is enough to show that if there is a manipulation for the set T , then for the same instance with
manipulators T ′ = T + {v} with weight list W ′ = W + {w}, where w ≥ 1 is an integer, there is also
a manipulation, and the rest will follow by induction.

Let ~α = 〈α1, . . . , αm〉 be the score vector of the rule. Let XS be the preference orders of the
voters in S, and XT be the preference orders of voters in T that make p win. Fix some order on
the voters in T . By definition, for all c ∈ C \ {p}, σn(c) < σn(p). Let the additional voter of T ′

5

Algorithm 2 Decides CCWM in Scoring rules

1: procedure Scoring-rules-Greedy(C, p, σ0(C),W) ⊲ σ0(C) is the list of scores of
candidates distributed by voters in S, W is the list of weights for voters in T , |W | = |T | = n

2: for j = 1, . . . , n do ⊲ Go over voters in T
3: σj(p) = σj−1(p) + wjα1 ⊲ Put p at the first place of the j-th preference list
4: Let t1, t2, . . . , tm−1 s.t. ∀l, σj−1(ctl−1

) ≤ σj−1(ctl)
5: j votes p ≻ ct1 ≻ . . . ≻ ctm−1

6: for l = 1, . . . ,m− 1 do ⊲ Update the scores
7: σj(ctl) = σj−1(ctl) + wjαl+1

8: end for

9: end for

10: if argmaxc∈C{σn(c)} = {p} then ⊲ p wins
11: return true

12: else

13: return false

14: end if

15: end procedure

rank p at the first place, and report some arbitrary order on the other candidates. Then for all
c ∈ C \ {p}, σn+1(p) = σn(p) + wα1 > σn(c) + wα1 ≥ σn+1(c). Hence, p wins.

We are now ready to present our theorem regarding the Borda rule.

Theorem 3.4. In the CCWM problem under Borda, let C be a set of candidates with p ∈ C a
preferred candidate, S a set of voters who already cast their votes. Let W be the weight list for the
set T . Then:

1. If there is no ballot making p win the election, then Algorithm 2 will return false.

2. If there exists a ballot making p win the election, then for the same instance with weight list
W + {w′

1, . . . , w
′
k}, where k ≥ 1,

∑k
i=1 w′

i ≥ max(W), Algorithm 2 will return true.

Before we proceed to the theorem’s proof, a short discussion is in order. Despite its mathematical
formulation, one should not think of Item 2 of the theorem as saying that if the algorithm fails on
one instance, it would succeed on another. Rather, the theorem implies that the algorithm succeeds
on any given instance such that there is a “smaller” instance (where the manipulators have less
weight) on which success is possible. Here the monotonicity in weights property comes into play.
Also note that Item 1 of the theorem is true for any constructive algorithm; this item (which also
appears in our subsequent theorems) is trivially satisfied.

Another interesting point is that this theorem can be viewed as implying that Algorithm 2
gives some sort of additive approximation ratio. Formally, it seems unnatural to adopt the notion
of approximation algorithms in the context of the CCWM problem. However, the exact way in
which the theorem yields approximation guarantees will become apparent when we discuss the
unweighted setting, in Section 4.

A key notion for the proof of the theorem is the definition of the set GW . Let W be list of
weights; we define GW as follows. Run the algorithm n+1 stages with the weights W +{w}, where
w is an arbitrary weight. Let G0

W = argmaxg∈C\{p}{σ0(g)}, and, by induction, for s = 1, 2, . . . :

Gs
W = Gs−1

W ∪ {g | g was ranked below some g′ ∈ Gs−1
W in some stage l, 1 ≤ l ≤ n + 1}. Finally, let

GW = ∪0≤sG
s
W .

6

Informally, GW is constructed by taking candidates that initially have maximum score, and
then inductively adding candidates that are ranked by the algorithm below candidates that were
already added to the set. Since the algorithm ranks stronger candidates below weaker candidates,
only strong candidates are ultimately members of GW . The additional arbitrary weight w, and the
existence of stage n + 1 (when there are in fact only n manipulators with weights W) are just a
formality: we are also interested in the way the algorithm would rank the candidates after all the
manipulators have cast their ballots, but we do not care about their scores after this final “virtual”
ranking.

Observe that the indices s = 1, . . . are not directly related to stages l = 1, . . . , n: a candidate
c is added to Gs

W if he is ranked below a candidate c′ ∈ Gs−1
W in some stage l = 1, . . . , n (e.g., not

necessarily in stage s).
Notice that the above definition is independent of the weight w, as this weight is used only in

stage n + 1, so it does not impact the preferences of the voters, and thus it does not impact GW .
From the definition, G0

W ⊆ G1
W ⊆ . . . ⊆ C \ {p}. Furthermore, as |C \ {p}| = m− 1, it follows that

there exists 0 ≤ s′ ≤ m− 2 s.t. Gs′

W = Gs′+1
W , and thus GW = Gs′

W = Gm−2
W .

We are now ready to unfold the proof of Theorem 3.4. The proof relies on Lemmata 3.5–3.13.
The general intuition of the proof is as follows. Consider the candidates in GW ; we show that if
there exists a manipulation, it must be possible to get the score of p to be higher than their average
score. The difficult part is to show that the average score of the candidates in GW is relatively
close to the maximal final score. As a result, a few additional manipulators are sufficient to push
p above the maximal score as well.

In the first three lemmata, Lemmata 3.5–3.7, we show that the candidates in GW are the ones
with highest scores and we give a connection between their average score and the success of the
algorithm in finding a manipulation. The next straightforward lemma formalizes the intuition that
the strong candidates in GW are always ranked last by the algorithm.

Lemma 3.5. Given W , the candidates in GW were ranked at each stage l, 1 ≤ l ≤ n + 1 at the
|GW | last places, i.e., they were always granted the points |GW | − 1, . . . , 0.

Proof. If, by way of contradiction, there exists c ∈ C \GW that was ranked in some stage in one of
the last |GW | places, then there is g ∈ GW that was ranked above c at this stage. Let s ≥ 0 such
that g ∈ Gs

W . By definition, c ∈ Gs+1
W ⇒ c ∈ GW , a contradiction.

Lemma 3.6, directly building on Lemma 3.5, states that when the algorithm terminates, the
candidates in GW have scores that are higher than any candidate outside the set, perhaps except
p.

Lemma 3.6. For all c ∈ C \ (GW ∪ {p}), it holds that σn(c) ≤ ming∈GW
{σn(g)}.

Proof. Suppose, for contradiction, that there are c ∈ C \ (GW ∪ {p}) and g ∈ GW , s.t. σn(c) >
σn(g). Then in stage n + 1, c would have been ranked below g. Let s ≥ 0 s.t. g ∈ Gs

W . Then
c ∈ Gs+1

W ⇒ c ∈ GW , a contradiction.

The next lemma clarifies the connection between the definition of GW and Theorem 3.4. Indeed,
it links the average score of the candidates in GW (when the algorithm terminates) and the answer
returned by the algorithm.

Lemma 3.7. Given W , |W | = n, let GW be as before. Denote by q(W) the average score of
candidates in GW after n stages: q(W) = 1

|GW |

∑

g∈GW
σn(g). Then:

7

1. If σn(p) ≤ q(W) then there is no manipulation that makes p win the election, and the algo-
rithm will return false.

2. If σn(p) > maxg∈GW
{σn(g)}, then there is a manipulation that makes p win, and the algorithm

will find it.

Proof. We first prove part 1. Denote W = {w1, . . . , wn}. We have the set GW , and we suppose
that σn(p) ≤ q(W). Let us consider a ballot XT of votes in T , and let σ′

n(c) be the scores of the
candidates c ∈ C implied by this ballot (including all the votes in S). Since in Algorithm 2 p was
placed at the top of the preference of each voter in T , we have that:

σn(p) = σ0(p) +

n
∑

j=1

wj(m− 1) ≥ σ′
n(p) (1)

On the other hand, since by Lemma 3.5, in Algorithm 2 the candidates of GW were ranked by all
the voters in T in the last |GW | places, it follows that

q(W) =
1

|GW |

∑

g∈GW

σ0(g) +
n

∑

j=1

wj

|GW |−1
∑

i=0

i

 ≤ 1

|GW |
∑

g∈GW

σ′
n(g) =: q′(XT) (2)

Combining together (1) and (2) we get that σ′
n(p) ≤ q′(XT). There is at least one g ∈ GW such

that σ′
n(g) ≥ q′(XT) (since q′(XT) is the average of the scores), hence σ′

n(p) ≤ σ′
n(g), and so p will

not win when XT is applied.
Also note that Algorithm 2 returns true only if it constructs a (valid) ballot that makes p win,

and so for the case σn(p) ≤ q(W) the algorithm will return false.
We now prove part 2 of the lemma. If σn(p) > maxg∈GW

{σn(g)}, then by Lemma 3.6 for all
c ∈ C \ {p}, σn(p) > σn(c), and so the algorithm will find the manipulation.

Lemma 3.8 is independent of the lemmata before and after it, but is used directly in the proof
of Theorem 3.4. It gives a connection between the average score of the candidates in GW+{w} and
GW , where w is the weight of some additional manipulator. In other words, it bounds the effect
that adding a manipulator has on the average score of the strong candidates.

Lemma 3.8. Let GW , q(W) be as before. Then for w ≥ 1, q(W + {w})− q(W) ≤ wm−2
2 .

Proof. First, GW ⊆ GW+{w}, because for all s ≥ 0, Gs
W ⊆ Gs

W+{w}. Now, for all g ∈ GW+{w} \
GW , g was not ranked in the first n + 1 stages after any candidate in GW , and so for all g′ ∈
GW , σn(g) ≤ σn(g′), and hence

1

|GW+{w}|
∑

g∈GW+{w}

σn(g) ≤ 1

|GW |
∑

g′∈GW

σn(g′) = q(W)

8

Now we can proceed:

q(W + {w}) =
1

|GW+{w}|
∑

g∈GW+{w}

σn+1(g)

=
1

|GW+{w}|
∑

g∈GW+{w}

σn(g) +
w

|GW+{w}|

|GW+{w}|−1
∑

i=0

i

≤ q(W) +
w

m− 1

m−2
∑

i=0

i

= q(W) + w
m− 2

2

And so, q(W + {w}) − q(W) ≤ wm−2
2 .

The purpose of Lemmata 3.10–3.13 is to show that for any weight list W , |W | = n it holds that
maxg∈GW

{σn(g)}− q(W) ≤ max(W)m−2
2 . This fact is stated in Lemma 3.13, which is the only one

directly used in the proof of Theorem 3.4.
First we need to show that the scores of candidates in GW are concentrated, in a sense. This

is intuitive, since the algorithm doesn’t allow the score of any candidate in GW to “escape” by
ranking it close to the bottom if its score becomes too high in some stage. We will require the
following definition:

Definition 3.9. For an integer w ≥ 0, a finite non-empty set of integers A is called w-dense if
when we sort the set in nonincreasing order b1 ≥ b2 ≥ . . . ≥ bk (such that {b1, . . . , bk} = A), it
holds that for all 1 ≤ j ≤ k − 1, bj+1 ≥ bj − w.

So, formally, we want to show (Lemma 3.12) that σn(GW) is wmax-dense, where wmax = maxW .
This will be accomplished via a number of technical steps.

Lemma 3.10. Let W be a list of weights, |W | = n. Let GW =
⋃

0≤s Gs
W , as before. Then for all

s ≥ 1 and g ∈ Gs
W \ Gs−1

W there exist g′ ∈ Gs−1
W , X ⊆ C \ {p} (perhaps X = ∅) and j, 0 ≤ j ≤ n,

s.t. {σj(g), σj(g
′)} ∪ σj(X) is wmax-dense, where wmax = max(W).

Proof. Let s ≥ 1 and g ∈ Gs
W \ Gs−1

W . By definition, there exist g′ ∈ Gs−1
W and a minimal j,

1 ≤ j ≤ n + 1, such that g was ranked below g′ in stage j. We distinguish between two cases:
Case 1: j > 1. In this case g was ranked above g′ in stage j − 1. So we have:

σj−1(g) ≥ σj−1(g
′) (3)

σj−2(g) ≤ σj−2(g
′) (4)

Denote αd(h) := m− (place of h ∈ C at the preference list of voter d). Further, denote by wd the
weight of voter d (so in stage d, h gets wdαd(h) points). g was ranked above g′ in stage j − 1, and
hence αj−1(g) > αj−1(g

′). Denote l = αj−1(g)−αj−1(g
′), and w := wj−1. Let g′ = g0, g1, . . . , gl = g

be the candidates that got in stage j− 1 the points wαj−1(g
′), w(αj−1(g

′)+1), . . . , w(αj−1(g
′)+ l),

respectively. Our purpose is to show that {σj−1(g0), . . . , σj−1(gl)} is w-dense, and therefore wmax-
dense. By definition of the algorithm,

σj−2(g0) ≥ σj−2(g1) ≥ . . . ≥ σj−2(gl) (5)

9

Denote ut = σj−2(gt) + wαj−1(g
′) for 0 ≤ t ≤ l. Then

∀t, 0 ≤ t ≤ l, σj−1(gt) = ut + wt (6)

So we need to show that {ut + wt | 0 ≤ t ≤ l} is w-dense. It is enough to show that:

(a) For all t, 0 ≤ t ≤ l, if ut + wt < u0, then there exists t′, t < t′ ≤ l, s.t. ut + wt < ut′ + wt′ ≤
ut + w(t + 1), and

(b) For all t, 0 ≤ t ≤ l, if ut + wt > u0, then there exists t′, 0 ≤ t′ < t, s.t. ut + w(t − 1) ≤
ut′ + wt′ < ut + wt.

Proof of (a): From (5) we get
u0 ≥ · · · ≥ ul (7)

Also from (3) and (6) we have u0 ≤ ul +wl. Let 0 ≤ t ≤ l− 1 s.t. ut +wt < u0. Let us consider the
sequence ut + wt, ut+1 + w(t + 1), . . . , ul + wl. Since ut + wt < u0 ≤ ul + wl, it follows that there is
a minimal index t′, t < t′ ≤ l s.t. ut + wt < ut′ + wt′. Then ut′−1 + w(t′ − 1) ≤ ut + wt, and thus

ut′−1 + wt′ ≤ ut + w(t + 1) (8)

From (7) ut′ ≤ ut′−1, and then
ut′ + wt′ ≤ ut′−1 + wt′ (9)

Combining (8) and (9) together, we get ut′ + wt′ ≤ ut + w(t + 1). This concludes the proof of (a).
The proof of (b) is analogous, by choosing t′ to be the maximal index such that ut′ +wt′ < ut +wt.

Case 2 : j = 1. We proceed by essentially reducing this case to Case 1. In Case 2 we have that
s ≥ 2, because otherwise, if s = 1, then g′ ∈ G0

W ; therefore σ0(g) ≥ σ0(g
′) = maxh∈C\{p}{σ0(h)} ⇒

g ∈ G0
W , a contradiction. g′ /∈ Gs−2

W , because otherwise, by definition, g ∈ Gs−1
W . Therefore there

exists g′′ ∈ Gs−2
W s.t. g′ was ranked below g′′ in some stage j′, i.e., σj′−1(g

′) ≥ σj′−1(g
′′). g has

never been ranked below g′′ (because otherwise g ∈ Gs−1
W), and it follows that σj′−1(g) ≤ σj′−1(g

′′).
By combining the last arguments, we get that σj′−1(g) ≤ σj′−1(g

′).
Let j0 be minimal s.t. σj0(g) ≤ σj0(g

′). As in stage 1 g was ranked below g′, it holds that
σ0(g) ≥ σ0(g

′). If j0 = 0 then σ0(g) = σ0(g
′), hence {σ0(g), σ0(g

′)} is 0-dense, and in particular
wmax-dense.

Otherwise (j0 6= 0) it holds that σj0−1(g) > σj0−1(g
′) by the minimality of j0. So, we have that

σj0(g
′) ≥ σj0(g),

and
σj0−1(g

′) ≤ σj0−1(g).

These two inequalities are analogous to (3) and (4), with j − 1 replaced by j0, and the roles of g
and g′ exchanged. From this point we can proceed exactly as in Case 1, keeping in mind these
cosmetic changes.

The following lemma asserts that a dense set of the scores of candidates in stage j can be
replaced by a dense set of final scores by considering a possibly larger set of candidates.

Lemma 3.11. Let W be a list of weights, |W | = n, wmax = max(W). Let H ⊆ C \{p} s.t. σj(H) is
wmax-dense for some 0 ≤ j ≤ n. Then there exists H ′,H ⊆ H ′ ⊆ C \{p} s.t. σn(H ′) is wmax-dense.

10

Proof. We have H ⊆ C \ {p} and 0 ≤ j ≤ n, s.t. σj(H) is wmax-dense. Denote Hj := H.
Define inductively for t = j, j + 1, . . . , n − 1: Ht+1 = {g ∈ C \ {p} | minh∈Ht

{σt(h)} ≤ σt(g) ≤
maxh∈Ht

{σt(h)}}. Of course, for all t, Ht ⊆ Ht+1. It is easy to see that if for some j ≤ t ≤
n − 1, σt(Ht) is wmax-dense, then σt+1(Ht+1) is also wmax-dense. So, we get by induction that
σn(Hn) is wmax-dense, and H ⊆ Hn ⊆ C \ {p}.

Lemma 3.12. Let W be a list of weights, |W | = n, wmax = max(W). Let GW be as before. Then
the set σn(GW) is wmax-dense.

Proof. Let g = g0 ∈ GW . If g /∈ G0
W , then g ∈ Gs

W \ Gs−1
W for some s ≥ 1. By Lemma 3.10

there exist g1 ∈ Gs−1
W and X1 ⊆ C \ {p} s.t. {σj(g0), σj(g1)} ∪ σj(X1) is wmax-dense for some

0 ≤ j ≤ n. By Lemma 3.11 there exists X ′
1, X1 ⊆ X ′

1 ⊆ C \ {p}, s.t. {σn(g0), σn(g1)} ∪ σn(X ′
1) is

wmax-dense. Denote Z1 := {g0, g1} ∪X ′
1. Similarly, if g1 /∈ G0

W , then there exist g2 ∈ Gs−2
W and X ′

2

s.t. {σn(g1), σn(g2)} ∪ σn(X ′
2) is wmax-dense. Denote Z2 := {g1, g2} ∪X ′

2, etc. Thus, we can build
a sequence of sets Z1, . . . , Zs+1, s.t. for all 1 ≤ t ≤ s + 1, σn(Zt) is wmax-dense, g = g0 ∈ Z1 and
for each 1 ≤ t ≤ s there exists gt ∈ Gs−t

W s.t. gt ∈ Zt ∩ Zt+1, and in particular, gs ∈ G0
W .

It is easy to see that for two w-dense sets A,A′, if A ∩ A′ 6= ∅ then A ∪ A′ is also w-dense,
and hence we get Zg :=

⋃s+1
t=1 Zt is wmax-dense. Note that σ0(G

0
W) is wmax-dense, and hence there

exists Ẑ,G0
W ⊆ Ẑ ⊆ C \ {p} s.t. σn(Ẑ) is wmax-dense. Hence, σn(Zg ∪ Ẑ) is wmax-dense.

The sets Zg ∪ Ẑ, for all g ∈ GW , all intersect in Ẑ, and their union is Ẑ∪⋃

g∈GW
Zg. We deduce

that {σn(g) | g ∈ Ẑ ∪ ⋃

g∈GW
Zg} is wmax-dense. By Lemma 3.6, for all h ∈ Ẑ ∪ ⋃

g∈GW
Zg, if

h /∈ GW , then σn(h) ≤ ming∈GW
{σn(g)}, and hence σn(GW) is a also wmax-dense.

Lemma 3.13. Let W be a list of weights, |W | = n, wmax = max(W). Let GW be as before, and
denote q(W) = 1

|GW |

∑

g∈GW
σn(g), as before. Then maxg∈GW

{σn(g)} − q(W) ≤ wmax
m−2

2 .

Proof. Sort the members of GW by their scores after the n-th stage, i.e., GW = {g1, . . . , g|GW |}
s.t. for all 1 ≤ t ≤ |GW |−1, σn(gt) ≥ σn(gt+1). Denote for 1 ≤ t ≤ |GW |, ut = σn(g1)−wmax(t−1),
and let U = {u1, . . . , u|GW |}. |U | = |GW |, maxU = σn(g1) = maxg∈GW

{σn(g)}. By Lemma 3.12, it

is easy to see that for all 1 ≤ t ≤ |GW |, σn(gt) ≥ ut. Consequently, q(W) ≥ 1
|GW |

∑|GW |
t=1 ut, hence

max
g∈GW

{σn(g)} − q(W) = u1 − q(W) ≤ u1 −
1

|GW |

|GW |
∑

t=1

ut = wmax
|GW | − 1

2
≤ wmax

m− 2

2
.

We are finally ready to prove Theorem 3.4.

Proof of Theorem 3.4. Regarding part 1, Algorithm 2 returns true only if it constructs a (valid)
ballot that makes p win, and thus if there is no ballot making p win, Algorithm 2 will return false.

We now prove part 2 of the theorem. Suppose that there exists a ballot making p win for weight
list W , |W | = n. Let W ′ := W + {w′

1, . . . , w
′
k} for k ≥ 1,

∑k
i=1 w′

i ≥ max(W). By Lemma 3.7,
σn(p) > q(W). From Lemma 3.8 we get by induction that

q(W ′) ≤ q(W) +

k
∑

i=1

w′
i ·

m− 2

2
(10)

11

By Lemma 3.13 and (10) we get:

max
g∈GW ′

{σn+k(g)} ≤ q(W ′) + max(W ′) · m− 2

2

≤ q(W ′) +

k
∑

i=1

w′
i ·

m− 2

2

≤ q(W) +

k
∑

i=1

w′
i · (m− 2)

< σn(p) +

k
∑

i=1

w′
i · (m− 1) = σn+k(p)

and hence, by Lemma 3.7 the algorithm will find a ballot making p win for set T ′ with weights W ′,
and will return true. This completes the proof of Theorem 3.4.

The following is an example where there is a manipulation for weight list W , but Algorithm 2
will find a manipulation only for weight list W + {w′}.

Example 3.14. In our example W = {1, 1, 1, 1}, w′ = 1, so we are actually talking about the
special case of unweighted coalitions. Consider the set C = {p, 1, 2, 3, 4, 5, 6}, m = |C| = 7, N =
|S| = 5. 3 voters in S voted 6 ≻ 5 ≻ 4 ≻ 3 ≻ 2 ≻ p ≻ 1, and the other 2 voters in S voted
2 ≻ 3 ≻ 4 ≻ 5 ≻ 6 ≻ p ≻ 1. When applying Algorithm 2 to this input, the voters in T will
award the candidates with the following scores (we denote by αj(c) the points that voter j gives to
candidate c):2

Candidate c ∈ C p 1 2 3 4 5 6

σ0(c) 5 0 18 19 20 21 22
α1(c) 6 5 4 3 2 1 0
α2(c) 6 5 0 1 2 3 4
α3(c) 6 5 4 3 2 1 0
α4(c) 6 5 0 1 2 3 4
α5(c) 6 5 4 3 2 1 0

So the cumulative scores will be as follows:

Candidate c ∈ C p 1 2 3 4 5 6

σ0(c) 5 0 18 19 20 21 22
σ1(c) 11 5 22 22 22 22 22
σ2(c) 17 10 22 23 24 25 26
σ3(c) 23 15 26 26 26 26 26
σ4(c) 29 20 26 27 28 29 30
σ5(c) 35 25 30 30 30 30 30

Note that after 4 stages, the algorithm still did not find a manipulation: σ4(p) = 29 < 30 =
σ4(6). However, if we change the votes of the third and fourth voters of T , then we find an
appropriate ballot:

2We assumed here that when two candidates have the same scores up until a certain stage, the current voter will
award fewer points to the candidate with lower index, but any tie-breaking rule will give the same results.

12

Candidate c ∈ C p 1 2 3 4 5 6

σ0(c) 5 0 18 19 20 21 22
α1(c) 6 5 4 3 2 1 0
α2(c) 6 5 0 1 2 3 4
α′

3(c) 6 5 3 4 0 1 2
α′

4(c) 6 5 3 1 4 2 0

Now the cumulative scores are:

Candidate c ∈ C p 1 2 3 4 5 6

σ0(c) 5 0 18 19 20 21 22
σ1(c) 11 5 22 22 22 22 22
σ2(c) 17 10 22 23 24 25 26
σ′

3(c) 23 15 25 27 24 26 28
σ′

4(c) 29 20 28 28 28 28 28

Evidently, for any c ∈ C \ {p}, σ′
4(p) = 29 > σ′

4(c).

3.2 Maximin

In this subsection, we show that Algorithm 1 also does well with respect to the Maximin rule.

Lemma 3.15. Maximin is monotone in weights.

Proof. Let XS be the preference orders of the voters in S, and let XT be the preference orders of
the voters in T that make p win. We need to show that there are preference orders for T ′ = T +{v}
with weight list W ′ = W + {w} where w ≥ 1 is an integer, that make p win. Fix some order on
voters in T . By definition, for all c ∈ C \ {p}, σn(c) < σn(p). Let the additional voter of T ′ vote
with p at the first place, and some arbitrary order on the other candidates. Then for all c ∈ C \{p},
σn+1(p) = σn(p) + w > σn(c) + w ≥ σn+1(c), and so we got the ballot of votes of T ′ to make p
win.

Theorem 3.16. In CCWM under Maximin, let C be the set of candidates with p ∈ C the preferred
candidate, and S the set of voters who already cast their votes. Let W be the weight list for the set
T . Then:

1. If there is no ballot making p win the election, then Algorithm 1 will return false.

2. If there is a ballot making p win the election, then for the same instance with weight list W ′

s.t. W ′ ⊇W + W (i.e., W ′ contains two copies of W), Algorithm 1 will return true.

Let us introduce some more notation. For candidates g, g′ ∈ C and 0 ≤ j ≤ n we denote by
Nj(g, g′) the total weight of the voters after j stages (including the voters in S) that prefer g over
g′. So σj(g) = ming′∈C\{g} Nj(g, g′). We also denote for g ∈ C, 0 ≤ j ≤ n:

MINj(g) = {h ∈ C \ {g} | Nj(g, h) = σj(g)}.

In words, MINj(g) is the set of candidates that constitute the worst opponents of g in pairwise
elections at stage j. Put differently, these are the candidates whose competition against g defines
the Maximin score of g at stage j.

13

Fixing the set C, p ∈ C, and an order on the weight list W , we denote by f(j) the maximal
score of p’s opponents distributed by Algorithm 1 after j stages:

f(j) = max
g∈C\{p}

σj(g).

In Algorithm 1, p is always placed at the top of each preference, and so with each voter its score
grows by the weight of this voter. In our next lemma we will put forward an upper bound on the
growth rate of the scores of p’s opponents.

Lemma 3.17. Consider Algorithm 1 applied to the Maximin rule. Denote by wj the weight of the
j-th voter processed by the algorithm. Then for all 0 ≤ j ≤ n−2, f(j+2) ≤ f(j)+max{wj+1, wj+2}.

To intuitively see why the lemma implies Theorem 3.16, notice that if there are two copies of
W , the score of p would increase by 2 ·∑w∈W w, whereas by the lemma the score of the strongest
candidate would increase by at most

∑

w∈W w. We now prove the lemma; the theorem will follow
easily.

Proof. Let 0 ≤ j ≤ n− 2. Let g 6= p be a candidate. By definition σj(g) ≤ f(j). We would like to
show that σj+2(g) ≤ f(j) + max{wj+1, wj+2}. If σj+1(g) ≤ f(j), then σj+2(g) ≤ σj+1(g) + wj+2 ≤
f(j) + max{wj+1, wj+2}, and we are done. So let us assume now that σj+1(g) > f(j).

Define a directed graph G = (V,E), where

V = {g} ∪ {x ∈ C \ {p} | x was ranked below g in stage j + 1},

and (x, y) ∈ E iff y ∈ MINj(x). There is at least one outgoing edge from g in E, since otherwise
there was g′ ∈ MINj(g) that voter j + 1 ranked above g, and then σj+1(g) = σj(g) ≤ f(j), a
contradiction.

In addition, we claim that for all x ∈ V \ {g} there is at least one outgoing edge from x in E.
Indeed, otherwise there is x′ ∈ MINj(x) that was ranked above g in stage j + 1. Hence, we have
that

σj+1(x) = σj(x) ≤ f(j) < σj+1(g).

This implies that Algorithm 1 should have ranked x above g in stage j +1, which is a contradiction
to the fact that x ∈ V \ {g}.

For x ∈ V , denote by V (x) all the vertices y in V such that there exists a directed path from x
to y. Denote by G(x) the sub-graph of G induced by V (x). It is easy to see that G(g) contains at
least one cycle. Let U be one such cycle. Let g′ ∈ U be the vertex that was ranked highest among
the vertices of U in stage j + 1. Let g′′ be the vertex before g′ in the cycle: (g′′, g′) ∈ U . Since g′′

was ranked below g′ at stage j + 1, it follows that σj+1(g
′′) = σj(g

′′) ≤ f(j).
Suppose, for contradiction, that σj+2(g) > f(j) + max{wj+1, wj+2}. g was ranked by j + 2 at

place t∗. Then g′′ was ranked by j + 2 above t∗, since otherwise when we had reached the place t∗,
we would pick g′′ (with score σj+2(g

′′) ≤ f(j) + wj+2 < σj+2(g)) instead of g—a contradiction.
Denote by X1 all the vertices in V (g) that have an outgoing edge to g′′ in G(g). For all

x ∈ X1, g′′ ∈ MINj(x), i.e., σj(x) = Nj(x, g′′). All x ∈ X1 were ranked by j + 2 above g, since
otherwise, if there was x ∈ X1, s.t. until the place t∗ it still was not added to the preference list,
then when evaluating its score on place t∗, we would get: σj+2(x) ≤ Nj+2(x, g′′) = Nj+1(x, g′′) ≤
Nj(x, g′′) + wj+1 = σj(x) + wj+1 < σj+2(g), and so we would put x instead of g.

Denote by X2 all the vertices in V (g) that have an outgoing edge to some vertex x ∈ X1. In
the same manner we can show that all the vertices in X2 were ranked in stage j + 2 above g. We
continue in this manner, by defining sets X3, . . . , where the set Xl contains all vertices in V (g)

14

Figure 1: The induced sub-graph G(g)

that have an outgoing edge to some vertex in Xl−1; the argument above shows that all elements
of these sets are ranked above g in stage j + 2. As there is a path from g to g′′ in G(g), we will
eventually reach g in this way, i.e., there is some l such that Xl contains a vertex g0 with an edge
from g to g0 (see Figure 1).

Thus,

σj+2(g) ≤ Nj+2(g, g0) = Nj+1(g, g0) ≤ Nj(g, g0) + wj+1

= σj(g) + wj+1 ≤ f(j) + max{wj+1, wj+2}
< σj+2(g),

a contradiction.

We are now ready to prove Theorem 3.16.

Proof. We prove part 1. Algorithm 1 returns true only if it constructs a (valid) ballot that makes
p win, and thus if there is no ballot making p win, Algorithm 1 will return false.

We now prove part 2. Suppose that there exists a ballot ZT making p win for weight list
W = {w1, . . . , wn}. Let σ′

j(g) be the scores implied by ZT . Then:

f(0) < σ′
n(p) ≤ σ0(p) +

n
∑

i=1

wi (11)

Let W ′ = W + W + X, where X is some list of weights (possibly empty). We need to show that
σ|W ′|(p) > f(|W ′|). In Algorithm 1, after sorting the weights of W ′, the equal weights of two copies
of W will be adjacent, i.e., the order of weights in W ′ will be of the form:

x1, . . . , xq1
, w1, w1, xq1+1, . . . , xq2

, w2, w2, . . . , wn, wn, xqn+1, . . . , x|X|.

By Lemma 3.17, one can prove by induction that:

f(|W ′|) ≤ f(0) +

|X|
∑

i=1

xi +

n
∑

i=1

wi (12)

And so by (11) and (12) we have:

σ|W ′|(p) = σ0(p) +

|X|
∑

i=1

xi + 2

n
∑

i=1

wi > f(0) +

|X|
∑

i=1

xi +

n
∑

i=1

wi ≥ f(|W ′|)

15

In Appendix B we give a simple algorithm, which is tailor-made for Maximin, and also enjoys
the implications of Theorem 3.16. However, this algorithm does not extend to other voting rules, as
Algorithm 1 does. Moreover, we believe that Algorithm 1 does better when it comes to unweighted
manipulation (see Sections 4 and 6).

3.3 Plurality with Runoff

In this subsection we present a heuristic algorithm for the CCWM problem in Plurality with
Runoff. The algorithm receives as a parameter a size of window 0 ≤ u ≤ max(W) where it can
give a wrong answer. Its running time depends on the size of its input and on u (see below). We
begin by noting:

Lemma 3.18. Plurality with Runoff is monotone in weights.

Proof. Let C be the candidates, p ∈ C is the preferred candidate, S is the set of truthful voters, and
W are the weights for manipulators of T . Suppose that there is a ballot of votes of T that makes p
win the election. We need to show that there is a ballot making p win for the set W ′ = W + {w},
where w ≥ 1. Let g be the candidate that proceeds with p to the second round in the winning
ballot for W . Let the additional voter vote p ≻ Then the plurality score of p and g will not
decrease, while the plurality score of any other candidate will remain the same, and so p and g will
proceed to the next round in the new ballot as well. In the second round p will beat g in the new
ballot, since the total weight of the voters who prefer p to g increased, while the total weight of
voters who prefer g to p remained the same. Thus, p will win the election in the new ballot.

We will now give an informal description of the algorithm. We go over all the candidates other
than p. To each candidate g we try to assign the voters with minimal total weight, such that if
these voters place g first, g continues to the second round; the rest of the voters rank p first. If we
succeeded in this way to make g and p survive the first round, and in the second round p beats
g, then we found a valid ballot for making p win the election. If no candidate g was found in this
way, then we report that there is no ballot.

A formal description of this algorithm, Algorithm 3, is given below. The following additional
notations are required. Denote by βX(g) the plurality score of g from voter set X (i.e., the sum
of weights of the voters in X that put g at the top of their preferences). We also use NX(g, g′) =
∑

v∈U wv, where U is the set of all the voters in X that prefer g to g′, and wv is the weight of voter
v. Finally, for g, g′ ∈ C we denote g ≫ g′ if a tie between g and g′ is broken in favor of g.

Remark 3.19. In Algorithm 3 we do not rely on the assumption that for all g 6= p, g ≫ p. In fact,
the algorithm can deal with any tie-breaking mechanism such that for every two distinct candidates
x and y, either x≫ y or y ≫ x, regardless of how the manipulators cast their votes. An example of
such a tie-breaking mechanism is to favor candidates with smaller indices, according to some order
on the candidates. This is not necessarily a reasonable way to break ties in, say, political elections,
but roughly speaking it is more general than asking that p be a unique winner, the assumption
underlying our previous results.

More precisely, Plurality with Runoff differs from Borda and Maximin in the sense that it has
two different rounds, and therefore two different “scores”. Hence, the unique winner model can be
interpreted ambiguously in this context. If we always break ties against p (the algorithm supports
this), p might be tied against another candidate for the second ticket to the second round, and lose,
whereas under another interpretation p would have advanced to the second round, and would have
won the second round by a vast majority, thus becoming a unique winner.

16

Algorithm 3 Decides CCWM in Plurality with Runoff with desired accuracy

1: procedure Plurality-with-runoff(C, p,XS,WS ,W, u) ⊲ XS is the set of preferences of
voters in S, WS are the weights of voters in S, W = {w1, . . . , wn} are the weights of voters in
T , u is the size of error window

2: for g in C \ {p} do ⊲ Go over candidates in C \ {p}
3: if there exists g′ ∈ argmaxg′∈C\{p}βS(g′), g′ 6= g s.t. g′ ≫ g then

4: λg ← maxg′∈C\{p} βS(g′)− βS(g) + 1
5: else

6: λg ← maxg′∈C\{p} βS(g′)− βS(g)
7: end if

8: if λg >
∑n

i=1 wi then ⊲ If we cannot make g pass to the next round
9: continue ⊲ Go to the next candidate in the main loop

10: end if

11: x← subset-of-weights-approximate(W,λg, u)
12: ⊲ x ∈ {0, 1}n minimizes {∑n

j=1 wjxj |
∑n

j=1 wjxj ≥ λg,∀j, xj ∈ {0, 1}}
13: All the voters j s.t. xj = 1 vote g ≻ . . . ⊲ Order of candidates except g is arbitrary
14: All the voters j s.t. xj = 0 vote p ≻ . . .
15: if ∃g′ ∈ C \ {p, g} s.t.

(

βS(g′) > βS(p) + βT (p)
)

16: or
(

βS(g′) = βS(p) + βT (p) and g′ ≫ p
)

then

17: continue ⊲ p does not pass to next round
18: end if

19: if
(

NS∪T (p, g) > NS∪T (g, p)
)

or
(

NS∪T (p, g) = NS∪T (g, p) and p≫ g
)

then

20: return true ⊲ p beats g in the second round
21: else

22: continue

23: end if

24: end for

25: return false ⊲ No appropriate g was found
26: end procedure

27:

28: procedure subset-of-weights-approximate(W,λg, u) ⊲ W = {w1, . . . , wn}
are the weights of voters in T , λg is the minimum total sum of desired weights, u is the size of
error window

29: Check that 0 ≤ u ≤ max(W)
30: ku ←

⌊

u
2n

⌋

+ 1
31: Solve by dynamic prog.: max{∑n

j=1

⌊wj

ku

⌋

xj |
∑n

j=1 wjxj ≤
∑n

j=1 wj − λg,∀j, xj ∈ {0, 1}}
32: Let x ∈ {0, 1}n be the vector that maximizes the above sum
33: return ~1− x ⊲ ~1 is the vector of n 1’s
34: end procedure

17

In the next theorem we prove the correctness of Algorithm 3, and analyze its time complexity.
We will see that for getting an exact answer (u = 0), we will need running time which is polynomial
in max(W) and the rest of the input. As the weights in W are specified in binary representation, this
requires exponential time. However, when the size of the error window increases, the complexity
decreases, so for u = Ω(max(W)

log(max(W))) the complexity of the algorithm is polynomial in its input.

Theorem 3.20. In CCWM under Plurality with Runoff, let C be the set of candidates with p ∈ C
the preferred candidate, and S be the set of voters who already cast their votes. Let W be the weight
list for the set T , and let u ≥ 0 be the error window. Then:

1. If there is no ballot making p win the election, then Algorithm 3 will return false.

2. If there is a ballot making p win the election, then for the same problem with voter set T ′ = T +
{vn+1, . . . , vn+l} with weight list W ′ = W + {wn+1, . . . , wn+l}, where l ≥ 0,

∑l
j=1 wn+j ≥ u,

Algorithm 3 will return true.

3. On input C, p,XS ,WS ,W, u, where |C| = m, |S| = N, |W | = n, u is an integer, s.t. 0 ≤
u ≤ max(W), the running time of Algorithm 3 is polynomial in m,N, log(max(WS)), n and
max(W)

u+1 .

Proof. We start with part 1. Note that

x = (x1, . . . , xn) satisfies

n
∑

j=1

wjxj ≤
n

∑

j=1

wj − λg ⇐⇒ x = ~1− x satisfies

n
∑

j=1

wjxj ≥ λg, (13)

where λg is defined in Algorithm 3 as the total weight of the votes g needs in order to proceed to
the second round, and x is the binary vector of length n computed in the algorithm’s subroutine.
Thus when voters corresponding to weights returned by the function SUBSET-OF-WEIGHTS-
APPROXIMATE() (see Algorithm 3) vote g ≻ . . . , they ensure that g proceeds to the second
round. It is easy to see that whenever Algorithm 3 returns true, it actually finds a (valid) ballot
making p win the election, and so if there is no such ballot, then the algorithm will return false.

We now move on to part 2. Let AW be an instance of the problem with weight list W . Suppose
that there exists ballot XT of votes in T s.t. combined with preferences XS of voters of S, it makes p
win the election in AW . We will denote by β′

Y (g) the plurality score of g from voter set Y under the
preferences XS∪XT . Also, we denote N ′

Y (g, g′) =
∑

v∈UXS∪XT
wv, where UXS∪XT

is the set of all the

voters in Y that prefer g to g′ under XS ∪XT . Let 0 ≤ u ≤ max(W), W ′ = W + {wn+1, . . . , wn+l},
where l ≥ 0,

∑l
j=1 wn+j ≥ u. We need to show that Algorithm 3 will return true on the input

W ′, u.
There is a candidate g 6= p that passes together with p to the second round when applying the

preferences XT together with XS on AW , and thus for each candidate g′ /∈ {p, g} and c ∈ {p, g}, if
c≫ g′, then β′

S(c) + β′
T (c) ≥ β′

S(g′) + β′
T (g′), and if g′ ≫ c, then β′

S(c) + β′
T (c) > β′

S(g′) + β′
T (g′).

Also,

β′
T (p) + β′

T (g) ≤
n

∑

j=1

wj (14)

Now consider Algorithm 3 applied to AW ′ . If it does not reach g in the main loop, then it will exit
earlier returning “true”, meaning that it will find a desired ballot making p win. Otherwise, it will
reach the candidate g. λg is the minimal sum of weights that ensures that g will continue to the
second round, and hence

λg ≤ β′
T (g) ≤

n
∑

j=1

wj ≤
n+l
∑

j=1

wj (15)

18

We will reach the function SUBSET-OF-WEIGHTS-APPROXIMATE(), and enter it with argu-
ments W ′, λg and u. By (13), the vector x = (x1, . . . , xn+l) returned by SUBSET-OF-WEIGHTS-

APPROXIMATE() satisfies
∑n+l

j=1 wjxj ≥ λg, and so g will continue to the next round. Now we
show that p will also continue to the next round. Denote by H the maximization problem

max
n+l
∑

j=1

wjxj

s.t.
n+l
∑

j=1

wjxj ≤
n+l
∑

j=1

wj − λg

xj ∈ {0, 1}, for j = 1, . . . , n + l

(16)

Let J∗ = {j | xj = 1, x = (x1, . . . , xn+l) is the optimal solution to H}. Denote P ∗ =
∑

j∈J∗ wj .
Let H(k) be the scaled version of the above maximization problem:

max
n+l
∑

j=1

⌊wj

k

⌋

xj

s.t.

n+l
∑

j=1

wjxj ≤
n+l
∑

j=1

wj − λg

xj ∈ {0, 1}, for j = 1, . . . , n + l

(17)

Let J(k) = {j | xj = 1, x = (x1, . . . , xn+l) is the optimal solution to H(k)}. Let P (k) =
∑

j∈J(k) wj .
Now, x = (x1, . . . , xn+l) which we obtained in SUBSET-OF-WEIGHTS-APPROXIMATE() satis-
fies, for ku =

⌊

u
2(n+l)

⌋

+ 1:

n+l
∑

j=1

wjxj =
∑

j∈J(ku)

wj ≥
∑

j∈J(ku)

ku

⌊wj

ku

⌋

≥
∑

j∈J∗

ku

⌊wj

ku

⌋

≥
∑

j∈J∗

(wj − (ku − 1))

=
∑

j∈J∗

wj − (ku − 1)|J∗| = P ∗ − (ku − 1)|J∗|
(18)

Hence, the vector x = ~1− x returned by the function, satisfies:

n+l
∑

j=1

wjxj ≤
n+l
∑

j=1

wj − P ∗ + (ku − 1)|J∗|

≤
n+l
∑

j=1

wj − P ∗ +
⌊ u

2(n + l)

⌋

(n + l)

≤
n+l
∑

j=1

wj − P ∗ +
⌊u

2

⌋

(19)

19

By definition of P ∗, we get:

n+l
∑

j=1

wj − P ∗ = min{
n+l
∑

j=1

wjxj |
n+l
∑

j=1

wjxj ≥ λg, xj ∈ {0, 1}, 1 ≤ j ≤ n + l}

≤ min{
n

∑

j=1

wjxj |
n

∑

j=1

wjxj ≥ λg, xj ∈ {0, 1}, 1 ≤ j ≤ n}

≤ β′
T (g)

(20)

Combining (19) and (20), we get that for vector x returned by the function SUBSET-OF-WEIGHTS-
APPROXIMATE():

βT ′(g) =

n+l
∑

j=1

wjxj ≤ β′
T (g) +

⌊u

2

⌋

(21)

In the algorithm, all the voters j s.t. xj = 0 will vote p ≻ . . . , and so we will have

βT ′(p) =

n+l
∑

j=1

wj −
n+l
∑

j=1

wjxj ≥
n

∑

j=1

wj + u− (β′
T (g) +

⌊u

2

⌋

)

=

n
∑

j=1

wj − β′
T (g) +

⌈u

2

⌉

≥ β′
T (p) +

⌈u

2

⌉

(22)

For any candidate c such that c /∈ {p, g}, c was never ranked at the top of the preference lists by
Algorithm 3, and so βS∪T ′(c) = βS(c) ≤ β′

S∪T (c). On the other hand, by (22),

βS∪T ′(p) = βS(p) + βT ′(p) ≥ βS(p) + β′
T (p) +

⌈u

2

⌉

= β′
S∪T (p) +

⌈u

2

⌉

≥ β′
S∪T (p).

Recall that p beats c in the first round under XT . It follows that p beats c in the first round under
Algorithm 3, and so p will continue to the next round.

We now prove that p beats g in the next round. If g ≫ p, then in the winning ballot XT ,
N ′

S(p, g) + N ′
T (p, g) > N ′

S(g, p) + N ′
T (g, p), otherwise N ′

S(p, g) + N ′
T (p, g) ≥ N ′

S(g, p) + N ′
T (g, p).

From (21) we get:

NT ′(g, p) = βT ′(g) ≤ β′
T (g) +

⌊u

2

⌋

≤ N ′
T (g, p) +

⌊u

2

⌋

(23)

Thus, from (23):

NT ′(p, g) =

n+l
∑

j=1

wj −NT ′(g, p) ≥
n

∑

j=1

wj + u− (N ′
T (g, p) +

⌊u

2

⌋

) = N ′
T (p, g) +

⌈u

2

⌉

(24)

So, for g ≫ p we get

N ′
S(p, g) + NT ′(p, g) ≥ N ′

S(p, g) + N ′
T (p, g) +

⌈u

2

⌉

> N ′
S(g, p) + N ′

T (g, p) +
⌊u

2

⌋

≥ N ′
S(g, p) + NT ′(g, p)

(25)

In the same way, for p≫ g we get

N ′
S(p, g) + NT ′(p, g) ≥ N ′

S(g, p) + NT ′(g, p) (26)

20

Therefore, p wins the second round of the election, and hence the entire election; the algorithm will
return true.

Next, we prove part 3. Using the notation of the previous part, let P (k) be the maximum sum of
weights from W = {w1, . . . , wn}, solving the scaled maximization problem H(k).3 There is a well-
known dynamic programming algorithm solving the knapsack problem H(k) in time O(nP (k)) (see,

e.g. [19, chapter 9]). Furthermore, P (k) ≤ ∑n
j=1

⌊wj

k

⌋

≤ n
⌊max(W)

k

⌋

≤ nmax(W)
k

. The algorithm

sets ku =
⌊

u
2n

⌋

+ 1 ≥ u+1
2n

, and so we have:

P (ku) ≤ n
max(W)

ku

≤ n
max(W)

u+1
2n

= 2n2 max(W)

u + 1
(27)

Thus we can solve H(ku) in O(nP (ku)) = O(n3 · max(W)
u+1). It is easy to see that all the other steps

of Algorithm 3 are polynomial in its inputs; hence, the proof is completed.

4 Unweighted Coalitional Manipulation

In this section, we discuss the application of the results given above to unweighted coalitional
manipulation (the CCUM problem), and present a new theorem. We will see that some of our
theorems can be translated into approximation (in the classical sense) results in this natural setting.

It is known that the CCUM problem is tractable—with respect to any voting rule that can be
computed in polynomial time—when the number of candidates is constant [7]. However, to the
best of our knowledge (at the time of submission) there are no results regarding the complexity
of the problem when the number of candidates is not constant, except for the cases of STV and
Second Order Copeland where CCUM is hard even when there is only a single manipulator [3, 2].
We conjecture that CCUM in Borda and Maximin is NP-complete.

In the context of unweighted manipulation, one can consider the following optimization problem:

Definition 4.1. In the Constructive Coalitional Unweighted Optimization (CCUO)
problem, we are given the (unweighted) votes of the truthful voters. We must find the minimum
number of manipulators needed in order to make p win (i.e., the minimum number of manipulators
that can cast their (unweighted) votes in a way that makes p win).

Then, our theorems almost directly imply the following corollary:

Corollary 4.2.

1. Algorithm 2 approximates CCUO in Borda up to an additive error of 1.

2. Algorithm 1 is a 2-approximation algorithm for CCUO in Maximin.

Proof. It is enough to show that the minimum number of manipulators needed in order to make p
win, in Borda and Maximin, must be polynomial in the rest of the input. Indeed, in this case we can
apply brute-force search using Algorithms 2 and 1, respectively, in order to approximate the answer.
In other words, we run the algorithm once for every number of manipulators k ∈ {0, . . . , p(n)}
for some polynomial p. The minimum k which gives a true answer in Borda (resp., Maximin) is
guaranteed to be larger by at most 1 (resp., twice as large) than the optimal answer by Theorem 3.4
(resp., Theorem 3.16).

So, it is sufficient to prove the following two Lemmata.

3We slightly abuse notation here, as we defined the optimization problems for weight set W ′ = {w1, . . . , wn+l},
but the definition for the set W is analogous.

21

Lemma 4.3. Let 〈α1, . . . , αm〉 be a scoring protocol where α1 − αm > 0. In the CCUO problem,
let C = {c1, . . . , cm−1, p} be the candidates, S be the set of the truthful voters, |S| = N , and
n∗ be the minimal number of manipulators such that there exists a ballot making p win. Then
n∗ ≤ (N + 1)(m− 1).

Proof. We show that there exists a ballot making p win for n∗ = (N+1)(m−1). Let the manipulator
1 ≤ j ≤ (N+1)(m−1) vote p ≻ . . . ≻ ci+1, where j−1 ≡ i mod (m−1), 0 ≤ i ≤ m−2, and the rest
of the order is arbitrary. With every m−1 voters the difference between the scores of any candidate
cj and p decreases by at least α1−αm. Moreover, for any 1 ≤ j ≤ m−1, σ0(cj) ≤ σ0(p)+N(α1−αm),
and so we get: σ(N+1)(m−1)(cj) ≤ σ(N+1)(m−1)(p)− (α1 − αm) < σ(N+1)(m−1)(p). Hence, p will win
the election.

Lemma 4.4. Consider the CCUO problem in the Maximin protocol. In the notation of Lemma 4.3,
n∗ ≤ N + 1.

Proof. We show that there exists a ballot making p win for n∗ = N + 1. Let every manipulator
vote p ≻ Then for every candidate cj we get: σN+1(cj) ≤ NN+1(cj , p) ≤ N . Moreover, for any
candidate cj 6= p, NN+1(p, cj) ≥ N +1, and so σN+1(p) ≥ N +1. Hence we get for every candidate
cj , σN+1(cj) < σN+1(p), implying that p will win.

This concludes the proof of the corollary.

On the other hand, we have the following results:

Corollary 4.5. Algorithm 3 efficiently solves the CCUM problem in Plurality with Runoff.

Proof. Follows as a special case of Theorem 3.20, where the error window is u = 0, the number of
additional voters is l = 0, and all the weights equal 1.

Theorem 4.6. Algorithm 2 efficiently solves the CCUM problem in Veto.

A short discussion is in order regarding CCUM in Veto. Indeed, this problem can be solved
efficiently by a trivial algorithm. The fact that each manipulator can veto a single candidate may
be interpreted as follows: each manipulator picks one candidate such that the score of p increases
by 1 relative to that candidate without changing with respect to any other candidate. Thus, we
simply have to count the number of manipulators needed to guarantee that p has more points than
any other candidate. Formally, if we denote by σ0(c) the score of candidate c based on the votes
in S, then clearly there exists a vote for T making p win if and only if

∑

c∈C\{p}

max(σ0(c)− σ0(p) + 1, 0) ≤ |T |.

In the context of CCUM in Veto, Algorithm 2 is, in a sense, an instantiation of the simple scheme
described above. However, our direct proof of Theorem 4.6, given in Appendix C, is a simpler, but
analogous, version of the proof of Theorem 3.4.

Finally, note that Corollary 4.5 and Theorem 4.6 imply that CCUO in Plurality with Runoff
and Veto is also in P.

22

5 Relation to Work on Frequency of Manipulation

At this point, we would like to give a more in-depth exposition of previous work regarding frequency
of manipulation, and connect it with this paper.

An interesting approach to the abovementioned issue was presented by Conitzer and Sand-
holm [6]. They noticed that an election instance can be manipulated efficiently if it satisfies two
properties: weak monotonicity—a property which is satisfied by many prominent voting rules—
and another, more arguable property: the manipulators must be able to make one of exactly two
candidates win the election. Conitzer and Sandholm empirically showed that the second property
holds with high probability in different standard voting rules. This empirical validation was carried
out only with respect to small coalitions of voters and skewed distributions over election instances.

Procaccia and Rosenschein [23] leveraged some of the intuitions provided by Conitzer and
Sandholm. They analyzed the probability of the manipulators being able to affect the outcome
of the election (i.e., make one of at least two candidates win), conditioned on the fraction of
manipulators. They found that for quite general distributions over election instances, if n =
o(
√

N), the manipulators cannot affect the outcome with high probability; the opposite is true if
n = ω(

√
N). These results extended previous work on asymptotic strategy proofness [1, 28].

Another result was recently presented by Friedgut, Kalai and Nisan [13]. They showed that a
single manipulator can find a manipulation with relatively good probability by simply switching
to randomly chosen linear preferences (in particular, high probability of success can be achieved
by repeating this process a polynomial number of times). This is true provided the voting rule in
question is “far from dictatorial” in some well-defined sense. The proof of this theorem is beautiful,
but sadly the current proof only works for at most 3 candidates.

Most closely related to this paper is another work by Procaccia and Rosenschein [24], who have
attempted to establish a framework which would enable showing that manipulations are typically
easy. For this purpose, they have defined the notion of junta distributions, which are intuitively
(and arguably) “hard to manipulate”, over election instances in the coalitional manipulation setting.
Moreover, they have defined a voting rule to be susceptible to manipulation if there is an algorithm
that decides CCWM with high probability of success, when the instances are distributed according
to a junta distribution. The rationale is that if there is an algorithm that does well with respect
to these especially hard junta distributions, it would also do well with respect to other reasonable
distributions.

Procaccia and Rosenschein’s main result is that scoring rules are susceptible to manipulation,
according to the foregoing definition. Technically, Procaccia and Rosenschein’s result is in fact a
very loose bound on the window of error of Algorithm 2. Although their analysis holds for any
scoring rule, it suffers from two major shortcomings. First, it is much looser than the one given
in this paper, and consequently does not allow for corollaries regarding unweighted coalitional
manipulation. In contrast, our result regarding Borda is far stronger, since the window of error is
much more accurately characterized. The stronger result allowed, e.g., for Corollary 4.2. A second
major disadvantage of Procaccia and Rosenschein’s analysis is that it only applies to a constant
number of candidates, i.e., m = O(1). However, since the result in Procaccia and Rosenschein
deals with scoring rules in general and here the only Scoring rules we deal with are Borda and
Veto, neither result strictly subsumes the other.

Erdelyi et al. [11] discuss the notion of junta distributions at length. They show that the
idea of junta distributions, when applied to the SAT problem, is not sufficient to classify hard-to-
decide distributions. Their work is inconclusive, however, when it comes to the application of junta
distributions to hardness of manipulation problems.

Still, it seems that at this point we lack a link between a mathematical framework dealing with

23

frequency of manipulation, and hardness on average. In light of this, we shall shortly consider
the intuitive frequency of manipulation implications of our results, without being too formal. Our
theorems imply that our algorithms err on only very specific configurations of the voters’ weights.
It might be productive to imagine points on the real line as representing the total weight of T . In
the case of Borda, then, our algorithm would give a correct negative answer on all points to the
left of some point x, and a correct positive answer on all points to the right of x + maxW . The
range between x and x + maxW is the window of error. This is a simplification of the situation,
but a useful one nonetheless.

Now, intuitively consider some “reasonable” distribution over the instances of the CCUM prob-
lem (such that weights are randomly selected). The fact that the distribution is “reasonable”
guarantees that the manipulators’ total weight is distributed over a large range. Therefore, the
probability of hitting the tiny window of error is extremely small. This (once again, intuitively)
means that with high probability, our algorithms would correctly decide the manipulation problem.

6 Discussion

We would like to devote this final section to a short discussion regarding extensions of our results,
and their applications to other voting rules.

We have noted above (and elaborate on, in Appendix A) that Copeland’s rule is not monotone
in weights. This seems to preclude the type of analysis which we have presented here. Nevertheless,
it might be possible to obtain similar results if one endows the manipulators with the option to
abstain from voting. In this way, any voting rule must be monotone in weights, as additional
manipulators can always abstain. This is also not a major departure from our model, where the
manipulators can coordinate their votes; it is only natural to assume that they can also agree not
to vote at all.

The prominent Single Transferable Vote (STV) rule is one that we have not discussed above.
In STV, the election proceeds in rounds; each voter casts his vote for the candidate he ranks first
among the remaining candidates; the candidate with lowest score is eliminated. It is difficult to
apply our approach to STV, for two reasons. First, it does not have a notion of score (but this is
also true for Plurality with Runoff). Second, it is a very hard voting rule to manipulate. Indeed, it
is well known that STV is hard to manipulate even for a single manipulator [2]. However, in theory
STV is amenable to our type of analysis; this remains a fascinating direction for future research.

Finally, we conjecture that our analysis of the performance of Algorithm 1 with respect to
CCUM in Maximin is not tight: it might be possible to lower the bound from 2 to 3/2 by using a
close variant of the algorithm.

7 Acknowledgments

The authors would like to thank Vincent Conitzer for excellent comments on a draft of this paper,
and in particular for pointing out the alternative 2-approximation algorithm for Maximin given in
Appendix B. The authors also thank the anonymous AIJ reviewers for insightful comments. This
work was partially supported by Israel Science Foundation grant #898/05.

References

[1] E. Baharad and Z. Neeman. The asymptotic strategyproofness of scoring and Condorcet
consistent rules. Review of Economic Design, 4:331–340, 2002.

24

[2] J. Bartholdi and J. Orlin. Single transferable vote resists strategic voting. Social Choice and
Welfare, 8:341–354, 1991.

[3] J. Bartholdi, C. A. Tovey, and M. A. Trick. The computational difficulty of manipulating an
election. Social Choice and Welfare, 6:227–241, 1989.

[4] E. H. Clarke. Multipart pricing of public goods. Public Choice, 11:17–33, 1971.

[5] V. Conitzer and T. Sandholm. Universal voting protocol tweaks to make manipulation hard.
In Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence (IJ-
CAI’03), pages 781–788, Acapulco, Mexico, 2003.

[6] V. Conitzer and T. Sandholm. Nonexistence of voting rules that are usually hard to manipulate.
In Proceedings of the Twenty-First National Conference on Artificial Intelligence (AAAI’06),
pages 627–634, Boston, 2006.

[7] V. Conitzer, T. Sandholm, and J. Lang. When are elections with few candidates hard to
manipulate? Journal of the ACM, 54(3):1–33, 2007.

[8] E. Elkind and H. Lipmaa. Hybrid voting protocols and hardness of manipulation. In ISAAC,
Lecture Notes in Computer Science, pages 206–215. Springer-Verlag, 2005.

[9] E. Elkind and H. Lipmaa. Small coalitions cannot manipulate voting. In FC, Lecture Notes
in Computer Science. Springer-Verlag, 2005.

[10] E. Ephrati and J. S. Rosenschein. A heuristic technique for multiagent planning. Annals of
Mathematics and Artificial Intelligence, 20:13–67, 1997.

[11] G. Erdélyi, L. A. Hemaspaandra, J. Rothe, and H. Spakowski. On approximating optimal
weighted lobbying, and frequency of correctness versus average-case polynomial time. In Fun-
damentals of Computation Theory, volume 4639 of Lecture Notes in Computer Science, pages
300–311. Springer-Verlag, 2007.

[12] P. Faliszewski, E. Hemaspaandra, and L. A. Hemaspaandra. The complexity of bribery in
elections. In Proceedings of the Twenty-First National Conference on Artificial Intelligence
(AAAI 2006), Boston, 2006.

[13] E. Friedgut, G. Kalai, and N. Nisan. Elections can be manipulated often. In Proceedings of the
Forty-Ninth Conference on Foundations of Computer Science (FOCS’08), 2008. To appear.

[14] S. Ghosh, M. Mundhe, K. Hernandez, and S. Sen. Voting for movies: the anatomy of a
recommender system. In Proceedings of the Third Annual Conference on Autonomous Agents,
pages 434–435, Seattle, 1999.

[15] A. Gibbard. Manipulation of voting schemes. Econometrica, 41:587–602, 1973.

[16] T. Groves. Incentives in teams. Econometrica, 41:617–631, 1973.

[17] T. Haynes, S. Sen, N. Arora, and R. Nadella. An automated meeting scheduling system
that utilizes user preferences. In Proceedings of the First Annual Conference on Autonomous
Agents, pages 308–315, Marina del Rey, California, 1997.

[18] E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe. Anyone but him: The complexity of
precluding an alternative. Artificial Intelligence, 171(5–6):255–285, 2007.

25

[19] D. S. Hochbaum. Approximation Algorithms for NP-Hard Problems. PWS Publishing Com-
pany, 1997.

[20] H. Moulin. On strategy-proofness and single peakedness. Public Choice, 35:437–455, 1980.

[21] K. Oflazer and G. Tür. Morphological disambiguation by voting constraints. In Proceedings of
the 8th Conference of the European Chapter of the Association for Computational Linguistics
(EACL 1997), pages 222–229, 1997.

[22] D. Pennock, E. Horvitz, and L. Giles. Social choice theory and recommender systems: Analysis
of the axiomatic foundations of collaborative filtering. In Proceedings of the 17th National
Conference on Artificial Intelligence (AAAI 2000), pages 729–734, 2000.

[23] A. D. Procaccia and J. S. Rosenschein. Average-case tractability of manipulation in elections
via the fraction of manipulators. In The Sixth International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2007), pages 718–720, Honolulu, Hawaii, May 2007.

[24] A. D. Procaccia and J. S. Rosenschein. Junta distributions and the average-case complexity
of manipulating elections. Journal of Artificial Intelligence Research, 28:157–181, 2007.

[25] A. D. Procaccia, J. S. Rosenschein, and A. Zohar. Multi-winner elections: Complexity of
manipulation, control and winner-determination. In The Twentieth International Joint Con-
ference on Artificial Intelligence (IJCAI 2007), pages 1476–1481, Hyderabad, India, January
2007.

[26] M. Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and correspondence
theorems for voting procedures and social welfare functions. Journal of Economic Theory,
10:187–217, 1975.

[27] G. Sigletos, G. Paliouras, C. Spyropoulos, and M. Hatzopoulos. Combining information extrac-
tions systems using voting and stacked generalization. Journal of Machine Learning Research,
6:1751–1782, 2006.

[28] A. Slinko. How large should a coalition be to manipulate an election? Mathematical Social
Sciences, 47(3):289–293, 2004.

[29] W. Vickrey. Counter speculation, auctions, and competitive sealed tenders. Journal of Finance,
16(1):8–37, 1961.

A Copeland is Not Monotone in Weights

When discussing Scoring rules, Maximin, and Plurality with Runoff, we are motivated to look for
approximate solutions to the CCWM problem by the fact that these voting rules are monotone in
weights. In contrast, Copeland is not monotone in weights. The next example illustrates this fact.
Consider the following setting: C = {p, 1, 2, 3}, N = |S| = 6. All the weights equal 1. The votes
of the voters in S are shown in the following table:

26

Voter in S Vote

1 p ≻ 1 ≻ 2 ≻ 3
2 p ≻ 2 ≻ 1 ≻ 3
3 3 ≻ p ≻ 1 ≻ 2
4 3 ≻ p ≻ 2 ≻ 1
5 1 ≻ 2 ≻ 3 ≻ p
6 2 ≻ 1 ≻ 3 ≻ p

The pairwise results are given in the next table. In the cell corresponding to the row of candidate
g and the column of candidate g′, we write “a : b” to indicate that g is preferred to g′ by a voters,
and g′ is preferred to g by b voters (i.e., a = N0(g, g′), b = N0(g

′, g)):

p 1 2 3

p 4:2 4:2 2:4

1 2:4 3:3 4:2

2 2:4 3:3 4:2

3 4:2 2:4 2:4

From the above table we calculate that σ0(p) = 1, σ0(1) = σ0(2) = 0, σ0(3) = −1, so p wins
the election in this setting. However, if we add another voter (with weight 1), then no matter what
his vote would be, p would not win the election: if the additional voter puts 1 above 2, then 1 will
win, and otherwise 2 will win.

Remark A.1. It is easy to see, however, that whenever there is a manipulation for the coalition
with weights W , then there is also a manipulation for coalition with weights W +{w}+{w}, where
w ≥ 1 is an integer: the first additional voter makes an arbitrary vote, and the second additional
voter reverses the first’s ranking.

B Alternative Algorithm for CCWM in Maximin

Consider the following simple algorithm, which we refer to as Algorithm 4. Given the list of weights
W ′, let W = {w1, . . . , wk} be the maximal (with respect to set inclusion) list of weighted votes
such that W ′ contains two copies of W , i.e., W1 + W2 ⊆ W ′, W1 = W2 = W .4 Each manipulator
in W1 votes p ≻ c1 ≻ . . . ≻ cm−1, while every manipulator in W2 votes p ≻ cm−1 ≻ . . . ≻ c1.
The remaining manipulators all rank p first, and the other candidates arbitrarily. The algorithm
returns true iff this ballot makes p win.

We will now easily show that Theorem 3.16 also applies to Algorithm 4.

Theorem B.1. In the Maximin rule, let C be the set of candidates with p ∈ C the preferred
candidate, and S the set of voters who already cast their votes. Let W be the weight list for the set
T . Then:

1. If there is no ballot making p win the election, then Algorithm 4 will return false.

2. If there is a ballot making p win the election, then for the same instance with weight list W ′

s.t. W ′ ⊇W + W (i.e., W ′ contains two copies of W), Algorithm 4 will return true.

4To simplify notation we overload W and identify it with the list of manipulators. It is straightforward that this
set can be efficiently found. Indeed, for each weight in the list W ′, simply check if there is another copy, and if so,
place one of them in W1 and one in W2.

27

Proof. Item 1, as always, is obvious since the algorithm is constructive. For Item 2, let σ∗(c) be
candidate c’s Maximin score based on the votes in S and the manipulator weights W which make
p win. Let σ′(c) be c’s Maximin score based on the votes in S and the votes in W + W , according
to the algorithm (notice that W ⊆ W1, W ⊆ W2). Finally, let σ(c) be c’s score according to the
algorithm, on the weight list W ′. As before, denote W = {w1, . . . , wk}.

First, note that σ′(p) ≥ σ∗(p) +
∑k

i=1 wk. Moreover, clearly for any c ∈ C \ {p}, σ′(c) ≤
σ∗(c) +

∑k
i=1 wk, as for each c′ ∈ C \ {c, p} and each wi in the multiset W there is exactly one

manipulator in W1 + W2 with weight wi which ranks c above c′. Since σ∗(p) > σ∗(c) for any
c ∈ C \ {p}, we conclude that

∀c ∈ C \ {p}, σ′(p) > σ′(c). (28)

In order to complete the proof, we note that σ(p) − σ′(p) ≥ σ(c) − σ′(c) for any c ∈ C \ {p},
as all the manipulators with weights W ′ \ (W1 + W2) rank p first. Together with the above, we get
that σ(p) > σ(c) for all c ∈ C \ {p}.

C Proof of Theorem 4.6

We prove this theorem via the Lemmata C.1–C.4. The proof technique is similar to that of Theo-
rem 3.4, but the proof is easier.

First, we define the set Xn = {x ∈ C \ {p} | x was ranked last in stage j for 1 ≤ j ≤ n}. In
addition, define Yn = {y ∈ C \ {p} | σn(y) ≥ min(σn(Xn))}. From the definition, Xn ⊆ Yn. Also,
by definition:

∀g /∈ Yn ∪ {p}, σn(g) < min(σn(Yn)) (29)

We denote by αj(x) the number of points x was awarded in stage j.

Lemma C.1. For all y1, y2 ∈ Yn, |σn(y1)− σn(y2)| ≤ 1.

Proof. Let x∗ ∈ Xn s.t. σn(x∗) = min(σn(Xn)). Let y ∈ Yn. By definition, σn(x∗) ≤ σn(y). We
would like to show that σn(y) ≤ σn(x∗) + 1. Suppose for contradiction that σn(y) − σn(x∗) ≥ 2.
Let 1 ≤ j ≤ n maximal s.t. αj(x

∗) = 0. Then:

σj(y)− σj(x
∗) =

[

σn(y)−
n

∑

k=j+1

αk(y)
]

−
[

σn(x∗)−
n

∑

k=j+1

αk(x
∗)

]

≥
[

σn(y)− (n− j)
]

−
[

σn(x∗)− (n− j)
]

= σn(y)− σn(x∗) ≥ 2

Therefore σj−1(y) − σj−1(x
∗) ≥ 1, and so σj−1(y) > σj−1(x

∗), a contradiction to αj(x
∗) = 0.

We showed that for all y ∈ Yn, σn(x∗) ≤ σn(y) ≤ σn(x∗) + 1, and hence for all y1, y2 ∈ Yn,
|σn(y1)− σn(y2)| ≤ 1.

Lemma C.2. Define q(n) := 1
|Yn|

∑

y∈Yn
σn(y). Let ZT be a preference list of voters in T , and

σ′
n(g) be the scores of g ∈ C which are implied by ZT (including votes in S). Then q′(n) :=
1

|Yn|

∑

y∈Yn
σ′

n(y) ≥ q(n).

Proof. The above fact is true since in the algorithm, at every stage j, there is some x ∈ Xn ⊆ Yn

such that αj(x) = 0, and so for every j, the sum
∑

y∈Yn
αj(y) = |Yn| − 1 is minimal. Formally, let

28

us denote by α′
j(g) the number of points candidate g gets from voter j in ZT . Then:

q(n) =
1

|Yn|
(

∑

y∈Yn

σ0(y) + n(|Yn| − 1)
)

≤ 1

|Yn|
(

∑

y∈Yn

σ0(y) +
n

∑

j=1

∑

y∈Yn

α′
j(y)

)

=
1

|Yn|
∑

y∈Yn

σ′
n(y) = q′(n)

Lemma C.3. If σn(p) > max(σn(Yn)) then Algorithm 2 will find the manipulation that makes p
win.

Proof. By Equation (29), for all g ∈ C \{p}, σn(g) ≤ max(σn(Yn)), and so if σn(p) > max(σn(Yn)),
then for all g ∈ C \ {p}, σn(p) > σn(g), and so the algorithm will find the manipulation.

Lemma C.4. If σn(p) ≤ max(σn(Yn)) then there exists no manipulation.

Proof. Let ZT be a set of preferences of voters in T , and let σ′
n(g), q′(n) and α′

j(g) be as in
Lemma C.2. As for all j, αj(p) = 1 ≥ α′

j(p), it follows that σn(p) ≥ σ′
n(p). There is at least

one g0 ∈ Yn s.t. σ′
n(g0) ≥ ⌈q′(n)⌉. By Lemma C.2, ⌈q′(n)⌉ ≥ ⌈q(n)⌉. By Lemma C.1, ⌈q(n)⌉ =

max(σn(Yn)). Combining the foregoing steps, we obtain:

σ′
n(g0) ≥ ⌈q′(n)⌉ ≥ ⌈q(n)⌉ = max(σn(Yn)) ≥ σn(p) ≥ σ′

n(p)

We conclude that p does not win under ZT , and hence there is no ballot of votes in T that makes
p win the election.

The proof of the Theorem 4.6 is completed.

29

