
Mechanisms for Information Elicitation

Aviv Zohar, Jeffrey S. Rosenschein

School of Engineering and Computer Science

The Hebrew University of Jerusalem

Jerusalem, Israel

Abstract

We study information elicitation mechanisms in which a principal agent attempts
to elicit the private information of other agents using a carefully selected payment
scheme based on proper scoring rules. Scoring rules, like many other mechanisms
set in a probabilistic environment, assume that all participating agents share some
common belief about the underlying probability of events. In real-life situations
however, the underlying distributions are not known precisely, and small differences
in beliefs of agents about these distributions may alter their behavior under the
prescribed mechanism.

We examine two related models for the problem. The first model assumes that
agents have a similar notion of the probabilities of events, and we show that this
approach leads to efficient design algorithms that produce mechanisms which are
robust to small changes in the beliefs of agents.

In the second model we provide the designer with a more precise and discrete set
of alternative beliefs that the seller of information may hold. We show that con-
struction of an optimal mechanism in that case is a computationally hard problem,
which is even hard to approximate up to any constant. For this model, we provide
two very different exponential time algorithms for the design problem that have
different asymptotic running times. Each algorithm has a different set of cases for
which it is most suitable. Finally, we examine elicitation mechanisms that elicit
the confidence rating of the seller regarding its information, and discuss elicitation
mechanisms for multiple sellers.

Key words: Information Elicitation, Mechanism Design, Information Trade.

Email addresses: avivz@cs.huji.ac.il (Aviv Zohar), jeff@cs.huji.ac.il
(Jeffrey S. Rosenschein).

Preprint submitted to Artificial Intelligence 18 March 2007

1 Introduction

The old aphorism “Knowledge is power”, stated by Sir Francis Bacon some
four centuries ago, is more relevant now than ever. The need to make informed
choices causes correct and accurate information to be a desired and highly-
valued commodity. As intelligent automated agents take on more tasks, and
need to act independently within large systems, their need to buy and sell
information increases.

Information in stochastic environments is hard to evaluate, and may be easily
faked. Any novice can give a prediction regarding the behavior of tomorrow’s
stock market; by pure chance, those predictions may outperform those of even
the most informed financial wizard.

The question that naturally arises is how to pay for information that can only
be verified with some probability. This is especially important in cases where
in order to obtain the information, the seller itself has to invest some effort.
The payments made by the buyer must be carefully set so as to induce the
seller to invest the effort into acquiring the true information. Otherwise, the
seller might be tempted to avoid the cost of obtaining the information, and
simply make something up.

Most current real-world information trading is done with reliable sources of
information over an extended period of time (for example, buying the same
newspaper every day). This repeated form of interaction helps motivate the
provider of information to supply accurate and reliable reports (not unlike
the “shadow of the future” motivating cooperation in the iterated Prisoner’s
Dilemma [1]). The potential for additional interactions in the future makes the
information provider’s reputation valuable, and motivates the seller to provide
accurate pieces of information.

However, recent advances in technology and infrastructure such as the internet
have made a multitude of information sources readily available at a moment’s
notice (via web services [2], for example). These tend to be smaller and much
more specialized information providers, which can accurately report about a
small niche in which they specialize. Interactions with these sources are not
often repeated. Since there is no central authority that governs these sources,
and no single authority can vouch for the reliability of the information they
provide, it is left up to the buyer of information to sift through the information
that is available and decide what to use. 1

1 As an example, consider the querying of some foreign weather service before
traveling abroad on a trip. One will only know if the weather prediction they supplied
is good after arriving at the destination. One may not be likely to require the services
of that supplier again.

2

One approach to the problem of reliability of these sources is the use of artifi-
cially created reputation systems [3]. These systems are mechanisms through
which agents provide feedback about the quality of service they received from
a specific information source. This feedback is later viewed by other potential
clients of that service provider. Unfortunately, solid non-manipulable reputa-
tion systems are hard to create, and most service providers on the internet are
not currently rated by any such system.

We are therefore interested in other ways of obtaining correct information
from a previously unknown information source. We will assume that there
is no repeated interaction, and the incentive for providing good service must
exist within every transaction, on its own. The overall approach we take in this
work is that of mechanism design. We shall attempt to create the incentives for
delivering accurate reports by providing payments to the agents in a way that
will guarantee them a higher payment when they are behaving nicely—i.e.,
when they provide correct information.

We shall assume that agents are behaving rationally and that they are not
intentionally trying to sabotage the buyer—any use the buyer may make of
the purchased information does not affect the seller. Instead, we adopt the
assumption that information providers are only interested in receiving a higher
payment and doing the least amount of work. A truly malicious agent that is
trying to intentionally deceive, regardless of monetary loss, will not give good
information regardless of the mechanism applied, and must therefore be dealt
with in other ways. Such agents are often handled using tools from security
and encryption that we shall not discuss here.

1.1 A Toy Scenario for Information Elicitation

Alice, Bob, and Charlie are amateur weather forecasters. They each live in dif-
ferent parts of the country, and collect weather data. Let us assume that Alice
wishes to predict tomorrow’s chance of rain so that she can decide whether
or not to risk leaving her umbrella at home. Naturally, tomorrow’s weather is
hard to predict, and depends to some degree on today’s weather conditions.
Given that it is raining today where Bob and Charlie are, it is very likely to
rain tomorrow where Alice lives. Alice therefore decides to ask Bob and Char-
lie to tell her whether it is currently raining in their area (which she cannot
know independently), and is willing to offer some payment.

Bob, being notoriously lazy, decides to just make something up without going
to the window to find out the true weather, since he knows he cannot be
caught. After too many rainy days without an umbrella, Alice realizes that
Bob has been lying and decides to make sure Bob tells her the truth. She

3

decides to condition payments to Bob and Charlie not only on what they tell
her, but also on the weather that she experiences the next day. She offers to
pay each of them $1 if they tell her it is raining and she also sees rain, or if
they tell her it is not raining and she sees no rain. In all other cases they get
no payment at all.

Bob, still not wishing to go to too much trouble, checks his weather records
and tries to compute what his expected payments from Alice are. He weighs
this against the trouble of waking up early every morning to check the weather
for Alice. He also knows that if Charlie checks the weather, he may not have
to bother to look out the window, since his own weather is well correlated
with Charlie’s, and he can simply report to Alice Charlie’s weather as his own
(if Charlie’s willing to collude).

Alice should therefore be cautious when deciding on the payments she promises
Bob and Charlie. She would like to save money, so she would not want to pay
them too much, only just enough to give them sufficient motivation to tell the
truth. She would also want to structure the payments in a way that will make
Bob and Charlie want to be truthful. She would certainly not want to pay
for bad information when she can avoid it. To do all this, she must take into
account the beliefs of Bob and Charlie about the joint probability distribution
of rainfall in the area.

1.2 Information Elicitation vs. Preference Elicitation

Mechanism design [4,5] is the study of how to set the rules and protocols of in-
teraction among agents in a way that will encourage rational agents to behave
in a prescribed way that leads to a desired outcome. The mechanism design
literature provides many successful examples of mechanisms that “battle” the
agent’s self interest and successfully achieve outcomes that are more socially
oriented, or are beneficial to the designing agent in some way.

Many times, in order to decide on an outcome, a mechanism tries to elicit
the preferences of participating agents. Information elicitation scenarios are
slightly different from preference elicitation as it is usually perceived in the
mechanism design literature. In preference elicitation scenarios, information
revelation is most often used as a means to an end (i.e., to arrive at some
desirable outcome). For example, an auctioneer may want to know the valu-
ations potential buyers have for an expensive painting so that he can award
this painting to the bidder that values it highest, and in the process make
more money.

In pure information elicitation, the information being revealed is the point of
the transaction. The seller is assumed to only be concerned with its payment,

4

not any other consequence of providing one piece of information or another. In
this sense, information elicitation can be seen as a subproblem of mechanism
design, where the mechanism has no outcome to determine. 2 This limitation
leaves the mechanism with fewer degrees of freedom.

Since information elicitation scenarios are all about trading information, it
may be important to the participants not to give out any information for free,
and to keep all their extra knowledge about the world secret. Later in this
article we shall examine scenarios where the seller and buyer of information
possess different beliefs about the world. In classic mechanism design, this
problem is often addressed by direct revelation mechanisms that require agents
to divulge all needed information, including their probability beliefs (i.e., type).
The mechanism then takes this information into account and acts optimally
on behalf of the agent, eliminating any need to be untruthful. However, in
settings where information is sold, it is unlikely that the seller would be willing
to participate in direct revelation schemes. Since information is the primary
commodity, revealing more of it to the mechanism is unwise, 3 and the agent’s
beliefs about probabilities contain extra information.

1.3 Contribution

As computers take on more and more tasks that need intelligent decisions and
reliable information, and as micro transactions of information start to play
a larger role in information trade, putting into place the proper incentives
for truthfulness becomes increasingly important. We present here a model for
one-shot transactions of information that can incorporate these incentives, and
show how to extend it in four ways:

(1) We show that some mechanisms are more robust to varying beliefs of
agents than other mechanisms. The notion of belief robustness that we
define assists in many real-world cases where there is no common knowl-
edge between the seller and buyer of information, but effective mecha-
nisms can still be constructed. We present efficient algorithms for finding
such mechanisms.

(2) We show that if the selling agent has additional knowledge about the
state of the world that it is not willing to sell, the design of an optimal
mechanism becomes computationally hard. We present two exponential
time algorithms for the design problem that exploit different aspects in
the structure of the problem, and achieve different running time profiles.

2 This is similar to the classification of elections as mechanisms where no money
changes hands, and only an outcome is selected.
3 It remains unwise even if the mechanism is handled by a trusted third party, since
revealing extra information would be reflected in payments made by the buyer.

5

(3) We look at the case where the expert selling information has some un-
certainty regarding its quality, and show how the confidence rating of the
seller can sometimes be elicited along with the information itself.

(4) We examine the general information elicitation setting in the case of mul-
tiple sellers, and discuss different solution concepts that apply to it. We
also look at the effects of collusion among the agents on the mechanism,
and on its design.

1.4 Structure of the paper

In the next section we review related work and give a brief overview of some
mathematical and computational background used in the rest of the paper.
In Section 3 we define the basic information elicitation model and explore its
basic properties in the case of one seller. Section 4 then explores a model where
agents do not hold a common view of the world and need to design mechanisms
that are robust against small differences in beliefs. Next, we turn to a scenario
where the seller possesses more knowledge about the probabilities than the
buyer does, and show that designing good mechanisms in this case is often
hard. We give two different algorithms to design such mechanisms that have
different running times. In Section 6 we discuss elicitation of confidence ratings
in scenarios where the seller has some uncertainty about the quality of its
information. In Section 7 we look at multiagent scenarios where a mechanism
must be designed for multiple sellers at the same time. We examine different
solution concepts in that case, and consider the difficulties that arise when
agents collude against the mechanism. Finally, we present our conclusions in
Section 8.

2 Background

2.1 Related Work

Research in artificial intelligence and on the foundations of probability the-
ory has considered probabilities as beliefs, 4 and several models have been
suggested—for example, probabilities over probabilities [6]. Cases where agents
have uncertainty about the utility functions in the world were examined in [7];
an agent acts according to the “expected expected utility” it foresees as it takes
into consideration its own uncertainty. The truthful elicitation of such beliefs
has also attracted great interest [8–10] (see Section refscoring on scoring rules).

4 This has led to controversy between Bayesians and Frequentists.

6

The issue of common knowledge and common priors has been studied within
the context of probability theory [11,12]. Here, the beliefs about beliefs of
agents also play a large role.

There are naturally many uses for information elicitation in computer science.
For example, in reputation systems [13,14] information is elicited from agents
about their experience with some service provider. This information is impor-
tant for agents that will interact with that service provider in the future, but
the reporting agent that has already completed the interaction needs to be
motivated in some other way to reveal the results of its own interaction.

In multi-party computation [15,16], information is elicited in order to compute
some function of the agents’ secrets. Incentives for truth telling need to be put
into place if agents may have reservations about revealing or computing their
own secret. Yet another area in which information elicitation is implemented
is polling. The information market [17,18] approach has been suggested as a
way to get more reliable results than regular polls. There, agents buy and sell
options that will pay them an amount that is dependent on the outcome of
some event (like some specific candidate winning an election).

A somewhat different sub-field of information elicitation deals with eliciting
information from humans [19,20]. The challenges here are to model as accu-
rately as possible the desires of people (as utility functions, for example) and to
overcome some of the irrationality that affects human behavior and reporting.
The reports these schemes often rely on can be noisy and even conflicting.

An economic analysis of information as a trade commodity within large mar-
kets has also been performed. Broker Agents that buy information, filter it,
and then sell the results have been examined in [21]. [22] explores the effects
of bundling information goods together.

The automatic design of general mechanisms has been researched as well.
[23,24] proposed applying automated mechanism design to specific scenarios
as a way of tailoring the mechanism to the exact problem at hand, and thereby
developing superior mechanisms. Here we propose to do similar things with
information elicitation mechanisms.

2.2 Strictly Proper Scoring Rules

Scoring rules [8] are used in order to assess and reward a prediction given
in probabilistic form. A score is given to the predicting expert that depends
on the probability distribution the expert specifies, and on the actual event
that is ultimately observed. For a set Ω of possible events and P , a class of
probability measures over them, a scoring rule is then defined as a function of

7

the form: S : P × Ω → R.

A scoring rule is called strictly proper if the predictor maximizes its expected
score by saying the true probability of the event, and receives a strictly lower
score for any other prediction. That is:

Eω∼p[S(p, ω)] ≥ Eω∼p[S(q, ω)] (1)

where equality is achieved iff p = q. [10] show a necessary and sufficient
condition for a scoring rule to be strictly proper (see a generalized version
in [9]), which allows easy generation of various proper scoring rules by selecting
a bounded convex function over P . Each such function generates a new scoring
rule.

Several commonly known scoring rules are:

• The spherical scoring rule

S(p, ω) =
pω

√

∑

ω′∈Ω

pω′
2

(2)

• The logarithmic scoring rule

S(p, ω) = log(pω) (3)

• And the quadratic scoring rule

S(p, ω) = 2pω −
∑

ω′∈Ω

p2

ω′ . (4)

An interesting use of scoring rules within the context of a multiagent repu-
tation system was suggested by [13], who have modeled the bad behavior of
service providers by a random variable that, with some fixed probability p,
determines whether they will be honest or dishonest in their next transaction.
A series of agents interact with this service provider; each is required to give
feedback, which is interpreted as giving some refined prediction for the value
of p. An agent involved in giving feedback is then rewarded with a scoring
rule according to how well it predicted the feedback signal of the next agent
that interacts with the service provider. This mechanism makes true revelation
of the experience with the service provider a Nash equilibrium. Unavoidably,
the mechanism also has other Nash equilibria that may attract agents. This
may be corrected by relying on some reliable feedback from other sources as
well [25].

8

2.3 Stochastic Programming

Stochastic Programming [26] is a branch of mathematical programming where
the mathematical program’s constraints and target function are not precisely
known. A typical stochastic program formulation consists of a set of param-
eterized constraints over variables, and a target function to optimize. The
program is then considered in two phases. The first phase involves the deter-
mination of the program’s variables, and in the second phase, the parameters
to the problem are randomly selected from the allowed set. The variables set
in the first stage are then considered within the resulting instantiation of the
problem. Therefore they must be set in a way that will be good for all (or
most) possible problem instances. There are naturally several possible ways
to define what constitutes a good solution to the problem. In this work, we use
the conservative formulation of [27] which requires the assignment of variables
to satisfy the constraints of the program for every possible program instance.
For example, if we are given a program of the form:

min c · x

s.t.

Ax ≥ b

where A is considered to be from an allowed set of parameters A, we shall
expect a solution x to the mathematical program to be feasible for all possible
A ∈ A. Linear stochastic programs such as these are convex and have a sep-
aration oracle that can be constructed using a linear program solver (see [27]
for more details), and are thus efficiently solvable using convex optimization
algorithms.

We shall make use of this formulation later in Section 4. Each instance will
correspond to a different variation in the beliefs held by the participating
agents.

3 The Information Elicitation Scenario

The scoring rule literature usually deals with the case in which the predicting
expert is allowed to give a prediction from a continuous range of probabilities.
We look at a different problem: we assume each agent (including the principal
agent, i.e., the one trying to elicit the information) has access to a privately-
owned random variable that takes a finite number of values only. The discrete
values allow us to tailor the mechanism to the exact scenario at hand with-
out the need to differentiate between infinitesimally differing cases. Bartered

9

knowledge is very often presented in a discrete format. 5 Finally, aggregating
information from several agents is also much clearer and simpler to do with
discrete variables.

Fig. 1. The Information Transaction

We assume the buyer wishes to purchase information about the value of a
discrete random variable Xi from each seller i, and that the seller can learn
the value of that variable at a cost ci. To verify the quality of the information
it purchases, the buyer has access to a random variable Ω. Ω, X1, . . . , Xn are
presumably not independent variables, and knowledge about the value of one
of them gives some information regarding the value of the others. Using the
variable Ω, the buyer can get some idea if the information sold to him was
correct. Without Ω, it would sometimes be impossible to create the necessary
incentives for truthfulness on the part of the sellers. The variable may be
redundant in the case of multiple sellers where information from several sources
can be compared for validation.

We shall denote the probability distribution for Ω, X1, . . . , Xn by pω,x1,...,xn
=

Pr(Ω = ω,X1 = x1, . . . , Xn = xn). The values the different variables can take,
as well as the probability distribution pω,x1,...,xn

, and the costs ci are assumed
to be common knowledge. We also assume that agents seek to maximize their
expected gains and that they are risk-neutral.

The buyer can now design a payment scheme that will determine the payment
it must give to the sellers, based on the information the sellers gave and on
the value of the verification variable Ω. We shall denote the payment to agent
i by: ui

ω,x1,...,xn
. A payment scheme shall be considered proper if it creates the

incentive for agents to enter the game, invest the effort into acquiring their
variable, and tell the true value that they found. These three requirements are
defined more precisely below.

5 For example, a person acquiring weather information could be interested in the
temperature forecast for the next day, but would not really care if the exact temper-
ature is off by one degree. The required information in this case might be given just
to make a discrete choice of how warmly to dress. Continuous data can sometimes
be made discrete according to the various actions it implies.

10

3.1 The Single Agent Case

For ease of exposition, we shall first look at the restricted case of a single
agent (we shall return to the multiagent case in Section 7). In the case of one
participating agent with a single variable, we need to satisfy three types of
constraints in order to have a proper mechanism. For convenience, we drop
the index i of the agent and denote by pω,x the probability Pr(Ω = ω,X = x).

(1) Truth Telling. Once an agent knows its variable is x, it must have an
incentive to tell the true value to the principal, rather than any lie x′.

∀x, x′ s.t. x 6= x′ ∑

ω

pω,x · (uω,x − uω,x′) > 0 (5)

Remember that pω,x is the probability of what actually occurs, and that
the payment uω,x′ is based only on what the agent reported.

(2) Individual Rationality. An agent must have a positive expected utility
from participating in the game:

∑

ω,x

pω,x · uω,x > c (6)

(3) Investment. The value of information for the agent must be greater than
the cost of acquiring it. Any guess x′ the agent makes without actually
computing its value must be less profitable (in expectation) than paying
to discover the true value of the variable and revealing it:

∀x′ ∑

ω,x

pω,x · uω,x − c >
∑

ω,x

pω,x · uω,x′ (7)

Note that all of the above constraints are linear, and can thus be applied
within a linear program to minimize, for example, the expected cost of the
mechanism to the principal agent:

∑

ω,x
pω,x · uω,x.

3.2 A Geometric Interpretation for the Truth-Telling Constraints

In Section 3.3 we shall see that if the truth-telling constraints are satisfiable,
the payments can be adjusted easily to satisfy the rest of the constraints as
well. We are therefore interested in better understanding these constraints.

A close look at the truth-telling constraints for some x and x′,

∑

ω

pω,x · (uω,x − uω,x′) > 0 (8)

11

reveals that they seem similar to vector multiplication. In fact, if we define
vectors

~px , (pω1,x . . . pωk,x) (9)

~ux , (uω1,x . . . uωk,x) (10)

we can write the truth-telling constraints in the following form:

∀x 6= x′ ~px · (~ux − ~ux′) > 0. (11)

Using a slightly different notation we can define:

∀x 6= x′ ~vx,x′ , ~ux − ~ux′ , (12)

and write the constraint as:

∀x 6= x′ ~px · ~vx,x′ > 0. (13)

This representation has a geometric interpretation: The vector ~px is required
to be on the positive side of the unbiased hyperplane perpendicular to the
vector ~vx,x′ .

It is important to notice that the vectors ~vx,x′ are not independent of each
other, but have the following relationships:

~vx,x′ = −~vx′,x (14)

~vx,x′′ = ~vx,x′ + ~vx′,x′′ (15)

We therefore have a matching requirement to 13 that places the vector ~px′ on
the negative side of the hyperplane ~vx,x′ :

∀x 6= x′ ~px′ · ~vx,x′ < 0 (16)

A proper assignment of payments is required to give a linear separation be-
tween the vectors ~px and ~px′ using the hyperplane defined by ~vx,x′ (see Fig-
ure 2). This requirement for linear separation is the basis for many of our
results.

12

Fig. 2. A Linear Separation of vectors ~px and ~px′

3.3 Existence and Properties of Solutions for a Single Agent

There are naturally cases when it is impossible to satisfy the constraints. The
following proposition gives a sufficient condition for infeasibility in the single
agent case:

Proposition 1 If there exist x, x′ ∈ X and α ≥ 0 s.t. x 6= x′ ∀ω pω,x =
α · pω,x′, then there is no way to satisfy truth-telling constraints for x and x′

at the same time.

Proof:

When looking at the two truth-telling constraints for x, x′ we get (according
to Equation 5 and Equation 16):

0 <
∑

ω

pω,x · (uω,x − uω,x′) < 0 (17)

which is a contradiction. 2

We can regard this feasibility condition as a requirement of independence
between the vectors ~px , (pω1,x . . . pωk,x) of any two different x, x′. If the vec-
tors are dependent, they cannot be linearly separable as required by the con-
straints. We shall later see that a high similarity between these vectors which
makes them harder to separate, while still allowing for a working mechanism,
actually limits its robustness.

Next, we shall see that if the condition described in proposition 1 does not
hold, we can alway construct a proper payment scheme. Moreover, once we
have some working payment scheme, we can easily turn it into an optimal one
with a cost of c.

13

Proposition 2 If the probability vectors ~px are pairwise independent, i.e.,
∀x, x′ there is no λ such that ~px = λ · ~px′, then there is a proper payment
scheme with a mean cost as close to c as desired. This solution is optimal, due
to the individual rationality constraint.

Proof: We can easily build an optimal solution by using a strictly proper
scoring rule:

uω,x = α · S(Pr(ω|x), ω) + βω (18)

for some positive α, and some value βω. Since the independence relation holds
for every pair x, x′, the probabilities Pr(ω|x) are distinct and the scoring rule
assures us (Equation 1) of the incentive for truth-telling regardless of the
values of α, βω.

To satisfy the investment constraint, one can scale the payments until the
value of information for the agent justifies the investment. Setting

α > max
x′

[
c

∑

ω,x
pω,x(S(Pr(ω|x), ω) − S(Pr(ω|x′), ω))

] (19)

satisfies that constraint for every x′. This is also shown in [13].

Finally, we can use the βω values to satisfy the remaining individual rationality
constraint tightly by shifting the payments until their average is just above c:

βω = β > c − α
∑

ω,x

pω,x · S(Pr(ω|x), ω) (20)

2

We have thus shown a payment scheme with the minimal cost for every elic-
itation problem where different observations of X entail different probability
distributions of ω. Notice that we are able to achieve the optimal cost of c by
allowing negative payments to the seller as well (penalties). If we allow only
positive payments, the cost will be higher.

3.3.1 Bad Verifiers

We have seen that if the probability distributions of Ω conditioned on X are
identical, no payment scheme can possibly create the incentives we require. But
what if Ω provides only a slight indication of the correctness of the information
sold? How does that affect the mechanism that is to be constructed? We are
given a hint by the construction of the mechanism above. In order to satisfy the

14

investment constraints, we need to scale the payments and thus increase the
risk level of the mechanism. This becomes more severe if the verifier variable
is poorly correlated with the purchased information. It seems that when Ω is a
weak verifier, the difference between payments must increase. This increase in
the risk of payments causes the value of information for the seller to increase
as well—up to a level in which it is worthwhile to make the effort and obtain
the true value of X. We shall demonstrate this fact here for the case of |X| = 2.

Let us assume that Ω is indeed a poor verifier. The probabilities Pr(Ω |x1)
and Pr(Ω |x2) must be very similar. Let us denote:

~px1 = ~q + ~ε ; ~px2 = ~q − ~ε (21)

where ~ε is a very small vector. The investment constraints for this case are
therefore:

(~q + ~ε) · ~ux1 + (~q − ~ε) · ~ux2 > (~q + ~ε) · ~ux1 + (~q − ~ε) · ~ux1 + c (22)

(~q + ~ε) · ~ux1 + (~q − ~ε) · ~ux2 > (~q + ~ε) · ~ux2 + (~q − ~ε) · ~ux2 + c (23)

Combining them gives us:

2~ε · ~ux1 > 2~ε · ~ux2 + 2c (24)

which simplifies to:

||~ux1 − ~ux2|| · ||~ε|| ≥ (~ux1 − ~ux2) · ~ε > c (25)

From this last inequality we see that as the norm of ~ε goes to 0, the difference
between the payment vectors (~ux1 − ~ux2) goes to infinity—which indicates a
high level of variation in payments dictated by the mechanism. If we add the
restriction of paying only positive payments, this implies that the expected
cost of the mechanism goes to infinity as well.

4 Belief-Robust Mechanisms

In the previous section, we saw that it is easy to design information elicitation
mechanisms in the single agent case. However, we assumed that the mechanism
designer has precise knowledge about the probability distribution pω,x, and
that the seller of information is using the exact same distribution while it
is contemplating which action to take. This is usually an assumption that

15

is not likely to hold. In real-world scenarios, probabilities are often assessed
through modeling or sampling. Two agents may have two different notions
of the probabilities of certain events. This could have serious effects on the
reliability of mechanisms designed for real systems.

We shall therefore try to relax the assumption of a commonly known prob-
ability distribution, which we have used so far. We will instead assume that
agents have “close” notions of the governing probability distributions. This as-
sumption is reasonable, for example, in cases where distributions are learned
by sampling and past experience. If some event has probability p to occur, two
agents sampling independently will not disagree greatly about its probability
of occurring.

We denote the beliefs of the mechanism designer by p̂ and the belief of a
participating agent by p = p̂+ ε, where ε is small according to some norm. We
have opted for the L∞ norm in this work, because it is easily described using
linear constraints (it simply takes the maximum over all coordinates). Other
norms may also be used, and will yield convex optimization problems that are
not linear.

Next, we define the notion of belief robustness of the mechanism and through
it examine the design of mechanisms that are still expected to work even if
there is some difference between the beliefs of agents. We argue that not all
payment schemes are equal—some may be more robust to changes in beliefs
than others and should therefore be the preferred choice for use in real-world
domains.

4.1 The Robustness Level of a Payment Scheme

Figure 3 presents a case in which the probabilities the seller believes in are
not exactly known and may be within a certain region around what the buyer
believes. The two payment schemes portrayed, v′ and v′′ are not the same.
The scheme denoted by v′ ensures that the probability vectors will be linearly
separated (as is required by Equation 13), while v′′ may fail to do so in some
cases. We shall therefore want to think of v′ as a more robust payment scheme
than v′′.

Definition 1 We shall say that a given payment scheme uω,x is ε-robust for
an elicitation problem with distribution p̂ω,x if it is a proper payment scheme
with regard to every elicitation problem with distribution p̂ω,x + εω,x such that
‖~ε‖∞ < ε, and is not proper for at least one problem instance of any larger
norm.

16

Fig. 3. An elicitation problem with uncertain probabilities, and two payment
schemes with different robustness levels.

The definition above is very conservative, and requires feasibility for every
possible difference in beliefs. Another possible approach is to give a probability
over possible beliefs of the agents involved and require that the mechanism
work well in a large-enough portion of the cases.

4.1.1 Determining the Robustness Level of a Mechanism

We can calculate the robustness level ε of a given mechanism by solving a
linear programming problem for every constraint. We do this by looking for the
worst-case εω,x, which stands for the worst possible belief that the participating
agent may hold. We are given the values of the payments and use them as
parameters in the program to find a minimal perturbation of the probabilities
that will violate some constraint. For example, we can write the following
program to find the worst case for one of the truth-telling constraints:

min ε s.t.
∑

ω
(p̂ω,x + εω,x)(uω,x − uω,x′) ≤ 0

∀x, ω p̂ω,x + εω,x ≥ 0
∑

ω,x
εω,x = 0

∀x, ω −ε ≤ εω,x ≤ ε

In the program above, only ε and εω,x are variables. The linear problems for
other constraints are easily built by substituting, for the first constraint above,
the negation of one of the constraints in the original design problem:

17

min ε s.t.

{place the negation of one of the constraints here}

∀x, ω p̂ω,x + εω,x ≥ 0
∑

ω,x
εω,x = 0

∀x, ω −ε ≤ εω,x ≤ ε

Once we have solved similar linear programs for all the constraints in the
original design problem (a total of |X|2 + 1 linear programs to solve), we take
the minimal ε found for them as the level of robustness for the mechanism.
The solution also provides us with a problem instance of distance ε for which
the mechanism would fail.

4.1.2 Finding a Mechanism With a Given Robustness Level

We can try and find a payment scheme with a given robustness level ε using
the following stochastic program:

min
∑

ω,x
p̂ω,x · uω,x Target function

s.t. ∀x 6= x′ ∑

ω
pω,x(uω,x − uω,x′) > 0

∑

ω,x
pω,x · uω,x > c Constraints

∀x′ ∑

ω,x
pω,x(uω,x − uω,x′) > c

where: ∀x, ω pω,x = p̂ω,x + εω,x

pω,x ≥ 0 ;
∑

ω,x
pω,x = 1 Parameter Range

−ε ≤ εω,x ≤ ε

In this program, the variables are the payments uω,x, while the probabilities
pω,x are parameters that are unknown but are within some limited distance
from p̂ω,x. The program considers all distributions p that are close to p̂ up to
ε, according to the L∞ norm. As we have mentioned before, in Section 2.3,
this problem is convex.

In fact, we have already seen how to build a separation oracle for it—given a
payment scheme uω,x we can check its robustness as shown in Section 4.1.1.
This check will tell us if our payment scheme is within the allowed convex
area. If it is not, it will provide us with a perturbation εω,x for which the
solution fails. This gives us a linear condition that all solutions are required

18

to uphold, but the given scheme does not (and is exactly what a separation
oracle is required to provide). More details can be found in [27].

4.1.3 The Cost of Robust Mechanisms

We have already seen that for the program instance for which ∀ω, x εω,x = 0
(which corresponds to the original, non-robust design problem), a payment
scheme that costs only infinitesimally more than c always exists (if any mech-
anism exists). A robust payment scheme, however, is required to cope with
any possible belief variation, and will cost more to implement.

Consider a mechanism with an expected cost of γ =
∑

ω,x
p̂ω,x · uω,x. Since it

is not possible (due to the other constraints) that all uω,x are 0, then there
exists a perturbation of beliefs εω,x which is negative for the largest uω,x and
is positive for the smallest one, which then yields a strictly lower payment
than γ according to the belief of a participating agent. Therefore, in order to
satisfy the individual rationality constraint, γ must be strictly larger than c,
and the buyer must pay more in expectation.

4.2 The Robustness Level of an Elicitation Problem

We shall often be interested in finding the most robust mechanism possible
for a given scenario. We therefore define the robustness level of the problem
in the following manner:

Definition 2 The robustness level ε∗ of the problem p̂ is the supremum of
all robustness levels ε for which a proper mechanism exists:

ε∗ , sup
~u

{ε|~u is an ε-robust payment scheme for p̂}.

To find the robustness level of a problem, one can perform a binary search; the
robustness level is certainly somewhere between 0 and 1. One may test at every
desired level in between to see if there exists a mechanism with some specified
robustness by solving the stochastic program above. The space between the
upper and lower bounds is then narrowed according to the answer that was
received.

As in the non-robust case, the design of a robust single-agent mechanism relies
only on the truth-telling constraints:

Proposition 3 If a given solution uω,x is ε-robust with respect to the truth-
telling constraints only, then it can be transformed into an ε-robust solution

19

to the entire problem.

Proof: We achieve this in a manner similar to Equations 19 and 20. We simply
scale the solution to give robustness for the investment constraint, and shift it
to add robustness to the incentive compatibility constraint. Since the solution
is ε-robust for the truth-telling constraints we have:

∀~ε s.t. ‖~ε‖ < ε ∀x 6= x′ ∑

ω

pω,x(uω,x − uω,x′) > 0. (26)

If we sum over x we get:

∑

ω,x

pω,x(uω,x − uω,x′) > 0 (27)

which implies that there exists a number δx′,~ε such that:

∑

ω,x

pω,x(uω,x − uω,x′) > δx′,~ε > 0. (28)

Now multiplying every uω,x by a factor α = max
x′,~ε

c
δ
x′~ε

will not hurt any of the

truth-telling constraints, but will yield a new payment scheme ũ for which:

∀~ε ∀x′ ∑

ω,x

pω,x(ũω,x − ũω,x′) > c (29)

which satisfies all of the investment constraints, for any possible belief change.

Next, the solution can be shifted to satisfy the individual rationality con-
straint, without hurting the robustness with regard to the previous constraints.
We can simply add a constant β to every payment:

β > c − min
ω,x

[ũω,x]. (30)

We will thus get a solution u∗ that satisfies

∀ω, x u∗
ω,x > c (31)

and therefore satisfies

∑

ω,x

pω,x · u
∗
ω,x >

∑

ω,x

pω,x · c = c (32)

for all possible belief changes, meaning that u∗ is ε-robust. 2

20

4.2.1 A Bound for Problem-Robustness

A simple bound for robustness of the problem can be derived from examining
the truth-telling conditions. In fact, Proposition 1 for non-robust mechanisms
can be viewed as a specific case of the following proposition for 0-robust mech-
anisms:

Proposition 4 The robustness level ε∗ of a problem p̂ can be bounded by the
smallest distance between a vector p̂x and the optimal hyperplane that separates
it from p̂x′:

ε∗ ≤ min
x,x′

||p̂x − (p̂tr
x · ~ϕx,x′) · ~ϕx,x′ ||∞ (33)

~ϕx,x′ =
p̂x + p̂x′

||p̂x + p̂x′||2
(34)

The optimal separating hyperplane is a hyperplane that separates the points
and is of maximal (and equal) distance from both of them.

Here ~ϕx,x′ is a normalized vector that passes within equal distance of p̂x and
p̂x′ (see Figure 4). ε∗ is then limited by that equal distance, which we compute
by subtracting from p̂x its projection in the direction ~ϕx,x′ .

Fig. 4. A Bound for Robustness Level

Proof: If there exist x, x′ that give distance ε to the hyperplane, then the
vectors p̂x, p̂x′ can be perturbed towards the hyperplane with a perturbation of
norm ε, until they are linearly dependent. For this problem instance, according
to Proposition 1, there is no possible mechanism. 2

In the case where |Ω| = 2, the vectors p̂x are situated in a two-dimensional
plane, and it can be shown that the bound given above is tight—the problem
robustness is determined exactly by the closest pair of vectors.

21

5 Partial Revelation Mechanisms

In this section we shall explore, from a different angle, the problem of a com-
mon prior between agents. We shall modify our model of the information
transaction and give the seller of information an extra random variable S that
it can access. The value of S will not be divulged to the buyer, but may in-
fluence the decisions of the seller. We will however assume that the buyer is
aware of this extra information and its possible values. As a result of this
extra information, the buyer is placed at a disadvantage. It knows even less
about the state of the world than the seller. This condition holds even after
the transaction is concluded.

For example, in the toy scenario we presented in Section 1.1, Bob might have
the added information that Mount Saint Helens has erupted and that the
particles it blew into the atmosphere cool down the earth and change the
weather for that year. This is valuable information for a forecaster, and he
would not want to give it to Alice.

Figure 5 describes the new elicitation scenario. The seller still needs to pay a
cost of c to access the random variable X and report its findings to the buyer,
only now it can access (for free) the random variable S as well. The payment
made by the buyer depends only on the information it has available—not on
the value of S. Once again we assume that a probability distribution pω,x,s

governs the three variables, and that it is common knowledge. Note however,
that since the seller alone has access to S, it has a clearer and more precise
knowledge of the distribution of X and Ω since it knows Pr(Ω = ω,X =
x |S = s).

Fig. 5. An Elicitation Scenario with a Secret variable S

The three types of requirements from a mechanism are similar to those we
have seen before. We shall now say that a mechanism is proper for a secret s
if the following three conditions hold:

(1) Truth Telling.

∀x, x′ s.t. x 6= x′,
∑

ω

pω,x,s · (uω,x − uω,x′) > 0 (35)

22

(2) Individual Rationality.

∑

ω,x

pω,x,s · uω,x > c · ps (36)

(3) Investment.

∀x′ ∑

ω,x

pω,x,s · uω,x − c · ps >
∑

ω,x

pω,x,s · uω,x′ (37)

When designing partial revelation mechanisms, there are often probability
distributions that do not allow us to construct an effective mechanism for all
possible secrets the seller may hold. The example in Figure 6 demonstrates
such a case.

The 2 axes correspond to the probabilities of the two possible results, so all
probability vectors are in the 2D plane.

Fig. 6. An Elicitation Scenario with 2 Possible Results, and 2 Possible Secrets

It is impossible to find a separating hyperplane that will separate ~px1,s1 from
~px2,s1 and at the same time separate ~px1,s2 from ~px2,s2. The hyperplanes v′ and
v′′ work only for a single secret each. Since the buyer is never told about the
actual secret s, it has no way of creating the incentives for truthfulness in both
cases.

We must therefore settle on building a mechanism that will work only part
of the time. We will naturally aspire to have a good confidence level in our
mechanism—to build a mechanism that will work with high probability. There
are two possible alternatives we examine here:

(1) A single-use, disposable mechanism—where we design the mechanism for
only a single transaction. We then want the buyer’s confidence in the
received answer to be high:

θ1 = Prs,x(u is proper for state (s, x)) (38)

Meaning that we only require truth-telling in case of secret s and value
x′ that occur.

23

(2) A reusable mechanism—where we design the mechanism for multiple
transactions. Here, we want the buyer to have high confidence that, once
the secret s has been set, it will hear the truth for all possible cases of X.

θ2 = Prs(u is proper for secret s) (39)

5.1 Complexity of Partial Revelation Mechanism Design

Proposition 5 Deciding if a reusable revelation mechanism with a confidence
level over some threshold θ exists is NP-Complete. Furthermore, the problem
of finding the mechanism with the maximal confidence level cannot be approx-
imated within any constant.

The design problem is in NP. This is because if we are given access to an oracle
that tells us which secrets to try and satisfy and which to give up on, we can
find a payment scheme that satisfies the right constraints in polynomial time.
This is achieved by solving the linear program that consists of the constraints
for all the included secrets.

We show that constructing a fully operational mechanism is NP-Complete by
presenting a reduction from the Independent Set problem. The full reduction
is presented in the appendix. The Independent Set problem, in addition to
being NP-Complete, is also hard to approximate [28]. The reduction we give
is a cost-preserving reduction and therefore demonstrates that our problem is
just as hard to approximate as Independent Set.

The high complexity of designing proper mechanisms applies in the single-use,
disposable case as well.

Proposition 6 Deciding if there exists a single-use elicitation mechanism
with a confidence level over some threshold θ is also NP-Complete.

Proof of this proposition relies on a reduction from the Hyperplane-Con-
sistency problem. The full proof appears in the appendix.

5.2 Finding Partial Revelation Mechanisms

We now present two approaches to computing a partial revelation mechanism
for a given problem pω,x,s. As we have already seen, the problem of finding such
a mechanism is NP-Complete, and unless P=NP, we cannot hope to locate the
optimal mechanism in polynomial time in all cases. However, in some cases,
the problem may be simpler than the worst possible case. The two approaches

24

we present differ in the complexity of the algorithm. One algorithm will be
better in cases where |S| is small, while the other will be better in cases where
|Ω| · |X| is small.

The algorithms we present are for reusable mechanisms. Similar versions can
be constructed for the single-use case.

5.2.1 Considering All Combinations of Secrets

The reductions we used in the proofs of Propositions 5 and 6 both relied on
the difficulty of selecting the cases in which we wish the mechanism to work. If
we had an oracle that shows us which constraints to try and satisfy, we could
easily construct a mechanism. Since we do not possess such an oracle, we can
try every possible combination by brute force.

Algorithm 1 [Reusable Mechanism Construction]:
(1) For all W ∈ 2S:

(a) Locate a mechanism that satisfies all constraints for all secrets in W .
(b) If such a mechanism exists, compute θW =

∑

s∈W

ps.

(2) Return a mechanism for secrets arg max
W

(θW).

In the algorithm above, there are 2|S| ways to select secrets to satisfy. Each
selection then requires poly(|S||X||Ω|) time to check for feasibility. This there-
fore gives a running time of O(2|S| ·poly(|S||X||Ω|)) which can still be efficient
if the number of possible secrets is small.

5.2.2 The Geometric Approach—Partitioning into Cells

The second approach we shall examine is based on a geometric interpretation
of the problem. The linear constraint for the mechanism design problem parti-
tions the space of payment vectors into cells. Each cell is a region of the space
for which some set of constraints holds, while the rest are violated.

The mechanism design problem is in fact the problem of locating a non-empty
cell that satisfies as many constraints as possible. This naturally leads to an
algorithm that builds a list of cells and iterates over them to locate the cell
assignment with the highest score.

In order to generate the list of cells L needed in the algorithm above, one can
simply start from a list containing a single cell that contains the entire vector
space and incrementally add hyperplanes. Each hyperplane that is added may
partition a cell in the list into two cells, one on either side of the hyperplane,
or may leave the cell intact. At every stage one only needs to iterate over the
list of existing cells and check if they are split by the new hyperplane.

25

Fig. 7. A collection of hyperplanes partitioning the plane into cells.

Algorithm 2 [Geometric]:
(1) Construct a list L of cells created by all hyperplanes ~px,s.
(2) Select an assignment σ : X × X → L.
(3) Try to solve the linear problem that consists of constraints placing vx,x′

in the cell σ(x, x′), and satisfying
~vx,x′ = −~vx′,x ; ~vx,x′′ = ~vx,x′ + ~vx′,x′′

(4) If a solution is found, compute:
(a) Wσ ∈ 2S the list of secrets that assignment σ of vectors vx,x′ satisfies.
(b) θσ =

∑

s∈Wσ

ps.

(5) Return the payment scheme found for arg max
σ

(θσ).

5.2.3 Complexity of the Algorithm

In order to analyze the running time of Algorithm 2, we need to obtain a
bound on the number of cells created by the hyperplanes defined by ~px,s. Such
a bound is given in [29]. Given m hyperplanes in d-dimensional space, the
number of cells is bounded by:

Φd(m) =
d
∑

i=0

(

m

i

)

= O(md). (40)

The bound is obtained using the VC-Dimension of the concept class implied
by cell partitioning and Sauer’s lemma [30].

This bound is especially interesting when d is small, since it implies that the
number of cells is only polynomial in the number of hyperplanes m.

In our case, we have |X||S| hyperplanes in an |Ω|-dimensional space, which
gives a bound of |L| = O(|X||S||Ω|) cells. Generating the list of cells can be
done in

O(|X||S|2|Ω| · poly(|X||S||Ω|))

26

time steps. The number of possible assignments σ : X × X → L is

O(|L||X|2) = O(|X||S||X|2|Ω|)

and for each assignment we need to solve a linear program that requires
poly(|X||S||Ω|)) steps, which gives us a total running time of

O(|X||S||X|2|Ω| · poly(|X||S||Ω|))

time steps.

This algorithm is therefore better in cases where |S| is large, but |Ω| and |X|
are small.

6 Elicitation of Confidence Ratings

In many cases, the expert that sells the information has some idea regarding
the reliability of the information it is selling. For example, a reviewer reading a
paper is often asked to rate his or her familiarity with the field, and his or her
confidence in the submitted review. Confidence level is also quite important
when considering what to do with information—if a non-confident reviewer
was selected, the paper could be sent for further review by someone else.

It is therefore important to be able to elicit the confidence rating regarding a
piece of information, and not just the information itself. Fortunately, this is
often possible by modeling the confidence as another random variable.

A naive model for confidence would be to assume that with some probability
pc, the information learned by the expert is correct and drawn from the dis-
tribution pω,x, while with probability 1 − pc it gets a value of X according to
some other distribution:

qω,x = q(Ω = ω,X = x). (41)

X and Ω can be independent in qω,x, which implies that the vectors of the
form ~qx are linearly dependent.

The seller can then be asked to divulge pc, as well as the value of X that it got.
Figure 8 depicts the information transaction in this case. In this model, we
allow pc to take continuous values between 0 and 1, and assume that the cost
of acquiring the information is 0, as there is no way to create the incentives
to learn the value of X in case the confidence rating is pc = 0.

27

Fig. 8. Elicitation of a confidence rating pc

Proposition 7 The confidence ratings pc and the true value of X can be
elicited truthfully if there exists a truthful payment scheme for the elicitation
of X with payments ~ux such that for any x, x′ ∈ X,

~qx · (~ux − ~ux′) ≥ 0. (42)

Remark 1 When the vectors of the form ~qx are all dependent, this implies
that

~qx · (~ux − ~ux′) = 0. (43)

When the vectors ~qx are independent, then the above condition in fact means
that the payment scheme u also truthfully elicits the value of X under the
probability distribution q.

Proof: Let u be a payment scheme that truthfully elicits the value of X,
as well as the condition from inequality 42. Now, given two possible values
(x, pc), (x

′, p′c), if x 6= x′ we have:

~qx · (~ux − ~ux′) ≥ 0 ; ~px · (~ux − ~ux′) > 0 (44)

~qx′ · (~ux − ~ux′) ≤ 0 ; ~px′ · (~ux − ~ux′) < 0 (45)

which implies

(pc · ~px + (1 − pc) · ~qx) · (~ux − ~ux′) ≥ 0 (46)

(pc′ · ~px′ + (1 − pc′) · ~qx′) · (~ux − ~ux′) ≤ 0 (47)

where the inequalities above are strict whenever pc, pc′ are not 0. Now notice
that P (Ω|x, pc) = pc · ~px + (1− pc) · ~qx and Equations 46, 47 in fact show that
the probabilities P (Ω|x, pc) are different as long as pc, pc′ 6= 0. We can then
award the seller a payment according to some scoring rule:

uw,x,pc
= S(P (Ω = ω|x, pc), ω).

Since the probabilities P (Ω|x, pc) are different for every report, the scoring
rule assures us of the incentive to tell the true value. 2

28

7 MultiAgent Mechansims

When constructing a mechanism with many participating agents, we should
naturally take into consideration the possible actions they are allowed to take.
We will assume initially that agents cannot transfer information or utility
among themselves, and must act independently. Later we will see the compli-
cations that arise due to possible collusion among agents.

In the multiagent case, the mechanism designer has more freedom in creating
the mechanism. There is the option of building a dominant strategy mechanism
(where rational action choice of an agent does not depend on the action of any
other agent), or solving with the weaker concept of a Nash equilibrium (where
a given set of actions is only optimal if none of the agents deviates). It is
possible to design the information elicitation mechanism to work in dominant
strategies, simply by treating the variable Xi of each agent i independently and
condition payments to agent i only on its variable and the outcome variable
Ω. The mechanism is then designed for each agent as if it were a single-agent
scenario.

However, it is also possible to design the mechanism to work only in equilib-
rium, by conditioning payments to agent i on the reports of all other agents
as well. Each choice yields a different linear program that needs to be solved
in order to find appropriate payments. This gives the designer further degrees
of freedom with which to operate. There are cases where a dominant strategy
mechanism does not exist, but a mechanism that works in equilibrium does.
The following table presents such a scenario for two agents.

x1 x2 Pr(x1, x2) Pr(ω = 1|x1, x2)

0 0 1/4 0

0 1 1/4 1-δ

1 0 1/4 1

1 1 1/4 δ

The elicitation scenario depicted here describes two random bits, each belong-
ing to a different agent. The principal’s variable Ω is almost the XOR of the
bits of the two agents. δ is assumed to be positive but small.

A dominant strategy mechanism for agent 2 does not exist according to Propo-
sition 1, since Pr(Ω = ω|X2 = 1) = Pr(Ω = ω|X2 = 0) which makes it im-
possible to induce truth-telling for the agent when conditioning the payments
only on its report and on ω. However, given agent 1’s report, ω is determined
almost with certainty. This allows for a simple mechanism for which truth-

29

telling is a Nash equilibrium: both agents get a payment if the result matches
the XOR of their reported bits, and a penalty if it does not.

7.1 A Mixture of Solution Concepts

A common problem with mechanisms that work in equilibrium only, is that
there may be more than one equilibrium in the game. The mechanism we have
just described is no different. Consider, for example, the case where δ = 0. The
strategy of always saying the opposite of the actual result is also in equilibrium
when used by both players. A possible solution is to use a weaker form for
iterated dominance [31], i.e., construct a dominant strategy solution for some
players, and design the solution for the other players to ensure that good
behavior is the best response to the dominant strategy of the first group.

For example, we can design a mechanism for the scenario in the previous table
for the case of a positive δ in the following manner: agent 1’s payments are
conditioned only on its own reports in such a way as to induce good behavior.
Such a mechanism is possible for agent 1, since the variable Ω is slightly
biased to match the variable X1. Agent 2’s payment is then designed with
the assumption that agent 1’s information is known. In that case, agent 2 can
rationally decide that agent 1 is going to tell the truth, and decide to do the
same in order to maximize its utility.

This example can be generalized to a scenario with more agents. Once some
order ≺ is imposed over the agents, the mechanism can be designed so that
the payment to agent i will depend on its own report, on Ω, and on any other
agent j for which j ≺ i. Such a mechanism has only a single Nash equilibrium,
and is thus more appealing. The problem is that such a mechanism may not
always exist, since we are conditioning payments on less than all the available
information. The order ≺ that is imposed on the agents is also important, and
different orders may certainly lead to different mechanisms. In the next section
we shall discuss another appealing property of mechanisms constructed in this
manner: they lead to finite belief hierarchies when agents need to reason about
one another’s unknown beliefs.

7.2 Robust Mechanisms for Multiple Agents

Designing robust mechanisms for multiple agents is far more complex than the
design of robust mechanisms in the case of a single seller only. The designer
must now take into account not only the possible beliefs of agents about the
probabilities of events, but also their beliefs about the beliefs of other agents.
This is especially true when constructing a mechanism that will work only at

30

an equilibrium. For an agent to believe that some strategy is in equilibrium, it
must also be convinced that its counterparts believe that their strategies are in
equilibrium, or are otherwise optimal. This will only occur if the agent believes
that they believe that it believes that its strategy is in equilibrium—and so
on (see related discussions in [32]).

Any uncertainty about the beliefs of other agents grows with every step up
the belief hierarchy. If agent A knows that all agents have some radius ε of
uncertainty in beliefs, and its own belief is some probability distribution p, then
it is possible that agent B believes the distribution is p′ and further believes
that agent A believes the distribution is some p′′ which is at a distance of up
to 2ε from p. With an infinite belief hierarchy, it is therefore possible to reach
any probability if we go high enough in the hierarchy.

A possible solution to this problem is to attempt to design the mechanism
without any belief loops. One can use the mixture of solution concepts we
have seen in the previous section. If each agent’s payment only depends on
the actions of agents before it according to some order ≺, then it only needs to
take their beliefs into consideration when deciding on a strategy. The necessary
belief hierarchy is then finite, which limits the possible range of beliefs about
beliefs. The most extreme case of this is to design the mechanism for dominant
strategies only. Naturally, a solution constructed in such a way may be less
efficient or may not exist at all.

One may alternatively consider bounded rational agents that are only capable
of looking some finite distance into the hierarchy as possible subjects for the
mechanism design. An extreme example would be agents that believe that
everyone else shares their basic belief about the world, and do not reason
about the beliefs of others at all (but may, in fact, have different beliefs).

7.3 Collusion Among the Sellers

When we consider mechanisms for multiple sellers it is also important to ex-
amine the possible interactions between different sellers. These interactions
may undermine the mechanism. For example, agents that share information
with one another may try to invest less effort into obtaining the values of
some of their variables, because they can be deduced to some extent from
the variables of others. Agents that transfer payments among themselves may
wish to maximize their total gains instead of their individual gains, and this
could cause them to report falsely. The exact level of collusion that agents are
willing and able to perform is important in this sense. There are many options
and degrees of collusion possible, and it is beyond the scope of the current
article.

31

In the extreme case, colluding sellers that act as a single cohesive group can be
treated as a single agent with access to many variables. This group of sellers is
much harder to motivate. The action space available to it is extremely large.
For example, the agents may decide to learn the values of some subset of the
variables available to them, and only then decide if they wish to pay to dis-
cover the value of more variables. The constraints for a good mechanism would
then need to make sure that learning every subset of variables is less informa-
tive than learning all the variables. This leads to an exponential number of
constraints that the mechanism must satisfy. Beyond the computational diffi-
culties that this issue raises, often no mechanism will exist at all—especially in
cases where some of the variables of the agents are conditionally independent
(given the other variables) from the verifier variable held by the buyer.

8 Conclusions

We have introduced a model for discrete information transactions and have
shown simple information elicitation mechanisms that can provide the sell-
ers with the correct incentives to report honestly and even invest effort into
obtaining the information they sell. We have shown that in most cases these
simple mechanisms exist and can be designed optimally using scoring rules.
We explored various properties of the solution, such as the cost of the mech-
anisms and the level of risk they entail when verification of information is
difficult.

In order to tackle the problem of belief variations between the sellers and the
designer of the mechanism, we introduced the concept of robust mechanisms.
These mechanisms are guaranteed to work if the beliefs of agents are not
too far apart. We have shown efficient algorithms for learning the robustness
level of a given payment scheme, finding payment schemes with guaranteed
level of robustness, and for finding the robustness level of a problem. The
efficiency of their design, as well as their resilience, makes these mechanisms
good candidates for application in real-world scenarios.

We have used tools of stochastic programming to solve for robust solutions,
but have only scratched the surface of potential uses of these tools. Other
alternative problem formulations can be explored, especially formulations that
include more detailed information about the possible beliefs of agents. These
would fit quite well into the mainstream work done in stochastic programming.

In order to further explore information transactions, we examined a model in
which the seller of information has access to extra information that is not sold.
We have seen that partial revelation of information can make it impossible to
build mechanisms that work all the time, and that building good mechanisms

32

that work most of the time is a computationally difficult task. Here we have
provided proofs of computational difficulty as well as two algorithms with
different running times that may be suitable in different cases.

We also discussed some of the complications arising from designing the mech-
anism for multiple participants. We have seen that robustness of mechanisms
is harder to achieve with multiple agents. For some cases, we offered ways to
construct mechanisms with no belief loops in order to alleviate the problem.
Finally, we discussed issues of collusion among participating agents.

9 Acknowledgments

Preliminary material from this paper appeared at the Twenty-First National
Conference on Artificial Intelligence (AAAI’06), in the papers “Robust Mech-
anisms for Information Elicitation” [33] and “Mechanisms for Partial Informa-
tion Elicitation: The Truth, But Not the Whole Truth” [34]. This work was
partially supported by Israel Science Foundation grant #898/05.

A Computational Hardness of Reusable Mechanism Design

Proposition: Deciding if a reusable revelation mechanism with a confidence
level over some threshold θ exists is NP-Complete. Furthermore, the problem
of finding the mechanism with the maximal confidence level cannot be approx-
imated within any constant.

Proof: The proof relies on a reduction from the Independent Set problem.
Given an undirected graph G(V,E) and an integer k ≤ |V | the Independent
Set decision problem is defined as the problem of deciding whether there is a
set of vertices W ⊂ V so that |W | ≥ k, and such that for every edge e ∈ E, e
does not occur on more than one vertex in V .

The intuition behind the reduction is derived from Figure 6. The selection of
vertices in the independent set will be designed to match a selection of secrets
to satisfy in the design problem. In order to uphold the restriction that no
two vertices sharing an edge can be chosen together, a construction similar to
Figure 6 will be created in a dedicated 2-dimensional subspace to assure that
their matching secrets cannot be satisfied at the same time.

Let us now proceed with the proof. Given an instance of the Independent
Set problem (G(V,E), k) we shall construct a mechanism design problem

33

(Ω, X, S, P, θ) in the following manner” 6

Ω =
⋃

e∈E

{ωe1, ωe2} ; X =
⋃

e∈E

{xe1, xe2} (A.1)

S = V ; θ =
k

|V |
(A.2)

We denote by ~δi the vector that is 0 at all coordinates except for coordinate
i, where it takes the value of 1, and by α a normalizing constant that equals
α = 1

2|E||V | . P is then defined as follows:

if v /∈ e then:

~pxe1,v = α · ~δωe1
; ~pxe2,v = α · ~δωe2

(A.3)

otherwise e = {v1, v2} and we set:

~pxe1,v1 = α · ~δωe1
; ~pxe2,v1 =

α

2
· (~δωe1

+ ~δωe2
) (A.4)

~pxe1,v2 =
α

2
· (~δωe1

+ ~δωe2
) ; ~pxe2,v2 = α · ~δωe2

(A.5)

With the above construction all secrets have the same probability of occurring:

Pr(S = s) =
∑

ω,x

pω,x,s = 2|E|α =
1

|V |
(A.6)

Below we show the two steps needed to complete the proof:

(1) If the graph G has an independent set of size k then there is a
mechanism with a confidence level above the threshold θ.

Let us assume that G has an independent set W ⊂ V of size k. We
shall build a payment scheme that will give a proper mechanism for all
the secrets matching the vertices in W . For an edge e that has one of its
vertices in the independent set, 7 we shall define:

~uxe1
=

~pxe1,v

||~pxe1,v||
; ~uxe2

=
~pxe2,v

||~pxe2,v||
(A.7)

6 A small comment about notation: e1 and e2 above do not reference the two
vertices of edge e, but just serve to denote two different values for that edge. We
shall explicitly say when we refer to vertices of the edge.
7 It cannot have both its vertices in the set—only one or none.

34

where v is the vertex (from edge e) that was selected for the independent
set. If on the other hand e did not have any vertex in the independent
set, we simply set

~uxe1
= ~δωe1

; ~uxe2
= ~δωe2

(A.8)

We will next demonstrate that this payment scheme does give a truthful
mechanism at least for all the secrets in W . We must therefore show that

∀v ∈ W ∀xek 6= xe′l ∈ X

~pxek,v · (~uxek
− ~ux

e′l
) > 0 (A.9)

Let us examine the following three cases:
(a) Edge e does not occur on vertex v, and has no vertex in the indepen-

dent set. Then the vector ~pxek,v = α · ~δωek
. Because e has no vertex

in the independent set then ~uxek
= ~δωek

, meaning that it is a unit
vector in the direction of ~pxek,v. Since ~ux

e′l
is also a unit vector that

is in the other direction, its inner product with ~pxek,v is smaller and
the inequality holds.

(b) Edge e does not occur on vertex v, but has another vertex in the

independent set. In this case we still have ~pxek,v = α · ~δωek
but now

~uxek
has two possible values, depending on which vertex of e is in the

independent set. Either
(i) ~uxek

= ~δωek

(ii) ~uxek
= 1√

2
· (~δωek

+ ~δω
ek

)

In both these cases the inner product between ~pxek,v and ~uxek
is

strictly positive. If e′ is an edge that is different from e then ~pxek,v ·~ux
e′l

is zero and the inequality holds. Otherwise, e′ = e but k 6= l. In this
case we observe that (~uxek

− ~ux
ek

) · ~δωek
> 0 (simply by looking at all

the cases)—and this gives us the required inequality exactly.
(c) Edge e occurs on vertex v. Since we are only concerned with v’s which

are in the independent set then the vector ~uxek
is by our definition

a unit vector in the direction of ~pxek,v while ~ux
e′l

is a unit vector in
another direction. This means that the inner product between ~pxek,v

and ~uxek
is greater and the inequality once again holds.

We have thus shown that we are able to have a working mechanism
for every vertex v ∈ W and thus have a mechanism that works well for k
secrets. The confidence level of the mechanism designer in its mechanism
is then at least

∑

s∈W

Pr(S = s) = k
|V | = θ

(2) If there is a good mechanism with confidence level above θ then
there is an independent set of size k in the graph.

Since there is a confidence level of k
|V | , there must be at least k satis-

fied secrets in the mechanism. Each such secret matches a vertex in the
original problem. It remains to show that the set W of vertices matching
satisfied secrets is independent. Assuming the opposite leads to a con-

35

tradiction. The secrets matching two vertices that are connected by an
edge cannot be satisfied at the same time due to the way the problem
was constructed. The probability vectors for each edge (~pxe1,v1, ~pxe1,v2,
~pxe2,v1, ~pxe2,v2) were placed in a separate two-dimensional space, and were
set similarly to the vectors in Figure 6—in a way that ensures that both
pairs cannot be linearly separated at the same time.

Let us show that the set W of vertices matching satisfied beliefs is
independent. We first assume the opposite: that there are two vertices
that we shall denote v, v′ ∈ W that reside on the same edge in G. By
construction we therefore have two beliefs for vertices v, v′ that were both
satisfied. Meaning that

∀x 6= x′ ∈ X ~px,v · (~ux − ~ux′) > 0 (A.10)

and also that

~px,v′ · (~ux − ~ux′) > 0 (A.11)

More specifically, the above holds true for any specific values of x, x′ that
we choose, such as for xe1 and xe2, where e is the edge that is shared by
v, v′. Therefore, the following two statements must be true at the same
time:

~pxe2,v · (~uxe2
− ~uxe1

) > 0 (A.12)

~pxe1,v′ · (~uxe1
− ~uxe2

) > 0 (A.13)

Without loss of generality, we can assume at this point that v is the first
vertex in edge e and v′ is the second vertex. Therefore, by construction
we have:

~pxe2,v = ~pxe1,v′ =
α

2
· (~δωe1

+ ~δωe2
) (A.14)

and by substituting this into the above, we reach a contradiction, since
it cannot be that both of the following are true at the same time:

~pxe2,v · (~uxe2
− ~uxe1

) > 0 (A.15)

~pxe1,v′ · (~uxe1
− ~uxe2

) = −~pxe2,v · (~uxe2
− ~uxe1

) > 0 (A.16)

So our assumption that there can be two secrets v, v′ that are satisfied
at the same time but have counterpart vertices on the same edge is false,
and the set W is indeed independent.

This completes the proof of the reduction. 2

36

B Computational Hardness of Designing Single-Use Mechanisms

Proposition: Deciding if there exists a single-use elicitation mechanism with
a confidence level over some threshold θ is NP-Complete.

Proof: We give a proof of this proposition using a series of simple reductions
from the decision problem associated with Max-Hyperplane-Consistency. This
problem is known to be NP-Complete [35].

An instance of the Hyperplane-Consistency problem is defined by a tuple
(P ,N , k) where k is an integer and P ,N are sets of vectors in R

n with integer
coordinates. The instance should be accepted if a biased linear separator (~w, b)
exists such that:

k ≤ |{~x ∈ P | ~w · ~x ≥ b}| + |{~x ∈ N | ~w · ~x < b}| (B.1)

meaning that the separator (~w, b) manages to place more than k points from
P on its positive side and from N on its negative side.

Now, given a Hyperplane-Consistency problem we shall reduce it to a single-
use mechanism design problem in three steps:

(1) We will first show that a hyperplane-consistency problem for vectors with
only positive coordinates is still NP-complete;

(2) We will then show that using an unbiased hyperplane to separate positive
vectors is still just as hard;

(3) Finally, we shall reduce the last problem to a mechanism design problem,
thus showing that it is NP-Complete to design the mechanism.

Let us assume that we are given a Hyperplane-Consistency problem (P ,N , k).
We now define a new problem Pos-Hyperplane-Consistency as the tuple
(P ′,N ′, k) where

P ′ = {~x + ~δ |x ∈ P} (B.2)

N ′ = {~x + ~δ |x ∈ N} (B.3)

and where ~δ has been set large enough in each coordinate to turn all vectors
in P ′ and N ′ positive.

We will now show that given a hyperplane that separates points in a certain
way in the original problem, we can build a hyperplane that will separate
the matching points in the new problem in the same manner and vice versa.

37

Given a hyperplane (~w, b), we look at the hyperplane (~w, b + ~w · ~δ) in the new
problem.

~w · ~x ≥ b ⇐⇒ ~w · (~x + ~δ) ≥ ~b + ~w · ~δ (B.4)

Meaning that a point ~x and its corresponding point ~x +~δ in the new problem
are classified in the same way by the hyperplane. In other words, if some
hyperplane exists (in either problem) that manages to correctly classify k
points or more, then a matching classifier exists in the other problem as well.
Pos-Hyperplane-Consistency is therefore also NP-Complete.

Now, we shall show that Pos-Unbiased-Hyperplane-Consistency (where the
hyperplanes are unbiased) is still an NP-Complete problem. Given an instance
(P ′,N ′, k) of Pos-Hyperplane-Consistency, we shall reduce it to an instance
(P ′′,N ′′, k) of Pos-Unbiased-Hyperplane-Consistency by adding a coordinate
to each vector in P ′ and N ′:

P ′′ = {(~x, 1) |x ∈ P ′} (B.5)

N ′′ = {(~x, 1) |x ∈ N} (B.6)

The last coordinate in the vectors now takes the place of the bias. For every
hyperplane defined by ~w, b there is a matching unbiased hyperplane with a
weight vector (~w,−b) that gives the same classification to the matching point
in the new problem.

~w · ~x ≥ b ⇐⇒ (~w,−b) · (~x, 1) ≥ 0 (B.7)

A correct classification of k or more points exists in the new problem iff it
existed in the old problem, and Pos-Unbiased-Hyperplane-Consistency is NP-
Complete as well.

We shall now see the final step in the proof—a reduction from Pos-Unbiased-
Hyperplane-Consistency to the mechanism design problem. Given an instance
of the former, (P ′′,N ′′, k) in an n dimensional space, we shall reduce it to the
following design problem:

Ω = {1, . . . , n + 2} ; X = {0, 1} (B.8)

S = P ′′ ∪N ′′ ; θ =
1

2
(1 +

k

|S|
) (B.9)

38

If ~s ∈ P ′′ we define:

~p0,~s =
α

||~s||1
· (~s, 0, 0) (B.10)

~p1,~s = α · (~0, 1, 0) (B.11)

Otherwise ~s ∈ N ′′ and we define:

~p0,~s = α · (~0, 0, 1) (B.12)

~p1,~s =
α

||~s||1
· (~s, 0, 0) (B.13)

Where α in the above is a normalizing constant that makes sure the proba-
bilities sum to 1. In the above, we assume without loss of generality that no
point appears both in P ′′ and in N ′′, otherwise it can be eliminated from the
problem while reducing k by 1. Now, with the definitions above, a payment
mechanism which is simply a vector ~v0,1 works for state x,~s if the vector ~px,~s

is positioned on the correct side of the hyperplane it represents. The vectors
of the form α · (~0, 1, 0) and α · (~0, 0, 1) can always be placed on the correct
side since they have a coordinate dedicated just to them for that purpose.
They constitute one half of the probability weight. The other half are actually
vectors identical to the vectors in P ′′ and in N ′′ with zeros in their extra coor-
dinates and a correct separation of k out of them implies directly the correct
separation of vectors in the original problem and vice versa. 2

References

[1] R. Axelrod, The Evolution of Cooperation, Basic Books, New York, 1984.

[2] E. M. Maximilien, M. P. Singh, Reputation and endorsement for web services,
SIGecom Exch. 3 (1) (2002) 24–31.

[3] P. Resnick, K. Kuwabara, R. Zeckhauser, E. Friedman, Reputation systems,
Commun. ACM 43 (12) (2000) 45–48.

[4] A. Mas-Colell, M. D. Whinston, J. R. Green, Microeconomic Theory, Oxford
University Press, 1995, Ch. 23, pp. 857–926.

[5] E. Maskin, T. Sjöström, Implementation theory, Working paper, Harvard
University and Penn State (January 2001).

[6] J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible
inference, 2nd Edition, Morgan Kaufmann, San Mateo, CA, 1988.

39

[7] C. Boutilier, On the foundations of expected expected utility, in: IJCAI-03,
Acapulco, 2003, pp. 285–290.

[8] L. J. Savage, Elicitation of personal probabilities and expectations, Journal of
the American Statistical Association 66 (336) (1971) 783–801.

[9] T. Gneiting, A. E. Raftery, Strictly proper scoring rules, prediction, and
estimation, Tech. Rep. 463, Department of Statistics, University of Washington
(2004).

[10] A. D. Hendrickson, R. J. Buehler, Proper scores for probability forecasters,
Annals of Mathematical Statistics 42 (1971) 1916–1921.

[11] R. J. Aumann, Agreeing to disagree, The Annals of Statistics 4 (6) (1976)
1236–1239.

[12] D. Samet, Iterated expectations and common priors, Games and Economic
Behavior 24 (1).

[13] N. Miller, P. Resnick, R. Zeckhauser, Eliciting honest feedback: The peer
prediction method, Management Science 51 (9) (2005) 1359–1373.

[14] R. Jurca, B. Faltings, An incentive compatible reputation mechanism, in:
Proceedings of the IEEE Conference on E-Commerce, Newport Beach, CA,
USA, 2003, pp. 285–292.

[15] R. Smorodinsky, M. Tennenholtz, Sequential information elicitation in multi-
agent systems, in: UAI-2004, 2004.

[16] R. Smorodinsky, M. Tennenholtz, Overcoming free-riding in multi-party
computation: the anonymous case, Games and Economic BehaviorForthcoming.

[17] P. Bohm, J. Sonnegard, Political stock markets and unreliable polls,
Scandinavian J. of Econ. 101 (2) (1999) 205.

[18] J. Wolfers, E. Zitzewitz, Prediction markets, Working Paper 10504, National
Bureau of Econ. Research (2004).

[19] K. Gajos, D. S. Weld, Preference elicitation for interface optimization, in: UIST
’05: Proceedings of the 18th annual ACM symposium on User interface software
and technology, ACM Press, New York, NY, USA, 2005, pp. 173–182.

[20] P. Pu, B. Faltings, M. Torrens, User-involved preference elicitation (2003).

[21] J. O. Kephart, J. E. Hanson, J. Sairamesh, Price and niche wars in a free-market
economy of software agents, Artificial Life 4 (1) (1998) 1–23.

[22] J. O. Kephart, C. H. Brooks, R. Das, Pricing information bundles in a dynamic
environment, in: EC ’01: Proceedings of the 3rd ACM conference on Electronic
Commerce, ACM Press, New York, NY, USA, 2001, pp. 180–190.

[23] N. Nisan, A. Ronen, Algorithmic mechanism design (extended abstract), in:
STOC ’99: Proceedings of the thirty-first annual ACM symposium on Theory
of computing, ACM Press, New York, NY, USA, 1999, pp. 129–140.

40

[24] V. Conitzer, T. Sandholm, Complexity of mechanism design, in: UAI-2002,
Edmonton, Canada, 2002, pp. 103–110.

[25] R. Jurca, B. Faltings, Eliminating undesired equilibrium points from incentive
compatible reputation mechanisms, in: Proceedings of the Seventh International
Workshop on Agent Mediated Electronic Commerce (AMEC VII), Utrecht, The
Netherlands, 2005.

[26] P. Kall, S. W. Wallace, Stochastic Programming, Systems and Optimization,
John Wiley, 1995.

[27] A. Ben-Tal, A. Nemirovski, Robust solutions of uncertain linear programs,
Op. Research Letters 25 (1999) 1–13.

[28] J. H̊astad, Clique is hard to approximate within n1−ε, Acta Mathematica 182
(1999) 105–142.

[29] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Vol. 10 of EATCS
Monographs on Theoretical Computer Science, Springer-Verlag, 1987.

[30] M. Vidyasagar, A Theory of Learning and Generalization, Spinger-Verlag, 1997.

[31] V. Conitzer, T. Sandholm, Complexity of (iterated) dominance, in: EC ’05:
Proceedings of the 6th ACM conference on Electronic commerce, ACM Press,
New York, NY, USA, 2005, pp. 88–97.

[32] R. Aumann, A. Brandenburger, Epistemic conditions for nash equilibrium,
Econometrica 63 (5) (1995) 1161–1180.

[33] A. Zohar, J. S. Rosenschein, Robust mechanisms for information elicitation, in:
The Twenty-First National Conference on Artificial Intelligence, Boston, 2006,
pp. 740–745.

[34] A. Zohar, J. S. Rosenschein, Mechanisms for partial information elicitation: The
truth, but not the whole truth, in: The Twenty-First National Conference on
Artificial Intelligence, Boston, 2006, pp. 734–739.

[35] E. Amaldi, V. Kann, The complexity and approximability of finding maximum
feasible subsystems of linear relations, Theoretical Computer Science 147 (1–2)
(1995) 181–210.

41

