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Abstract. Iterative voting has presented, in the past few years, a voting model
in which a player is presented with an election poll, and changes their vote to
influence the result immediately. Several extensions have been presented for this
model, including some attempts to handle the uncertainty facing the players, but
all of them retained the myopic assumption – players change their vote only when
they believe they might be changing the outcome by their move.
This paper tackles this assumption by bounding the farsightedness of the players.
Players will change their vote if they believe that if a certain number of other
voters will change as well, the outcome might change. We show that players with
the same farsightedness will converge to a Nash equilibrium with plurality, and
with veto, even players with varying farsightedness degree will always converge.
However, we show farsightedness is not necessarily a positive feature — in sev-
eral cases it is better for the player to be myopic.

1 Introduction

The process by which multiple agents reach a decision has long been an important
research area, dealing with elections, voting mechanisms and various techniques that
allow a group of agents, each with its own preferences over a set of options, to reach
a decision for all of them. In doing so, one of the main stumbling blocks has been that
agents might not report their preference truthfully to the voting mechanism, and will
seek to influence it by strategically reporting preferences that will change the mecha-
nism’s outcome in a way they find beneficial. Sadly, the Gibbard-Satterthwaite theo-
rem [7,17] tells us that there is no voting system that can guarantee that voters will be
truthful (i.e., no strategyproof voting mechanism).

Several methods have been proposed to deal with this issue. One of the common ap-
proaches has been to examine the complexity of the voting mechanism and its manipu-
lations [2,19]. However, many common voting mechanisms, like plurality and veto, are
very easily manipulable, and yet are still very widely used. In an attempt to improve our
understanding of the ultimate outcome in the real world, Meir et al. [11] suggested ex-
amining the model of iterative voting, in which voters manipulated one-by-one (though



not in a fixed order), and only if their move could make an immediate change, i.e, the
voters were myopic, looking only at the next step.

The basic model suggested in Meir et al. [11] was further developed and extended
in several papers by various authors, but the myopic aspect of the model remained in
its various extensions, and voters were manipulating only if they believed their manip-
ulation could benefit them directly, in the next step. In a sense, this was the last major
assumption made in that paper and not further examined, due, in a large part, to the
difficulty in effectively modeling non-myopic behavior.

In this paper we begin to tackle the myopic assumption and assume our voters can
look ahead, using, in part, the model of uncertainty presented in [10], changed for the
non-myopic setting. As in the real world, non-myopicness does not mean that voters
are omnipotent: they can only see several steps ahead, and they do not know the inner
preferences of other players. In a sense, this is a type of “bounded rationality” in which
our rational players are still constrained by a certain bound (that might be different for
each voter), limiting their ability to look ahead.

In this setting we discuss convergence for both plurality and veto (previous results
in [9] show no other scoring rule converges even in myopic settings) when players use
a best-response strategy (previous results [12] showed the scope for other strategies is
quite limited). Furthermore, we explore whether being non-myopic is a clear advantage,
and find, surprisingly, that being far-sighted might hinder a voter — a voter might be
better off myopic, as more far-sighted manipulations might not pan out.

1.1 Related Work

There has been plenty of research done on attempting to analyze voting, particularly
with plurality, an overview of which can be seen in [10]. Therefore, we shall focus
here on the various extensions to the iterative voting model presented in [11] (which,
in itself, was building on somewhat different iterative models, such as [1]). That paper
assumed players which were myopic, used best-response strategy, plurality, and linear
tie-breaking rules, and showed convergence in that case.

The necessity of linearity of tie-breaking rules was shown in [9], which also ex-
tended the convergence results to the veto rule (a result repeated by [16]) , while show-
ing that no convergence can be achieved in any other scoring rule. More recently, [12]
analyzed in a deeper manner the strategies that might ensure convergence in an iterative
voting process (and not just best-response), a direction that was also explored in [8].
This left just myopicness as the only requirement of the original paper that has not been
explored and examined.

Other research added other elements to the model: in [14], truth-bias (as modeled
in [6,18,13]) and lazy-bias (as modeled in [5]) were added to the iterative process, and
convergence results were quite different. Research has also been done [3] on the price
of anarchy in these games, showing winner have a high score in the truthful profile .

The model most closely related to ours is the extension offered in [10]. While we
adhere closer to the model of [11], the techniques used there have some applicability
here. s While earlier work on locally dominant response do exist (e.g., [15,4]), it is
Meir et al. [10] that offers the first analysis of the dynamics of such a response. In more
detail, their paper extended the model to include uncertainty, and, in a way similar to



ours, they look at uncertainty from the point of view of what the possible states could be,
should some number of votes change. However, as Meir et al. [10] examines uncertainty,
their paper pursues a dominant strategy for its players, who continue to play only when
there is a state where a single move can change the election outcome. On the other
hand, in our work, while voters continue to pursue a best-response strategy, they do not
manipulate only when the outcome can be immediately changed, but rather if it could
be changed in several steps. Practically, while the “locality” of the strategy is similar
in both papers (i.e., considering states that are close to the current one), the meaning of
those states is different, and therefore players pursue much different strategies, leading
to different results.

Example 1. The difference between our model and that of [10], can be seen in the
following case: Consider an iterative election with 3 candidates (tie breaking is lexico-
graphic). Following several steps, we are now at a stage where there are 10 votes for
candidate a, 9 votes for candidates b and c. All votes with a radius of 2. One voter has
a preference a � b � c, and is currently voting for b. Using local dominance, this voter
will stay at b, as all potential situations are possible and the player does not know which
state it is in. As it has no dominating strategy, it stays put.

On the other hand, in the non-myopic model the voter knows it gains nothing from
staying with b, as it knows the current situation, and b is not a winner in it. It would
rather strengthen the winner it supports, and would change its vote to a.

2 Notation and Model

In general we will adopt the notation of [10]. We will denote a discrete set of x elements
by [x] = {1, ..., x}. In particular, the set candidates and the set of voters are M = [m]
and N = [n], respectively. For an abstract set X we will use |X| to denote the number
of elements in the set, e.g. |M | = m. Let π(M) be the set of all linear orders over
M . A preference profile Q ∈ (π(M))n is the vector of all voter preferences, so that
Qi ∈ π(M) is the (true) preference order of voter i. In particular, Qi(a) ∈ M is the
rank of candidate a ∈ M , and qi = Q−1i (1) is the (true) top choice of voter i ∈ N .5

We will also say that candidate a ∈M is preferred to candidate b ∈M by voter i ∈ N
and denote it by a �i b if Qi(a) < Qi(b). A special preference order Q̂ ∈ π(M) will
be used to denote a lexicographic tie-breaking when necessary.

A partial strategic (or voting) profile is then a set of ballots submitted by voters,
b ∈ π(M)V , V ⊂ N . A complete strategic profile is one that corresponds to a full set of
voters V = N . Notice that given a voting profile, the set of voters, V , who have submit-
ted the ballots is implicit. If bi = Qi we say that the voter i ∈ V is truthful in b ∈MV .
In general, a voting rule determines the winner of an elections based on the submit-
ted (complete) voting profile. However, in this paper we will be dealing solely with
scoring voting rules characterised by a vector of parameters α = (α1, . . . , αm−1, 0),
α1 ≥ α2 ≥ . . . ≥ αm−1 ≥ 0. These parameters essentially give a numerical points
value to each position within a ranking order, be that the preference order of a voter,
Qi ∈ π(M), or a submitted ballot, bi ∈ π(M). So the highest ranked candidate would

5 Notice that the smaller the rank of the candidate the more it is preferred.



receive α1 points, the second highest α2 points and so on. By aggregating these points,
a winner of an election is then determined.

Formally, we will define a scoring profile or state as a partial statistic, sb, of a
strategic profile b ∈ π(M)V , which assigns a score to each candidate c ∈M , so that

sb(c) =
∑
i∈V

αbi(c).

A true score of a candidate is sQ(c) =
∑
i∈N

αQi(c). Note we can view sb as a vector in

Nm. Given such a score s, the winner, f(s), is the candidate with the maximal number
of points in s (with the tie-breaking order Q̂ is used in case there are several candidates
with the maximal score). In other words, for any c 6= f(s) ∈ M holds s(c) ≤ s(f(s))

and, furthermore, if s(c) = score(f(s)) then Q̂(f(s)) < Q̂(c).
Now, we will concentrate on two of the most popular scoring rules: Plurality, defined

by parameters α = (1, 0, . . . , 0); and Veto, defined by parameters α = (1, . . . , 1, 0).
For these rules, a complete ranking order is superfluous as a ballot. In fact, a ballot’s
effect on the score profile and, hence, on the winner, is fully determined by the can-
didate getting a point (in Plurality) or not getting a point (in Veto). This allows us to
“summarise” ballots, and for the remainder of this paper we write, with a slight abuse of
notation, bi ∈M for a single voter’s ballot and b ⊆MV for a (partial) voting profile.

In this paper we adopt the iterative voting point of view. In other words, a voter i ∈
N has access to a (partial) scoring profile s before she chooses her vote ai. Then the vote
can be strategically selected based on the outcome that would follow by concatenating
ai with s into new scoring profile s′ = (s, ai). Similarly, s \ ai is such that s = (s \
ai, ai). In particular, standard notions of better-response and dominance are defined
as follows. A candidate ai is a better-response w.r.t. s if f(s, ai) �i f(s, a′) for all
a′ 6= ai. If f(s, a) �i f(s, b) for all scoring profiles s, then a dominates b from the
point of view of voter i. These allow us to define voter response function and a stable
state.

A voter response function ρ : N × Nm → M maps a scoring profile into a ballot
of voter i. We will naturally shorthand ρi(s) = ρ(i, s). For instance, the voter best
response function can be defined as follows:

Definition 1. Formally, let sb be a given scoring profile. For a given voter i, let s−i =
sb\i and B ⊂M the set of all better responses of voter i to s−i. Then the best response
function ρBR is such that ρBR(i, sb) ∈ B and for all b′i ∈ B it holds Qi(ρ(i, sb)) <
Qi(b

′
i).

In turn, a stable state is defined in terms of a voter response function.

Definition 2. Let b be a voting profile of voters in some V ⊂ N , and sb a scoring
profile that corresponds to it. Then b is a stable voting profile and sb is a stable state
(with respect to voter response function ρ) if for all i ∈ V it holds that ρ(i, sb) = bi ∈
b.

Notice that if the response function is ρBR, then the stable state is a Nash Equilibrium
in pure strategies. In general, a voter response function is an extremely flexible tool. It



can be as simple as calculating the best response to the scoring profile formed by votes
of others, or it can take into account a degree of uncertainty as is done in the locally
dominant response in Meir et al. [10]. It can even be non-myopic in nature, a particular
variation of which we present in this paper.

2.1 Farsighted voter model

A farsighted voter considers the possibility that their vote might change the situation,
prompting other voters to change their vote (e.g., it would cause others to vote similarly,
as there are other similarly minded voters), resulting in a better result for them in a few
steps. However, our voters are not omnipotent – they are still limited by the common
iterative voting constraints. Therefore, the underlying votes are still opaque — only the
final score outcomes at each stage are known, and not which voter changed their votes,
limiting their information (see Section 6 which expands on this point). Furthermore,
we use a simple metric to define how optimistic is each voter of the chance others will
follow them, by having each voter consider that up to ri ∈ N voters might change their
votes according to similar preferences to theirs.

We wish to note that while this definition has some similarities to [10] locality
model (with `1 metric), in that model, the voter is unsure of what the current state is,
and desires to be pivotal, while in our case they know what the current state is, and are
trying to improve the outcome in several steps. This makes it a dominant strategy (as in
[10]), in many cases, simply to stay put (Section 6 expands on further potential models).

We deal only with plurality and veto; only they converge with best response strate-
gies, and we do not require a complex discussion of what it means that other voters
move according to a voter’s desires. There is only an option of whom to vote for (or
veto), and not a more intricate division of points. Therefore, we can use the following
definition:

Definition 3. In general, a farsighted better response to a scoring profile s is a ballot
ai of radius ri, if after the adoption of ai it is possible that additional ri ballot changes
by other voters would make ai the election’s winner. In particular, we will instantiate
this intuition for the Plurality and Veto voting rules as follows.

Farsighted Plurality Response. Let b be a strategic profile, and s = (s−i, bi) be
the score profiles that corresponds to it. In particular, s−i denotes here the partial
score profile formed from s by removing the i’th current ballot. A ballot ai is a better
farsighted plurality (FP) vote of radius ri the following two conditions hold. First,
ai �i w = f(s). Second, letting s′ = (s−i, ai) and w = f(s′), if Q̂(w) < Q̂(ai), then
s′(w)− s′(ai) ≤ ri, and if Q̂(w) > Q̂(ai), then s′(w)− s′(ai) + 1 ≤ ri.

A ballot ai is the best FP response for voter i ∈ N of radius ri if ai is a better FP
response for this voter and there is no ballot bi that is also a better FP response and
bi �i ai.

Farsighted Veto Response. Let s be the current score profile, w = f(s) be the current
winner and denote by Cwi ⊂ M the subset of all candidates that i prefers over w,



and c∗i = arg max
c∈Cw

i

s(c), where tie-breaking is taken into account, that is argmax is a

singleton under the score profile s.
A ballot ai is a better farsighted veto (FV) response of radius ri if there is c ∈ Cwi

and a set of voters V ⊂ N \ {i}, |V | ≤ ri who can veto candidates in M \ {c} without
changing c’s score and make it the new winner.

A ballot ai is a best FV response of radius ri if there is a set of voters V ⊂ N \
{i}, |V | ≤ ri who can veto candidates in M \ {c∗i } without changing c∗i score and
make it the new winner. We also require that the size of the minimal such V reduces
when i adopts ai. 6

We denote the policy of farsighted best response under Plurality by ρFP , and under
Veto by ρFV . For the latter, we require that if the current ballot is a best FV, then
ρFV prefers it. Notice that this response is coherent with the standard definition of a
better and the best responses—in the sense that when the farsighted radius is zero, the
farsighted and the standard responses coincide. In addition, it is necessary to notice that
a stable state with respect to ρF is not necessarily a Nash Equilibrium, nor the other
way around. A simple intuition behind this is that, while ρBR is myopic, ρFP and ρFV

are not.

Example 2. Assume that the Plurality voting rule is used, and that we have 4 voters and
4 candidates (named a through d), with the tiebreaking order a � b � c � d. Let the
truthful preference profile be as follows:

voter 1 : a �1 c �1 b �1 d
voter 2 : c �2 a �2 b �2 d
voter 3 : d �3 a �3 b �3 c
voter 4 : b �3 d �3 c �3 a

In the myopic version, voter 4 is the voter incentivized to manipulate, and does so by
voting for d. Depending on which voter move first between voters 1 and 2, the winner
will be a or c.

Now, suppose all voters have a farsighted radii of 2. Now, any candidate has a
chance of winning, and therefore no voter will move from it strategy, and therefore
the winner will remain a (in this this is a good result, as it ensures the winner will be a
Condorcet winner).

3 Farsighted Plurality

In this section we will investigate the convergence of iterative voting processes guided
by farsighted response functions under the Plurality voting rule. In particular, we will
show that farsighted response leads to convergence to a stable state if all voters use the
same farsighted radius.

Theorem 1. Let us assume that all voters in N participate in an iterative voting sce-
nario and use a farsighted plurality response function ρFP and all farsight radia are

6 Notice that if the best FV responses exist, they necessarily include the current winner w.



equal, ∀i ∈ N, ri = r ∈ N. Denote bt the complete voting profile at time t and
st = sbt the score profile that corresponds to it. Then there are a finite τ , b∗ and s∗ so
that for all t > τ it holds that bt = b∗ and s∗ = st = sb∗ .

Proof. Denote wt = f(st) the winner at iteration t. Also denote by Ati = Ai(s
t) ⊂M

the set of all possible farsighted responses of voter i at time t > 0. At time t = 0 let
Ati also include w0 for all i ∈ N . Let U ti ⊂ M be defined as U ti = Ati ∪ {bti}, i.e., the
current ballot and the set of all possible better farsighted ballots.

We will show that two conditions hold simultaneously and lead to convergence as
required: a) U t+1

i ⊆ U ti ; and b) st(wt) ≤ st+1(wt+1) and, furthermore, if st(wt) =

st+1(wt+1) then either wt = wt+1 or Q̂(wt+1) < Q̂(wt). In other words, for all voters
their corresponding sets of better farsighted responses do not grow, and the score of the
winner does not decrease neither w.r.t. gathered points nor w.r.t. the tiebreaking order.

Assume the contrary, and let us consider the first iteration t where either condition
is violated for the first time.

Assume that st(wt) > st+1(wt+1). That is, at step t, some voter i ∈ N has changed
his ballot from bti = wt to bt+1

i = c 6= wt. Notice that c is not necessarily the winner
wt+1 of the step t+1. It has to hold, however, that c �i wt. Since t is the first instance
when either of our conditions fail, it has to holds that U t

′

i \ U
t′−1
i = ∅ for all θ′ ≤ t. In

particular, for any τ ≤ t c ∈ U ti . Consider now, the time τ < t, when voter i has first
switched his ballot to wt. Since c ∈ Uτi one of the following cases occurs:

– c ∈ Aτi . To switch to wt, by the definition of the best farsighted plurality response,
it has to holds that wt ∈ Aτi and is the best w.r.t. Qi. However, we have already
established that c �i wt. Contradiction.

– c = bτi . Again an impossibility, because it has to holds that wt = bτ+1
i �i bτi = c.

Notice that the reasoning above applies to the case where the winner score persists, but
its tiebreaking order is violated.

Assume that for some i ∈ N U t+1
i \ U ti 6= ∅ and st(wt) ≤ st+1(wt+1). Consider two

complimentary sub-cases, bt+1
i 6= wt+1 and bt+1

i = wt+1.

– Assume that bt+1
i 6= wt+1, that is voter i does not vote for the winner. It is easy

to see that U t+1
i \ U ti 6= ∅ if and only if At+1

i \ Ati 6= ∅. Let c ∈ At+1
i \ Ati 6= ∅.

Since st(wt) ≤ st+1(wt+1), this can only occur if c has received an additional
points at time t so that st(c) < st+1(c). Therefore, there is a voter j ∈ N so that
c ∈ Atj . However, since farsight radia are equal, it would also entail that c ∈ Ati –
contradiction.

– Assume that bt+1
i = wt+1. If wt = wt+1 then we can use the same reasoning as the

above sub-case. Thus, w.l.o.g., assume that wt 6= wt+1. Given that for all j ∈ N
U tj \ U

t−1
j = ∅ we can easily see that wt keeps his points at step t+ 1. As a result,

for any c 6∈ Ati is has to hold that c 6∈ At+1
i – a contradiction.

Notice that sequences {U ti } and {st(wt)} are bounded by the empty set and the number
of voters, respectively. Hence, there is a point τ ′ after which neither the set nor the score



(including a shift along the tiebreaking order) do not change. In particular, exist Ui so
that for all t > τ ′, U ti = Ui. Therefore, there is τ > τ ′, where all voters have updated
their ballots to the best farsight response in Ui or their response can not change because
Ui only includes their current vote. As a result bt = bτ and st = sτ for all t > τ .

Our proof relies on the fact that farsight radia are equal, however this is not just
a property of this specific proof. Rather, homogeneity of farsight radia is a necessary
condition for convergence to a stable state.

Theorem 2. There is an iterative voting scenario with farsighted voters with heteroge-
neous farsight radia where the iteration does not converge.

Proof. We will prove this by constructing a scenario where a cycle of farsighted re-
sponse exists. Let there be 5 candidates, named named for convenience a through d,
rather than just numbered, and let the preference profile of the first three voters be:

voter 1 : a �1 c �1 b �1 d �1 e
voter 2 : b �2 c �2 a �2 d �2 e
voter 3 : c �3 d �3 e �3 a �3 b

All remaining voters of the profile would not participate in the cycle, but their pro-
files are chosen so that that the initial score profile, s0 is given by: s0(a) = s0(b) = 4,
s0(c) = 6, s0(d) = s0(e) = 10. In addition, assume that r1 = r2 = 6 and r3 = 2,
while the tie-breaking preference order, Q̂, is a � b � c � e � d. Then the following
cycle of farsighted votes exists starting from st = s0:

– Voter 3 is changing his vote from c to d, leading to the scoring profile st+1 =
(4, 4, 5, 11, 10).

– Voters 1 and 2 change their votes in favour of c one after the other. At both of these
changes wt+1 = wt+2 = d and has 11 points, so neither a is among the frigged
responses of voters 1, nor b is among the farsighted responses of voter 2. Hence,
the score profiles becomes st+3 = (3, 3, 7, 11, 10).

– c now becomes a farsighted better response for voter 3, since only two more votes
besides his own would be necessary to make c the winner of the election. In fact,
this is the best farsighted response for voter-3, which he makes, turning the score
profile into st+4 = (3, 3, 8, 10, 10).

– Candidates a and b can now win by tiebreaking if they gain 6 more votes in ad-
dition to those granted by voters 1 and 2 reverting to their original ballots. In
other words a and b are not best farsight responses of voters 1 and 2 respec-
tively. As a result of adopting these ballot modifications the score again becomes
st+6 = (4, 4, 6, 10, 10) = st. The cycle is complete.

4 Veto

Due to the nature of veto, a farsighted best response strategy is, in fact, similar to the
myopic version, as vetoing the current winner is always the right strategy. This does
not mean that convergence stems from previous results, as a stable state in the myopic
scenario might not be a stable state in the farsighted version. However, our proof is



similar in many respects to the myopic version found in [9], and we try to use similar
notations, where applicable.

Surprisingly, our veto result is stronger than our plurality one, as we show iterative
farsighted veto converges even for voters with different radii.

Theorem 3. Let us assume that all voters in N participate in an iterative voting sce-
nario and use a farsighted plurality response function ρFP . Denote bt the complete
voting profile at time t and st = sbt the score profile that corresponds to it. Then there
are a finite τ , b∗ and s∗ so that for all t > τ it holds that bt = b∗ and s∗ = st = sb∗ .

Proof. We begin by assuming that the theorem is false, and there is a profile b that does
not converge to a stable state. Therefore, we know there is a cycle bt,bt+1, . . . ,bt+k

for some t, k ∈ N that repeats ad infinitum. We shall focus on these states and mark
them as G0, . . . , Gk. We shall use the notation max(Gi) to indicate the maximal score
in a particular profile (i.e., max(Gi) = maxc∈N sGi

(c)). Notice that the choice of
which state is G0 is arbitrary, and the numbering can begin at every point in the cycle.

Lemma 1. For every Gi, if j < i, max(GI) ≤ max(Gj) + 1, and if the inequality is
tight, there is only one candidate with the score max(Gi).

Proof. Proving by induction, the base case is trivial. Assuming it is true after h − 1
steps, proving it for step h. Examining Gh−1, if there was a j < h − 1 for which
max(Gh−1) = max(Gj) + 1, there is a single winner, which looses a point, and
therefore the winner in Gh will have, at most, max(Gh−1) points. Thus, max(Gh) ≤
max(Gh−1), and the claim stems from its truth for Gh−1. If for every j < h − 1
max(Gh−1) ≤ max(Gj), the maximal score in Gh will rise by at most one point, i.e.,
max(Gh) ≤ max(Gj)+1 for all j < h. Furthermore, if it indeed grows, there is only a
single candidate with that number of points (as only the candidate that got an extra point
has this score). If the maximal score in Gh didn’t grow, max(Gh) ≤ max(Gh−1), and
claim is true from its correctness for Gh−1.

Corollary 1 For every 1 ≤ i ≤ k, max(G0) + 1 ≥ max(Gi) ≥ max(G0)− 1.

Proof. Since G0 can be any state in the cycle, Lemma 1 can be at any order – for any
i, j, Gi can be before or after Gj .

Lemma 2. There are, at most, two different values for max(Gi).

Proof. Suppose there are 3. Due to Lemma 1, there is a single winner in the two top
values. However, once there is a single candidate in the lower of these, there is no way
for this candidate to receive another point, as the sole step is to remove a point from the
winner.

If for everyGi there is only a single winner with the maximal winner, this means the
candidate granted a point in the move is the one becoming the winner. Hence, each voter
move is making a candidate it previously vetoed the winner. I.e, its situation is slowly
deteriorating, as candidates it ranks low become winners — this is a finite process,
with at most n · (m − 1) steps, contradicting the cycle existence. Therefore, we must



assume there is at least one state Gi in which there is more than one candidate with
the maximal score. We shall term one of these states G0 (obviously, any state with a
different maximal score than max(G0) has a maximal score of max(G0) + 1 and a
single candidate with that score, thanks to Lemma 1).

Lemma 3. For any stateGi wheremax(Gi) = max(G0), {c ∈M |sGi
(c) ≥ max(Gi)−

1} = {c ∈ M |sG0
(c) ≥ max(G0) − 1} and |{c ∈ M |sGi

(c) = max(Gi) −
1}| = |{c ∈ M |sG0(c) = max(G0) − 1}|, |{c ∈ M |sGi(c) = max(Gi)}| =
|{c ∈ M |sG0(c) = max(G0)}| (i.e., the set of candidates with score max(G0) or
max(G0)− 1 is the same, as well as number of candidates with each of these scores).

Proof. Suppose there is a Gi which has a candidate c such that sGi
(c) ≥ max(Gi)− 1

but sG0
(c) < max(G0)− 1. This means at some point c had a score of max(G0)− 1

and lost a point. But a candidate can only lose a point when it is the winner, and there
is no state where the maximal score is max(G0)− 1 (if G0 has an “extra” candidate in
comparison to Gi the same argument applies, switching between Gi and G0).

This means the only candidates changing scores are those in {c ∈ M |sG0
(c) ≥

max(G0)−1}, and as this is a zero-sum game and the maximal score does not change,
the number of candidates with the same score does not change.

Examining the set B of candidates for which there is a Gi where they have a score
of max(G0) and there is a Gj where they have a score of mac(G0)− 1 (this is a non-
empty set, as some candidate is vetoed betweenG0 andG1), we mark as z the candidate
ranked lowest in Q̂ (i.e., Q̂(z) ≥ Q̂(z′) for all z′ ∈ B).

Since z changes its score, there is a state Gi where z has the score max(G0) and is
vetoed, i.e., z is the winner ifGi. This means there is no other candidate fromB with the
scoremax(G0). As the number of candidates withmax(G0) doesn’t change (according
to Lemma 3), this means that at every stateGj in whichmax(Gj) = max(G0), there is
only a single candidate from B with max(G0) points, and it always wins. This means
the candidate getting the point at every stage is the one that becomes the winner —
which, as noted above, is a finite process, contradicting the endless cycle.

5 Single Farsighted Voter

Previous sections have shown that heterogeneity of farsighted radii has no effect under
the Veto voting rule, but is detrimental to Plurality. In this section we investigate this
discrepancy more closely by looking at a special case. Specifically, both under the Plu-
rality and Veto voting rules, we will analyse the situation where only one voter has a
non-zero farsighted radius.

Theorem 4. The iterative process with one farsighted voter under Plurality converges.

Proof (Proof Sketch). Here we only provide an outline of the proof, and leave the sim-
pler details completion as an exerice for the reader. For the single farsighted voter the
set U ti will behave similarly to that from the proof of Theorem 1. On the other hand,
between the iterations where the farsighted voter changes his ballot, all other voters
will behave myopically and their combined ballot will tend to stabilise (see [11]). This
overall will lead to the convergence of the complete voter profile.



Another important observation is that, even if the farsighted voting dynamic con-
verges in spite of the farsighted radii heterogeneity, it may be detrimental, i.e., lead to
a sub-optimal stable state from the farsighted voter’s perspective. In particular, even
though for the Veto voting rule radia heterogeneity does not break convergence, its neg-
ative effect is more universal.

Example 3. Assume that the Plurality voting rule is used, and that we have 4 voters and
4 candidates (once again conveniently named a through d). Let the truthful preference
profile be as follows:

voter 1 : a �1 c �1 b �1 d
voter 2 : c �2 a �2 b �2 d
voter 3 : d �3 a �3 b �3 c
voter 4 : b �3 d �3 c �3 a

Let voter 4 be the single farsighted voter with farsighted radius r4 = 2, and the tiebreak-
ing order Q̂ = a � b � c � d. It is easy to see that the truthful state is stable under
the farsighted response dynamics, and the winner is a. On the other hand, if we con-
sider the standard myopic dynamic ρBR, it will lead to the equilibrium voting profile
b = (c, d, d, d). This equilibrium state is better from the perspective of voter-4, since
c �4 a.

Furthermore, assume that we introduce a myopic bias into ρFP , i.e. when voter has
both myopic and farsighted move he always prefers the myopic move. Even in this case,
the example would hold. After 2 myopic steps, when voter 4 has switched to candidate
d and voter-1 has switched to candidate c, it will be Nash equilibrium in the ρBR based,
standard game. In particular there will be no more myopic moves available. However,
voter-4 will still have a farsighted move: to return to his truthful vote. As a result of
voter-4 reverting to his truthful ballot, voter-1 will now has a new myopic move to
return to his truthful vote. The initial (truthful) state will be restored. That is a cycle is
formed, and a stable state under the myopic biased ρFP does not exist.7

Example 4. Assume that the Veto voting rule is used, and that we have 3 voters and
4 candidates (once again conveniently named a through d). Let the truthful preference
profile be as follows:

voter 1 : c �1 a �1 b �1 d
voter 2 : a �2 b �2 c �2 d
voter 3 : a �3 b �3 c �3 d

Let voter 1 be the single farsighted voter with farsighted radius r1 = 1, and the tiebreak-
ing order is Q̂ = (a � b � c � d). The truth ballot, (d, d, d), is a Nash Equilibrium
under the best response dynamics ρBR with the winner being a. However, voter-1 has
a farsighted move: to switch from vetoing c to vetoing a. This is because it is enough
that one other voter vetoes b and the best candidate of voter-1 (candidate c) would
become the new winner. Under ρFV , voter-1 adopts the farsighted ballot leading to a
voting profile of b = (c, d, d), and the new winner becomes b. However, now voter-2

7 Notice, that this situation is different from the one in the theorem 4, because myopic moves
are performed before any farsighted moves.



and voter-3 have no incentive to change their ballot and voter-1 has no farsighted bal-
lots, i.e. b = (c, d, d) is a stable stable voting profile. Alas, a �1 b, so that voter-1 is
worse-off.

The above examples also suggest another observation, although we omit its formal
analysis due to space limitations. Under the Plurality rule, increasing the farsighted
radius beyond r = 2 does not effect the overall iterative behaviour of a system with
a single farsighted voter. On the other hand, under the Veto rule, the increase of the
farsighted radius will have behavioural impact.

6 Discussion

In this paper we tackled the last, and most complex, condition for iterative voting con-
vergence — myopicness. After previous work has dealt with tie-breaking rules, voting
rules, and best response, we have examined the conditions for convergence when there
is no longer the assumption that players will only look at the current state. We have ex-
plored farsightedness while keeping the other elements of the model unchanged (apart
from the voting rule), in order to understand its effect, on its own, on the known prop-
erties of iterative voting.

Beyond examining convergence in both plurality and veto (with the surprising fact
that the veto results are stronger than the plurality ones), we also begin the study of the
effect of farsightedness on the result of the iterative process, by finding that farsighted-
ness is not necessarily beneficial. The effects of various numbers of farsighted voters,
and the effect of the radius on the result, are interesting areas for further research.

Another area open to further research is slightly relaxing the opacity of information
to the various players. While limited knowledge, in which voters only know total scores
of each state, makes sense in many scenarios, there are scenarios where this can be
changed. For example, in setting with few voters, the iterative process can be more
exposed, and while participants will not necessarily share their truthful preferences,
voters can learn from the changes to votes made by other players something regarding
their preferences. Such knowledge may enable them to make more subtle farsighted
moves.

Another potential extension to this new farsighted research is to endow the players
with utilities for each candidate. This allows them a greater degree of nuance in their
farsightedness, and they can decide between supporting candidates that require fewer
other voters to become victors, vs. more preferable candidates (to them) that require a
longer horizon to win. Similar settings have been studied in general games, which may
aid such research.
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