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ABSTRACT
We consider PAC learning of simple cooperative games, in
which the coalitions are partitioned into “winning” and “los-
ing” coalitions. We analyze the complexity of learning a
suitable concept class via its Vapnik-Chervonenkis (VC) di-
mension, and provide an algorithm that learns this class.
Furthermore, we study constrained simple games; we demon-
strate that the VC dimension can be dramatically reduced
when one allows only a single minimum winning coalition
(even more so when this coalition has cardinality 1), whereas
other interesting constraints do not significantly lower the
dimension.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity;
I.2.6 [Artificial Intelligence]: Learning—Concept Learn-
ing ;
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems

General Terms
Algorithms, Theory

Keywords
PAC Learning, Coalition Formation

1. INTRODUCTION
A significant portion of recent research in multiagent sys-

tems has focused on learning. Nevertheless, very few inves-
tigations have been devoted to learning in coalition forma-
tion, an area of game theory that is exceedingly relevant to
multiagent systems. Classical models of coalition formation
assume that the values of all coalitions are known a priori,
but this assumption is unreasonable in many (indeed, almost
all) multiagent settings. Surprisingly, even fewer researchers
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have attempted to apply PAC1 (Probably Approximately
Correct) learning theory to multiagent settings, although
this model has been extensively studied by researchers in
computational learning theory (readers who are not famil-
iar with this model are urged to consult [4]).

In this paper, we endeavor to remedy these shortcomings
by studying PAC learning of simple cooperative games, in
which each coalition is either “winning” or “losing”. A basic
structure is induced by the assumption that if a coalition
is winning, any coalition that contains it is also winning.
Simple games are a suitable model for numerous n-person
conflict situations.

The Vapnik-Chervonenkis (VC) dimension is a combina-
torial measure of the “richness” of a concept class2, and is
proportional to the difficulty of learning the class. We define
several concept classes, which characterize settings of learn-
ing simple games with different restrictions, and identify the
complexity of learning these classes by calculating their VC
dimensions.

2. THE MODEL
A cooperative n-person game in characteristic form with

side payments is a pair (N ; v), where N = {1, 2, . . . , n} is
a set of players, and v is the characteristic function, which
assigns a real number v(C) to each coalition C ⊆ N . v(C)
is the value of C.

Simple games are games where each coalition has a value
of either 1 or 0. A coalition C is said to be winning if
v(C) = 1, and losing if v(C) = 0. 2N , the powerset of N ,
is partitioned into W , the set of winning coalitions, and L ,
the set of losing coalitions. A standard assumption is that
this partition satisfies:

[C1 ∈ W ∧ C1 ⊆ C2]⇒ C2 ∈ W . (1)

We wish to find a way to identify winning coalitions. In
other words, given a coalition, we would like to label it by
“winning” or “losing”, or equivalently, by 1 or 0, respec-
tively. Essentially, we would like to learn a function from
coalitions to {0, 1}.

The assumption given in Equation (1) allows us to easily
represent such functions. Indeed, we say that C ⊆ N is a
minimum winning coalition if and only if

C ∈ W ∧ ∀i ∈ C, (C \ {i}) ∈ L .

1The PAC model is also known as the formal model.
2A concept class is a binary function whose domain is the
set of possible samples.



A simple game can be concisely represented by a set of min-
imum winning coalitions. Furthermore, a set of minimum
winning coalitions may be regarded as a function from the
set of coalitions to {0, 1}: a coalition is winning (labeled by
1) if and only if it is a superset (in the weak sense) of one
of the minimum winning coalitions.

Remark 1. Surprisingly, learning to identify minimum
winning coalitions (with the above formalization in mind)
is equivalent to learning monotone3 DNF formulas. Indeed,
one can associate players with variables, and coalitions with
terms. A hypothesis consisting of a set of minimum win-
ning coalitions is essentially a disjunction of terms. When
learning minimum winning coalitions, the sample space is
the space of all coalitions; these can be identified with as-
signments to variables, where a coalition C induces an as-
signment of 1 to the variables associated with the players in
C, and 0 to all other players. This equivalence allows us to
leverage some of the research on monotone DNF in order to
prove certain results.

For the sake of completeness, we give a swift description
of the VC dimension; more details can be found in [4].

Definition 1. Let C : X → {0, 1} be a concept class,
S = {x1, x2, . . . , xm} ⊆ X, and let

ΠC(S) = {〈h(x1), h(x2), . . . , h(xm)〉 : h ∈ C}.

If |ΠC(S)| = 2m, then S is considered shattered by C.

In other words, if S is shattered by C, then C realizes all
possible dichotomies on S.

Definition 2. The Vapnik-Chervonenkis (VC) dimension
of a concept class C, denoted VC-dim(C), is the size of the
largest set S that is shattered by C. If C shatters arbitrarily
large sets, then VC-dim(C) =∞.

It is known that the VC dimension of a concept class al-
most completely characterizes the complexity of learning it
in the PAC model. Therefore, we focus on calculating the
VC dimension of several concept classes of interest.

3. LEARNING UNCONSTRAINED GAMES
In order to calculate the VC dimension of the concept

class of minimum winning coalitions, when no restrictions
are imposed on the game, we first need to address a natural
combinatorial problem.

Given the numbers {1, 2, . . . , n}, we would like to find a
maximal antichain of subsets, i.e., a family of subsets such
that for any two subsets, neither one is contained in the
other. Finding an antichain of size

`

n
bn/2c

´

is easy: we simply

choose all the subsets of size bn/2c (see Table 1). But can
one do better? The theorem gives a negative answer.

Theorem 1 (Sperner’s theorem). Let F be a family
of subsets of {1, 2, . . . , n}, such that for all A, B ∈ F : A *
B. Then |F| ≤

`

n
bn/2c

´

.

Now we can straightforwardly prove the main theorem.

3DNF formulas in which all the literals are positive.

∅

{1} {2} {3} {4}

{1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

Table 1: Subsets of {1,2,3,4}, sorted by size. A max-

imal antichain is constructed by choosing all subsets

of size 2; Sperner’s Theorem states that one cannot

construct a larger antichain.

Theorem 2. Let C∗ be a concept class, in which each
concept is a set of minimum winning coalitions. Then:

VC-dim(C∗) =

 

n

bn/2c

!

.

Proof. We first show that the VC-dimension is at least
`

n
bn/2c

´

, by producing a set of size
`

n
bn/2c

´

which is shattered

by C∗. Consider the set S of all coalitions of size bn/2c.
Clearly, any dichotomy on S can be realized by the concept
that contains as minimum winning coalitions exactly the
coalitions in S that are labeled by 1.

On the other hand, the VC-dimension is at most
`

n
bn/2c

´

.

Indeed, consider a set S of more than
`

n
bn/2c

´

coalitions. By

Theorem 1, there are two coalitions C1, C2 ∈ S such that
C1 ⊆ C2. The dichotomy in which C1 is labeled by 1 and
C2 is labeled by 0 cannot be realized.

Contract, given as Algorithm 1, is a learning algorithm
for C∗: it returns a set of minimum winning coalitions which
is consistent with the given samples (assuming one exists).

Algorithm 1

1: procedure Contract({(Ci, yi)}
m
i=1) . yi ∈ {0, 1} is

the label of coalition Ci

2: W
m ← ∅ . Set of minimum winning coalitions

3: for i = 1 to m do . All sample coalitions
4: if yi = 1 ∧ ∀R ∈ W

m, R * Ci then

5: W
m ← W

m \ {R ⊆ N : Ci ⊆ R}
6: W

m ← W
m ∪ {Ci}

7: end if

8: end for

9: return W
m

10: end procedure

4. LEARNING CONSTRAINED GAMES
Veto games are cooperative games where any coalition

with nonzero value contains a distinguished player, called
the veto player. In some veto games, the inclusion of the
veto player in a coalition is also a sufficient condition for
the coalition to be winning, not just a necessary one; in
this case, we say the veto player is a dictator. Some real-
world n-person conflict situations are simple games with a
dictator.

That being the case, in order to identify winning coalitions
in a simple game with a dictator, it is enough to pinpoint
this distinguished player. The set of minimum coalitions
contains exactly one coalition of cardinality 1: the dictator.



The following proposition follows from [1].

Proposition 3. Let C1 be a concept class, in which each
concept is a single minimum winning coalition of cardinality
1. Then:

VC-dim(C1) = blognc.

It is worthwhile to generalize our requirement of a single
dictator player; we now assume there is a coalition W such
that for all coalitions C, C is winning if and only if W ⊆ C.
Since W is the only minimum winning coalition, the goal of
the learning process in such games is to recognize W .

By the equivalence between minimum winning coalitions
and monotone DNF, it is possible to derive the following
proposition from [2].

Proposition 4. Let C∗1 be a concept class, in which each
concept is a single minimum winning coalition. Then:

VC-dim(C∗1 ) = n.

Remark 2. Another possible generalization is having at
most k minimum winning coalitions; denote this concept
class by C∗k . An upper bound for this case is given by
Schmitt [3]. In particular, if k = O(1), then VC-dim(C∗k) =
O(n).

Proper simple games are another type of common con-
strained games. In such games it holds that

∀S ⊆ N, S ∈ W ⇒ N \ S ∈ L . (2)

However, this constraint does little to reduce the VC dimen-
sion, compared with unconstrained simple games.

Proposition 5. Let C∗p be a concept class, in which each
concept is a set of minimum winning coalitions in a proper
simple game. Then:

VC-dim(C∗p) ≥

 

n− 1
¨

n−1

2

˝

!

.

Proof. We must exhibit a set S of size
` n−1

bn−1

2
c

´

which is

shattered by C∗p . Let

S =



C ⊆ N : 1 ∈ C ∧ |C| =

—

n− 1

2

�

+ 1

ff

.

It holds that the cardinality of S is as desired. Moreover,
for any dichotomy on S, one may choose exactly the subsets
labeled by 1 as the minimum winning coalitions: since the
intersection of all subsets in S is not empty, the constraint
(2) is not violated.

Another popular constraint is the elimination of dummy
players.

∀i ∈ N∃C ⊆ N s.t. i ∈ C ∧ C ∈ W ∧ (C \ {i}) ∈ L . (3)

Informally, for every player there is a winning coalition
which cannot do without it. The elimination of dummy
players also does not substantially reduce the VC dimension.

Proposition 6. Let C∗d be a concept class, in which each
concept is a set of minimum winning coalitions in a simple
game with no dummy players. Then:

VC-dim(C∗d) ≥

 

n− 1
¨

n−1

2

˝

!

.

Proof. We must exhibit a set S of size
` n−1

bn−1

2
c

´

which is

shattered by C∗d . Let

S =



C ⊆ N : 1 /∈ C ∧ |C| =

—

n− 1

2

�ff

.

It holds that the cardinality of S is as desired. Given a
dichotomy on S, let S+ be the set of coalitions in S that are
labeled by 1, and let B be the set of players that are not
members of any of the coalitions in S+. The set of minimum
winning coalitions is S+ ∪ {B}; the purpose of including B
is to ensure that constraint (3) is not violated. It remains to
show that this is a legitimate set of minimum coalitions in
a proper simple game, which realizes the dichotomy. Since
1 ∈ B, B is not a subset of any of the coalitions in S,
and in particular is not a subset of any of the coalitions in
S \ S+ — so it is not the case that the addition of B to
the set of minimum winning coalitions mistakenly labels a
coalition in S \ S+ by 1. Clearly, neither is B a superset
of any of the coalitions in S+; thus it is not the case that
there are two winning coalitions such that one is a superset
of the other. Since the coalitions in S+ are included in
the set of minimum winning coalitions, the dichotomy is
realized. Moreover, constraint (3) is satisfied: every i ∈ N
is contained in one of the coalitions in S+, or in B, and these
are all minimum winning coalitions.

5. CONCLUSIONS
Simple games have natural interpretations in multiagent

systems. Such games can be concisely represented by the set
of minimum winning coalitions; this set may be regarded as
a function from the set of coalitions to {0, 1}.

We have shown that the VC-dimension of the concept
class which contains sets of minimum winning coalitions is
`

n
bn/2c

´

; this implies that in general, it is very difficult to

learn to identify winning coalitions in the PAC model.
We have also discussed constrained simple games, and

have proven that restricting the set of minimum winning
coalitions to a single coalition, or a dictator player, greatly
reduces the VC-dimension. These constrained games are
thus efficiently learnable. Nevertheless, other popular con-
strained games, such as proper simple games and games with
no dummy players, are almost as hard to learn as uncon-
strained games.
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