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ABSTRACT
In an election held in a noisy environment, agents may un-
intentionally perturb the outcome by communicating faulty
preferences. We investigate this setting by introducing a
theoretical model of noisy preference aggregation and for-
mally defining the (worst-case) robustness of a voting rule.
We use our model to analytically bound the robustness of
various prominent rules. The results show that the robust-
ness of voting rules is diverse, with different rules positioned
at either end of the spectrum. These results allow selection
of voting rules that support preference aggregation in the
face of noise.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity;
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems;
J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics

General Terms
Algorithms, Theory, Economics

Keywords
Computational complexity, Voting

1. INTRODUCTION
Preference aggregation mechanisms, and voting rules in

particular, have been the object of scientific study for many
years. Such mechanisms are used to aggregate the prefer-
ences of human or synthetic agents, over alternatives (or
candidates). The alternatives in question may be entities
such as joint plans for execution [5], schedules [8], or movie
choices [6]. A voting rule generates an outcome that reflects
the individual preferences over candidates, while striving to
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satisfy different desiderata. Indeed, much of the research in
social choice theory has focused on formally analyzing the
properties of social choice mechanisms, with respect to these
desiderata.

One important feature of study in preference aggregation
mechanisms is their resistance to manipulation. Such ma-
nipulations are instances of adversarial worst-cases in the
context of mechanisms: they consider self-interested voters
that intentionally cast untruthful ballots in order to manipu-
late the outcome in their favor (often, under the assumption
of prior knowledge of other voters’ choices). An important
theorem asserts that every voting rule (under certain mini-
mal assumptions) is manipulable [7, 10]. More recent work
in computer science suggests that computational complexity
may help circumvent this impossibility result [1, 3].

However, little attention has been paid to a simpler—and
arguably more common—form of voting distortion, where
the truthful votes are unintentionally changed, as a result
of uncertainty in the actions or perception of the agents cast-
ing the votes. For instance, agents may misunderstand the
choices laid out for them, and may thus inadvertently cast
a vote that is inconsistent with their true choice. Or, in the
case of robots operating where communication is unreliable,
true choices may be miscommunicated, resulting again in
unintentional manipulation.

This paper takes first steps towards a formal analysis of
the impact of errors in the preferences of voters. We define
the k-robustness of a voting rule to be the resistance of the
rule to k faults. In more detail, it is the probability that the
outcome changes as a result of the faults, when each fault is
chosen independently at random. We analyze the connection
between 1-robustness (i.e., resistance to a single fault) and k-
robustness, and conclude that it is sufficient to examine the
1-robustness of different rules. Most importantly, we use our
definitions and tools to give tight upper and lower bounds
on the robustness of several prominent voting rules. In fact,
we show that the robustness of voting rules is extremely
diverse, with different rules positioned at either end of the
spectrum.

Given that voters rank the candidates (voters express or-
dinal preferences), we analyze a theoretical model where a
fault is a switch in the rankings of two adjacent candidates
(e.g., the fifth-ranked candidate is accidentally ranked sixth,
and the sixth is ranked fifth). Such faults may easily be
caused by confusion on the part of voters, or even by a sin-
gle bit-flip when communicating the votes (see Section 3).
Our goal is to understand the robustness of different voting
rules to such faults; this understanding could aid system de-



signers in selecting voting rules that can faithfully aggregate
the preferences of agents in the system.

Previous work by Kalai [9] has investigated the issue of
noise-sensitivity of social welfare functions in simple games;
such functions give an entire social ranking of the candi-
dates, instead of simply designating the winner of the elec-
tion. The author engages in an asymptotic average-case
analysis, where the basic assumption is that the voters’ votes
are distributed uniformly at random. Kalai presents a fam-
ily of “chaotic” social welfare functions: a change in the
preferences of a small fraction of the voters leads to social
preferences that are asymptotically uncorrelated with the
original preferences. In contrast, our model in this paper
is quite different; in addition, we are interested in examin-
ing the robustness of prominent voting rules, as opposed to
investigating extreme asymptotic phenomena.

This paper is organized as follows. In Section 2 we give
an introduction to voting, and describe the voting rules we
examine thereafter. In Section 3 we outline our model of
preference profile errors, and give some general results re-
garding robustness. In Section 4 we bound the 1-robustness
of some prominent voting rules, and in Section 5 we discuss
our results and directions for future work.

2. PRELIMINARIES
In this section we give a brief introduction to classic social

choice theory. The information here is sufficient to under-
stand the paper, but readers who are interested in more
details can consult [2].

Let V = {v1, v2, . . . , vn} be the set of voters, and let
C = {c1, c2, . . . , cm} be the set of candidates, |C| = m. We
usually use the index i (in superscript) to refer to voters,
and the index j (in subscript) to refer to candidates.

Let L = L(C) be the set of all linear orders1 on C. Each
voter has ordinal preferences �i∈ L, i.e., each voter vi ranks
the candidates: cj1 �i cj2 �i · · · �i cjm . We refer to �V =
〈�1, . . . ,�n〉 ∈ LN as a preference profile.

Given �i, let j1, . . . , jm be indices of candidates such that
cj1 �i cj2 �i · · · �i cjm ; we denote by πl(�

i) the candidate
that voter i ranks in the l’th place, i.e., πl(�

i) = cjl
. We

also denote by lij the ranking of cj in �i; it holds that πli
j
(�i

) = cj .

2.1 Voting rules
A voting rule is a function F : LV → C, i.e., a mapping

from preferences of voters to candidates, that designates the
winning candidate. We shall consider the following voting
rules:

• Scoring rules are defined by a vector ~α = 〈α1, . . . , αm〉.2

Given �∈ LN , the score of candidate j is sj =
∑

i αli
j
.

The winner of the election is F (�) = argmaxjsj . Some
of the well-known scoring rules are:

– Borda: ~α = 〈m − 1, m − 2, . . . , 0〉.

– Plurality : ~α = 〈1, 0, . . . , 0〉.

– Veto: ~α = 〈1, . . . , 1, 0〉.

1Binary relations that satisfy antisymmetry, transitivity,
and totality.
2More formally, a scoring rule is defined by a sequence of
such vectors, one for each value of m, but we abandon this
formulation for clarity’s sake.

• Copeland : we say that candidate j beats j′ in a pair-
wise election if |{i : lij < lij′}| > n/2. The score sj of
candidate j is the number of candidates that j beats
in pairwise elections, and Copeland(�) = argmaxjsj .

• Maximin: the Maximin score of candidate j is the can-
didate’s worst performance in a pairwise election: sj =
minj′ |{i : lij < lij′}|, and Maximin(�) = argmaxjsj .

• Bucklin: for any candidate cj and l ∈ {1, . . . , m},
let Bj,l = {i : lij ≤ l}. It holds that Bucklin(�) =
argminj(min{l : |Bj,l| > n/2}).

• Plurality with Runoff : The election proceeds in two
rounds. After the first round, only the two candidates
that maximize |{i ∈ N : lij = 1}| survive. In the
second round, a pairwise election is held between these
two candidates.

3. OUR MODEL OF FAULTS AND ROBUST-
NESS

We consider situations where (for example) noisy commu-
nication leads to changes in voters’ rankings of candidates.
The exact manifestation of these faults largely depends on
the representation of preferences. In order to obtain results
that are as general as possible, we here simply regard a fault
as an alteration of one voter’s ordering of candidates, which
nevertheless maintains the integrity of the voter’s prefer-
ences as a linear ordering (other types of faults remain for
future work).

Definition 1. A preference profile �V
1 is obtained from a

preference profile �V by an elementary transposition (write:
�V
 �V

1 ) if there exists a voter vi and l ∈ {2, . . . , m} such
that:

1. for all i′ 6= i, �i′=�i′

1 .

2. πl(�
i) = c = πl−1(�

i
1).

3. πl−1(�
i) = c′ = πl(�

i
1).

4. �i↓C\{c,c′}=�i
1↓C\{c,c′}.

We say that πl−1(�
i) was demoted and πl(�

i) was promoted.

Example 1. The preference profile
�1 �2

c1 c2

c3 c1

c2 c3

is obtained from the preference profile
�1 �2

c1 c1

c3 c2

c2 c3

by an elementary transposition that promotes c2 and de-
motes c1 (in the notations of the definition, i = 2 and l = 2).

In other words, we focus here on faults where a switch has
occurred between two adjacent candidates in a voter’s rank-
ing of candidates. Such faults are interesting from a theoreti-
cal perspective, but may also occur in practice. For instance,
if voters build their preferences incrementally, they may eas-
ily be confused by spatial proximity of alternative candi-
dates. In other cases, depending on the representation and



communication protocol, communication errors may cause
a switch to occur. Below we describe a representation for
preferences, in which a flip of a single bit either causes a
switch between two adjacent candidates, or can easily be
detected.

3.1 The Pairwise Representation
We here describe a representation of preferences that is

compatible with our fault model, and argue that it has cer-
tain advantages over other alternatives. One can represent
preferences using a bit for each ordered pair of candidates
(with

(

m
2

)

ordered pairs): the bit is 1 if the first candidate
is preferred to the second, and 0 otherwise. We shall refer
to this representation as the pairwise representation.

In this representation, a flip of a single bit correspond-
ing to a pair of adjacent candidates in the ordering entails
an elementary transposition. However, flipping a bit that
does not correspond to adjacent candidates would create an
ordering that is not transitive, and therefore not linear. In-
deed, if (w.l.o.g.) c1 � c2 � c3, and the bit corresponding to
c1 and c3 is flipped, then we obtain the preferences c1 � c2,
c2 � c3, and c3 � c1—transitivity is not satisfied. It follows
that faults which switch the ranking of two non-adjacent
candidates can always be detected. So, when considering
bit flips that may change the outcome without being de-
tected, we can restrict our attention to faults that manifest
themselves as elementary transpositions.

The pairwise representation is not the most compact pos-
sible. Consider the following elementary representation: each
voter specifies the location of each candidate in their rank-
ing; this requires m log m bits. In the pairwise representa-

tion, each voter requires
(

m
2

)

= m(m−1)
2

bits to express its
preferences.

On the other hand, the pairwise representation allows us
to test properties in constant time using bitmasks. For in-
stance, say we want to test if a voter has ranked candidate c1

highest. We construct the ordered pairs in a way that can-
didate c1 is always first; we then examine the conjunction
(a bitwise AND) of all pairs in which c1 participates—c1

is ranked first iff this conjunction is 1. This can be done
in constant time, while in the elementary representation,
one would have to examine all log m bits that represent c1’s
ranking in order to answer this question. Similarly, given
that one knows (from polls, for example) which candidates
are placed in the first k places, one can test in constant time
whether a candidate is ranked in place k+1, using a bitmask
on the pairwise representation.

3.2 The Definition of Robustness
So far, we have described our model of faults, and have

argued that it has practical justification. For essentially any
voting rule, there exist instances where even one adjacent
switch changes the outcome of the election.

Theorem 1. Let F : LV → C be a voting rule such that
|Ran(F )| > 1. Then there exists a preference profile �V and
a profile �V

1 which is obtained from �V by an elementary
transposition, such that F (�V ) 6= F (�V

1 ).

Proof. Assume that for every preference profile �V and
any elementary transposition, the outcome does not change.
Let �V and �V

1 be any two preference profiles; we will derive
a contradiction to the assumption on F ’s range by showing
that they necessarily have the same value under F .

Indeed, a preference profile is essentially a series of per-
mutations on C (one for each voter); a basic result regard-
ing permutation groups implies that �V

1 can be obtained
from �V by iterative elementary transpositions [4]. In other
words, there are �V

i1 , . . . ,�V
it

such that �V
i1=�V , �V

it
=�V

1 ,

and each �V
ij+1

can be obtained from �V
ij

by an elemen-
tary transposition, for j = 1, . . . , t − 1. By our assump-
tion, all �V

ij
have the same value under F , and in particular

F (�V ) = F (�V
1 )—a contradiction.

Given a voting rule, we wish to consider the implications
of faults in the worst-case, i.e., in the worst instance. The-
orem 1 motivates a probabilistic analysis: we will calculate
the probability of the faults affecting the outcome in the
worst-case.

Given a preference profile �V , we define the probabil-
ity distribution Dk(�V ) over preference profiles as follows:
the probability of the preference profile �V

1 is the proba-
bility of obtaining �V

1 from �V by k elementary transposi-
tions chosen independently and randomly. In other words,
in order to draw a profile �V

1 according to this distribu-
tion, we independently choose k values {l1, l2, . . . , lk} and
k values {i1, . . . , ik}, where each lj is chosen according to
the uniform distribution over {2, . . . , m}, and each ij is cho-
sen according to the uniform distribution over {1, . . . , n}.
Now, starting with �V , we perform k successive elementary
transpositions—the j’th transposition promotes candidate
πl(�

i) and demotes πl−1(�
i).

Definition 2. The k-robustness of a preference profile
�V is:

ρ(F,�V ) = Pr
�V

1
∼Dk(�V )

[F (�V ) = F (�V
1 )].

The k-robustness of a profile reflects its immunity to k
independent faults. As our analysis is worst-case, in order to
define the robustness of a voting rule we take the minimum
over all instances:

Definition 3. The k-robustness of a voting rule F with
n voters and m candidates is:

ρn,m
k (F ) = min

�V ∈L(C)n
ρ(F,�V ).

Example 2. Consider the Plurality rule with 3 voters
and 2 candidates, and consider the preference profile �V

given by:
�1 �2 �3

c1 c1 c2

c2 c2 c1

The outcome of this election is c1. There are three possible
profiles resulting from an elementary transposition:
�1

1 �2
1 �3

1

c2 c1 c2

c1 c2 c1

�1
2 �2

2 �3
2

c1 c2 c2

c2 c1 c1

�1
3 �2

3 �3
3

c1 c1 c1

c2 c2 c2

In two of these profiles, the outcome is c2. Therefore,

ρ(F,�V ) =
1

3
.

Repeating the same calculation for all preference profiles
�V ∈ L(C)n and taking the minimum, it is possible to con-
clude that ρ3,2

1 (Plurality) = 1
3
.



3.3 Boundingk-robustness with 1-robustness
The definition of Dk(�V ) as sampling k independent el-

ementary transpositions allows a very strong link between
1-robustness and k-robustness: a lower bound on the former
entails a lower bound on the latter.

Proposition 2. ρn,m
k (F ) ≥ (ρn,m

1 (F ))k.

Proof. Consider the preference profile �V
1 , and the pref-

erence profile �V
2 obtained by k independent and random el-

ementary transpositions—we claim that the probability that
F (�V

1 ) = F (�V
2 ) is at least (ρn,m

1 )k.
Indeed, let �V

i1 , . . . ,�V
ik+1

be the intermediate preference
profiles obtained by the elementary transpositions, i.e., we
have that �V

i1=�V
1 , �V

ik+1
=�V

2 , and each �V
ij+1

is obtained

from �V
ij

by an independently and randomly chosen elemen-
tary transposition, for j = 1, . . . , k. By the definition of 1-
robustness, we have that for every preference profile �V , the
probability that one randomly chosen elementary transposi-
tion does not change the outcome of the election under F is
at least ρn,m

1 (F ). Therefore, we have that for j = 1, . . . , k,

Pr[F (�V
ij

) = F (�V
ij+1

) | �V
ij

] ≥ ρn,m
1 (F ).

By analyzing the conditional probabilities we have that:

Pr
[

F (�V
1 ) = F (�V

2 )
]

= Pr
[

∀j = 1, . . . , k, F (�V
ij

) = F (�V
ij+1

)
]

=

k
∏

j=1

Pr
[

F (�V
ij

) = F (�V
ij+1

) | �V
ij

]

≥ (ρn,m
1 )k .

The above proposition is very useful when the number of
errors is constant. Otherwise, the bound on k-robustness
which the proposition yields may not be very good, even if
the voting rule seems 1-robust. Nevertheless, we have the
following immediate corollary regarding k = m:

Corollary 3. Let F be a voting rule such that

ρn,m
1 (F ) ≥ 1 − x/m

for some constant x, and let ε > 0. Then

ρn,m
m (F ) ≥

1

ex
− ε

for a large enough m.

4. RESULTS ON 1-ROBUSTNESS
Proposition 2 dictates the direction of the bulk of our re-

sults: we are satisfied with calculating the 1-robustness of
voting rules. If we achieve a high lower bound, this also im-
plies high k-robustness (at least for a constant k). However,
in case 1-robustness is low, there is no point in considering
the rule’s k-robustness.

Remark 1. Given the number of voters and candidates,
and a preference profile �V , there are exactly n(m−1) pos-
sible elementary transpositions. Therefore:

ρn,m
1 (F ) =

|{�V
1 ∈ L(C)n : �V

 �V
1 ∧ F (�V ) = F (�V

1 )}|

n(m − 1)
.

Before we deal with specific voting rules, we note that we
cannot expect a rule’s 1-robustness to be exactly 1.

Proposition 4. Let F : L(C)n → C be a voting rule
such that |Ran(F )| > 1. Then ρn,m

1 (F ) < 1.

Proof. Follows directly from Theorem 1 and the defini-
tion of 1-robustness.

4.1 Scoring rules
In this subsection we fully characterize the robustness of

scoring rules as a function of their parameters. Our results
imply that some common scoring rules are very robust, while
others are extremely susceptible to faults.

Given a scoring rule F with parameters ~α, let AF = |{l ∈
{2, . . . , m} : αl−1 > αl}|; denote |AF | = aF .

Proposition 5. Let n and m be the number of voters
and candidates, let F be a scoring rule. Then ρn,m

1 (F ) ≥
m−1−aF

m−1
.

Proof. For any preference profile �V , the outcome can
only be affected by elementary transpositions that promote
πl(�

i), for some l ∈ AF and i, and demote πl−1(�
i). For

each voter vi, there are exactly aF such values of l, out of
m − 1 possible elementary switches. Therefore, the num-
ber of elementary transpositions that are guaranteed not to
change the outcome is at least n(m − 1) − aF n, and the

1-robustness of F is at least n(m−1)−aF n
n(m−1)

= m−1−aF

m−1
.

We match this lower bound with a fairly tight upper bound.
In this example, we require that the number of candidates
evenly divide the number of voters. However, such a special
case is sufficient, as it implies that the lower bound cannot
be improved in general.

Proposition 6. Let n and m be the number of voters
and candidates such that m evenly divides n, and let F be a
scoring rule. Then ρn,m

1 (F ) ≤ m−aF

m
.

Proof. By the assumption on n and m, it is possible to
group the voters in m subsets of size d, T1, . . . , Tm. Consider
the preference profile �V where the subsets of voters vote
cyclically:
�T1 �T2 . . �Tm

c1 c2 . . cm

c2 c3 . . c1

. . . . .

. . . . .
cm−1 cm . . cm−2

cm c1 . . cm−1

Notice that under any scoring rule, all candidates have the
same score; without loss of generality, candidate c1 is the
winner of this election. How many profiles obtained by a
single transposition necessarily have a different outcome?
An elementary transposition between places l − 1 and l,
where l ∈ AF , strictly increases a candidate’s score, and
changes the outcome—given that the promoted candidate is
not candidate 1. For every l ∈ AF , exactly d voters rank
candidate c1 in place l. Hence, there are daF voters with
aF − 1 possible elementary transpositions that change the
outcome of the election (the voters that rank candidate c1

in place l ∈ AF ), and n − daF voters with aF such trans-
positions. It follows that the probability that the outcome



changes, under the uniform distribution over instances such
that �V

 �V
1 , is at least (substituting n = md):

daF (aF − 1) + (dm − daF )aF

dm(m − 1)
=

aF

m
.

In other words, the probability that the outcome does not
change is at most m−aF

m
. As the robustness is defined to

be the minimum over all instances, we obtain the desired
result.

Corollary 7. The Veto and Plurality rules, where aF =
1, are extremely robust. On the other hand, the Borda rule,
for which aF = m − 1, is very susceptible to failures.

4.2 Copeland
We give an upper bound that relies on an example where

the number of voters is even. However, since the number
of candidates is not restricted, this example implies that it
is not possible to establish a good general lower bound. In
addition, as the upper bound is very small, an exact lower
bound is of no consequence.

Proposition 8. Let m be the number of candidates, and
let the number of voters n be even. Then ρn,m

1 (Copeland) ≤
1/(m − 1).

Proof. Consider the preference profile where for i =
1, 3, 5, . . . , n − 1, voters vi and vi+1 vote as follows:
�i �i+1

c1 cm

c2 cm−1

. .

. .
cm c1

Under the above profile, for every two candidates c and c′,
exactly n/2 voters prefer c over c′. Thus, the Copeland
score of all candidates is 0, and the winner is some candi-
date c ∈ C. Any elementary transposition that promotes
candidate c′ 6= c would raise the score of c′ to 1, making
c′ the new winner. This implies that for every voter, there
are at least m−2 elementary transpositions that change the
outcome of the election, and thus the probability that the

outcome does not change is at most 1− n(m−2)
n(m−1)

= 1
m−1

.

4.3 Maximin

Proposition 9. Let n and m be the number of voters
and candidates such that m evenly divides n. Then
ρn,m
1 (Maximin) ≤ 1/(m − 1).

Proof. Our adversarial preference profile is identical to
the one in the proof of Proposition 6. However, we are going
to construct the profile algorithmically, as this is going to
aid us in establishing some of the profile’s properties. We
iteratively expand the list of candidates; initially, it contains
only c1, so each voter’s linear preferences are in fact the
empty set. In the second stage, we add to the slate the
candidate c2; for 1

m
n voters, candidate c2 is ranked at the

top (above c1), but the other m−1
m

n voters rank c2 below

c1. Now, c3 is added as follows: 1
m

n voters that ranked
c2 last (i.e., previously voted c1 � c2), now rank c3 first
(i.e., vote c3 � c1 � c2); the other m−1

m
n voters rank c3

immediately below c2 (e.g., if the ranking was c2 � c1, it is
now c2 � c3 � c1). In general, when adding candidate cj ,

1
m

n voters that ranked cj−1 last now rank cj first,3 and the
rest rank cj just below cj−1.

For example, for 8 voters and 4 candidates, initially we
have: (in each stage j, the 1

m
n = 2 grayed voters are the

ones that rank candidate cj first instead of just under cj−1)
�1 �2 �3 �4 �5 �6 �7 �8

c1 c1 c1 c1 c1 c1 c1 c1

In the second stage we have:
�1 �2 �3 �4 �5 �6 �7 �8

c2 c2 c1 c1 c1 c1 c1 c1

c1 c1 c2 c2 c2 c2 c2 c2

In the third stage we have:
�1 �2 �3 �4 �5 �6 �7 �8

c2 c2 c3 c3 c1 c1 c1 c1

c3 c3 c1 c1 c2 c2 c2 c2

c1 c1 c2 c2 c3 c3 c3 c3

Ultimately, the preference profile that the algorithm con-
structs is:

�1 �2 �3 �4 �5 �6 �7 �8

c2 c2 c3 c3 c4 c4 c1 c1

c3 c3 c4 c4 c1 c1 c2 c2

c4 c4 c1 c1 c2 c2 c3 c3

c1 c1 c2 c2 c3 c3 c4 c4

Lemma 1. In stage j (after candidate cj is added to the
slate), it holds that for every i < j, the number of voters

that prefer ci to cj is m−(j−i)
m

n.

Proof. By induction on j. The basis of the induction
(j = 1) is trivial. Now, assume the claim holds for j − 1;
we shall prove it for j. Let i < j; if i = j − 1, notice that
cj is ranked under ci, except in 1

m
n cases. In other words,

the number of voters that prefer ci = cj−1 to cj is m−1
m

n, as
desired.

It remains to deal with the case where i < j − 1. Recall
that cj is always ranked directly under cj−1, except for 1

m
n

voters that rank cj first. As for the rest of the voters, ci is
ranked above cj iff ci was ranked above cj−1 in stage j − 1.

By the induction assumption, we had m−((j−1)−i)
m

n ranking
ci above cj−1 in stage j − 1, and thus the number of voters
ranking ci above cj is:

m − ((j − 1) − i)

m
n −

1

m
n =

m − (j − i)

m
n,

as desired.

Lemma 1 implies that candidate cj ’s unique worst pair-
wise election is against cj−1 for j > 1: the number of voters
that prefer cj to cj−1 is exactly 1

m
n; notice that this is also

true for c1 versus cm: only 1
m

n rank c1 above cm. In addi-

tion, for j > 1, clearly cj is ranked just under cj−1 by m−1
m

n
voters—but this, too, is also true for c1 versus cm; indeed,
c1 is ranked just under cm by all m−1

m
n voters that do not

rank c1 first.
So, the candidates are all tied with respect to their max-

imin scores, and each candidate cj is ranked just below its
“worst pairwise” candidate by all voters that do not rank
cj first. Therefore, any elementary transposition that pro-
motes a candidate that is not the current winner of the elec-
tion must change the outcome of the election. As before,

3It is easy to verify that there always are 1
m

n such voters.



we have that the probability of the outcome changing as a
result of a single transposition, under our adversarial pref-
erence profile, is at least m−2

m−1
, and thus robustness of this

preference profile is at most 1
m−1

.

4.4 Bucklin

Proposition 10. ρn,m
1 (Bucklin) ≥ m−2

m−1
for any values

of the number of voters n and the number of candidates m.

Proof. Consider a preference profile �V , and assume
that the winner cj of the election satisfies:

l0 = min
l

B(j, l) > n/2.

We argue that any elementary transposition that switches
the candidates in places l and l− 1, for l 6= l0, l0 +1, cannot
change the outcome of the election. Indeed, we consider two
cases:

Case 1: l > l0 + 1. In this case, if some candidate ck 6=
cj is promoted, the switch increases B(k, l − 1)—but this
is irrelevant to the outcome of the election, since B(k, l1)
remains unchanged for l1 ≤ l0.

Case 2: l < l0. If candidate ck is promoted, this might
increase B(k, l0−2). However, the value of B(k, l0−2) after
the switch took place is bounded from above by the value of
B(k, l0 − 1) before the switch. We know that B(k, l0 − 1) ≤
n/2 before the switch—so this transposition is not going to
affect the value of mink(B(k, l) > n/2).

If so, it remains to consider the case where l = l0 or
l = l0 + 1. When l = l0, promoting πl0(�

i) may affect the
outcome only if πl0(�

i) 6= cj , where cj is the winner of the
election. However, when l = l0+1, promoting πl0+1(�

i) and
demoting πl0(�

i) might affect the outcome only if πl0(�
i) =

cj . Otherwise, if πl0+1(�
i) = ck 6= cj , then B(k, l0) might

be affected, but since cj already has a majority of voters
ranking it in the top l0 places, the outcome of the election
is indifferent to this perturbation.

As these two last subcases are mutually exclusive, it fol-
lows that for every voter there is at most one transposi-
tion that may affect the outcome of the election. Thus
ρn,m
1 (Bucklin) ≥ m−2

m−1
.

4.5 Plurality with Runoff
The rules we have discussed in the previous subsections all

have in common some concept of score. Since Plurality with
Runoff is a bit different, we require an additional assump-
tion regarding tie-breaking. Consider a situation where, say,
cj1 and cj2 survive the first round, and exactly half the vot-
ers prefer cj1 to cj2 , but cj1 is the winner of the election.
We assume that if a fault makes cj1 and cj3 survive the first
round, and again these two candidates are tied in the sec-
ond round, then cj1 loses the election. This assumption is
consistent with our worst-case analysis throughout.

Proposition 11. For all values of n and m,

ρn,m
1 (Plurality with Runoff) ≥

m − 5/2

m − 1
.

Proof. Consider some preference profile �V , and assume
w.l.o.g. that candidates c1 and c2 survive the first round, and
c1 wins the election. Only two types of elementary transpo-
sition can potentially affect the outcome of the election. The

first is promoting the candidate π2(�
i) for some i, i.e., mak-

ing this candidate voter vi’s favorite—this might affect the
list of candidates that are eliminated in the first round. A
second transposition which might have an effect is one that
promotes candidate c2 and demotes c1—this might change
the outcome of the second round, but only if exactly half
the voters prefer c1 to c2 in �V (it cannot be the case that
more voters prefer c2, as then c2 would have prevailed in the
second round). To conclude, at most n/2 voters have two
transpositions that may affect the outcome, and at least n/2
voters have only one. We have that

ρ(F,�V ) ≥
n(m − 1) − (n/2 · 1 + n/2 · 2)

n(m − 1)
=

m − 5/2

m − 1
.

Proposition 12.

ρ2m,m
1 (Plurality with Runoff) ≤

m − 5/2

m − 1
+

5/2

m(m − 1)
.

Proof. Consider a preference profile �V , where the vot-
ers are divided into two subsets of size m, each voting cycli-
cally, in a way that voter vi’s preferences in one subset are
mirrored by voter vm+i’s preferences in the other subset (the
grayed voters are the second subset of size m):

�1 �2 . . �m �m+1 �m+2 . . �2m

c1 c2 . . cm cm c1 . . cm−1

c2 c3 . . c1 cm−1 cm . . cm−2

. . . . . . . . . .

. . . . . . . . . .
cm−1 cm . . cm−2 c2 c3 . . c1

cm c1 . . cm−1 c1 c2 . . cm

Notice that in the first round, every candidate is ranked
first by exactly two voters. In addition, for every two can-
didates c, c′ ∈ C, exactly n/2 voters prefer c to c′. Assume
that candidates c1 and c2 survive the first round, and can-
didate c1 wins the election. Now, for any voter vi such
that πi

2 6= c1, c2, promoting πi
2 affects the list of candidates

surviving the first round, and ultimately (by our new as-
sumption) changes the outcome of the election; there are
2m − 4 = n − 4 such voters. In addition, voters v1 and
v3, . . . , vm rank c2 directly below c1, so promoting c2 and de-
moting c1 changes the outcome of the second round. There-
fore, the total number of elementary transpositions that in-
fluence the outcome of the election is (n − 4) + (n/2 − 1).
We have that

ρ(Plurality with Runoff,�V )

≤
n(m − 1) − [(n − 4) + (n/2 − 1)]

n(m − 1)

=
m − 5/2

m − 1
+

5

n(m − 1)

=
m − 5/2

m − 1
+

5/2

m(m − 1)
.

5. DISCUSSION
We have defined the k-robustness of a voting rule as the

worst-case probability that k independent switches in the
preferences of voters change the outcome of the election. We
have shown that high 1-robustness implies high k-robustness,



Function Lower Bound Upper Bound

Scoring m−1−aF

m−1
m−aF

m

Copeland 0 1
m−1

Maximin 0 1
m−1

Bucklin m−2
m−1

1

Plurality w. Runoff m−5/2
m−1

m−5/2
m−1

+ 5/2
m(m−1)

Table 1: Some upper and lower bounds on the 1-

robustness of several prominent voting rules.

at least for a constant k. Inversely, low 1-robustness clearly
suggests that the rule is not robust in general. Accordingly,
we have presented bounds on the 1-robustness of different
voting rules; these bounds are summarized in Table 1.

We consider our results to be a useful tool for designers of
multiagent systems. When dealing with noisy environments,
successful aggregation of preferences can only be expected
when a robust voting rule is applied. In particular, among
the prominent voting rules, our results imply that Plural-
ity, Plurality with Runoff, Veto, and Bucklin are robust to
faults, whereas Borda, Copeland, and Maximin are more
susceptible to faults.

The model of errors we have introduced is a theoretical
one, but we have also shown it is grounded in a reason-
able representation of preferences. Nevertheless, future work
should include an investigation of different error models.

In addition, our analysis was worst-case—an approach
which leads to the conclusion that when the number of er-
rors is large, voting rules are bound to fail. It would be
interesting to complement our results with an asymptotic
average-case analysis.
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