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ABSTRACT
A novel control mechanism was recently introduced based on Ex-
tended Markov Tracking (EMT) [9, 10]. In this paper, we present a
study of its response to multiple interacting control goals. We show
a simple extension that can be integrated into EMT-based control,
and which provides it with the ability to handle several behavioral
targets. Experimental support for the validity of this extension is
provided. We also describe an experiment with a simulated robot,
where EMT-based controllers interact and interfere indirectly via
the environment. Experiments support the resilience of multia-
gent EMT-based team control to potential conflicts that may appear
within a team.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence ]: Problem Solving, Control Methods,
and Search—Control Theory;
I.2.9 [Artificial Intelligence ]: Robotics;
I.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence—
Intelligent Agents, Multiagent Systems

General Terms
Algorithms, Performance

Keywords
Control, Extended Markov Tracking, Markovian Environment, Au-
tonomous robots and robot teams

1. INTRODUCTION
Imagine a car moving quickly along a highway; a bend in the

road approaches, and the car’s autopilot considers possible actions.
It faces two interacting and potentially interfering considerations:
first, the car has to turn fast enough to fit the road’s curvature, or
it will run off the road; second, a car has to turn slowly enough to
maintain its grip on the road, or it will spin out of control. Fur-
thermore, not only its radial speed, but also its linear speed affects
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the car’s successful negotiation of the bend in the road, and the
autopilot has to consider (or at least respond to) the environment-
enforced interaction between these two motion parameters. That is,
the autopilot faces both explicit and implicit multi-objective control
problems.

These can be solved using a variety of methods. For exam-
ple, proper control strategy can be achieved through learning (as,
for instance, in [5]). Depending on the controller representation,
and if some basic control capabilities are available, behavior-based
(e.g., [1, 2]) or expert-based (e.g., [4, 12, 8]) approaches can also
be used to achieve the required balance. Both, however, have their
limitations. For example, the expert-based approach provides a flu-
ent merger of basic advice from multiple sources, but concerns it-
self only with this merger and does not dictate how the basic advice
is produced. The behavior-based approach, on the other hand, ex-
plicitly states different basic behaviors and their interrelationships
with respect to action selection, and is capable of complex behav-
ior composition. Unfortunately, each basic behavior is usually ob-
tained by specific controller design and specialization. This results
in explicit and simple controllers, but sacrifices the controller’s uni-
versality and reuse, in case another behavior has to be included.

In this paper we consider the multi-criteria problem when ba-
sic control is performed using a control scheme based on Extended
Markov Tracking (EMT) [9, 10]. EMT-based control provides a
means to achieve a complex behavioral goal. We use a scaled addi-
tive mechanism directly integrated into EMT-based control to com-
bine rationales for action with respect to multiple behavioral tar-
gets. This creates a fluent merger out of a well-defined underlying
action choice mechanism, and we carry out experiments to test this
new multi-target EMT control in an explicit multi-objective control
scenario.

We then applied EMT-based control to implicit multi-objective
control. We created a simulated robot setting using the Player/Stage
simulator [6], in which an EMT-controlled robot had to follow a
target. In this experiment, linear and radial speeds of the robot
were controlled by two independent EMT-based controllers, which
forced them to solve an implicit multi-objective problem, since the
robot’s motion correlates the two speeds, and thus the two con-
trollers. In addition, we complicated the setting by providing con-
trollers with inexact environment models. EMT-based control demon-
strated strong resistance to multiple sources of system noise, and
successfully handled the scenario.

The rest of the paper is organized as follows. Section 2 briefly
describes the formal setting of Extended Markov tracking and a
control scheme based on it, with Subsection 2.1 describing our ex-
tension of the additive combination mechanism to EMT-based con-
trol. We proceed in Section 3 to the experiments and experimental
results of a simple multi-target problem. Section 4 describes our



experiment with the simulated robot scenario of target following.
We discuss in Section 5 our results and future work.

2. EXTENDED MARKOV TRACKING AND
CONTROL

EMT-based control [9, 10] is a recently introduced framework
for control of a stochastic environment. It relies on the fact that the
system environment has a Markovian model of the form
< S, s0, A, T, O, Ω >, where

• S is the set of all possible environment states;

• s0 is the initial state of the environment (which can also be
viewed as a distribution overS);

• A is the set of all possible actions applicable in the environ-
ment;

• T is the environment’s probabilistic transition function: a
mappingT : S × A → Π(S). That is,T (s′|a, s) is the
probability that the environment will move from states to
states′ under actiona;

• O is the set of all possible observations. This is what the
sensor input would look like for an outside observer;

• Ω is the observation probability function: a mapping
Ω : S ×A× S → Π(O). That is,Ω(o|s′, a, s) is the proba-
bility that one will observeo given that the environment has
moved from states to states′ under actiona.

Extended Markov Tracking (or EMT for short) then uses this en-
vironment model to follow the system development, and maintains
two estimators. First is the regular estimator for this type of en-
vironment — the state estimator, or state beliefs, expressed by a
distribution vector over the system statespt ∈ Π(S). The second
is the system dynamics estimatorPD : S → Π(S), which can be
seen as a stochastic function that “explains away” the changes in
the system state beliefs seen so far.

To keep track of the actual system development, EMT dictates
that its estimators be updated as follows:

• For state beliefs a Bayesian update is used. If at timet an
action a ∈ A was taken and then an observationo ∈ O

received, the new state beliefspt+1 would be expressed by
the formula:

pt+1(s) ∝ Ω(o|s, a)
X

s′

T (s|a, s
′)pt(s

′)

• For the system dynamics estimate EMT uses the Kullback-
Leibler distance [3]

DKL(p‖q) =
X

x

p(x) log
p(x)

q(x)

to perform a conservative update based on the following con-
vex optimization problem:

PDt+1(·|s) = arg min
Q(·|s)

〈DKL(Q(·|s)‖PDt(·|s))〉pt(s)

s.t.

∀s′ pt+1(s
′) =

P

s

Q(s′|s)pt(s)

∀s
P

s′
Q(s′|s) = 1

That is, an explanation is sought for the change in system
state beliefs frompt to pt+1, similar (as much as possible) to

the old dynamics estimatePDt. This update is denoted for
short asPDt+1 = H(pt+1, pt, PDt).

Despite the fact that the optimization problem contained within
the dynamics estimate update looks difficult, it has rather attractive
properties. First, it is a convex optimization problem over a convex
domain, which means that it can be solved efficiently. Second, a
numerical iterative solution exists, tailored specifically for this type
of optimization problem — iterative proportional fitting [7].

EMT-based control’s approach to estimation has been embedded
within a simple greedy control algorithm that is summarized below.
The algorithm employs a reference system dynamics
r : S → Π(S), termed theideal system dynamicsor tactical tar-
get; the control algorithm greedily selects actions so as to modify
the estimated system dynamics to concur with the reference. This
approach is similar to closed-loop differential control [11].

0. Initialize estimators:

• the system state estimatorp0(s) = s0 ∈ Π(S),

• system dynamics estimator

PD0(s̄|s) = prior(s̄|s)

Set time tot = 0.

1. Select actiona∗ to apply using the following computation:

• For each actiona ∈ A predict the future state distribu-
tion p̄a

t+1 = Ta ∗ pt;

• For each action, compute

Da = H(p̄a
t+1, pt, PDt)

• Selecta∗ = arg min
a

〈DKL (Da‖r)〉pt

2. Apply the selected actiona∗ and
receive an observationo ∈ O.

3. Computept+1 due to the Bayesian update.

4. ComputePDt+1 = H(pt+1, pt, PDt).

5. Sett := t + 1, goto 1.

2.1 Multi-Target EMT-based Control
At times, there may be several behavioral preferences. For ex-

ample, in the case of multi-robot movement in formation, two pref-
erences on motion direction exist — one dictated by keeping in
formation, the other by obstacle collision avoidance. Successful
formation navigation requires a robot to adhere to, and balance,
both of these behaviors. For EMT-based control, this would mean
facing several tactical targets{rk}

K
k=1, and the question becomes

how to merge and balance them. A balancing mechanism can be
applied to resolve this issue.

Note that EMT-based control, while selecting an action, creates
a preference vector over the set of actions based on their predicted
performance with respect to a given target. If these preference vec-
tors are normalized, they can be combined into a single unified pref-
erence. We thus replace stage 1 of EMT-based control (the action
selection stage) by the following:

1. Given a set of tactical targets{rk}
K
k=1, and their correspond-

ing weightsw(k), select actiona∗ based on the following
computations:

• For each actiona ∈ A predict the future state distribu-
tion p̄a

t+1 = Ta ∗ pt;



• For each action, compute

Da = H(p̄a
t+1, pt, PDt)

• For eacha ∈ A andrk tactical target, denote

V (a, k) = 〈DKL (Da‖rk)〉
pt

.

Let Vk(a) = 1
Zk

V (a, k), whereZk =
P

a∈A

V (a, k) is

a normalization factor.

• Selecta∗ = arg min
a

Pk

k=1 w(k)Vk(a)

The weight vector~w = (w1, ..., wK) allows the additional “tun-
ing of importance” among tactical targets without the need to re-
design the targets themselves. This balancing method is also seam-
lessly integrated into the EMT-based control flow of operation, and
is compatible with its multi-agent extension, as explored in [10].
This compatibility makes possible the following experiment.

3. MULTIPLE TARGETS IN A SCALE BAL-
ANCING EXPERIMENT

Originally, EMT-based multi-agent control was tested for its team
coordination capabilities over a small balancing problem involving
two agents. In this problem, two agents of equal mass are standing
on a long bar resting with its ends on two equal springs (Figure 1).

At each time step of the system, each agent has the choice of
three actions: moving left one step, moving right one step, or stay-
ing put. Every movement of an agent has a non-zero probability of
failing, and the probability is biased by the inclination of the bar.
That is, an uphill motion will have less probability of succeeding
than if the bar were level, and downhill motion will have greater
probability of succeeding than if the bar were level. Notice that bar
inclination depends on the current agent positions on the bar, thus
creating a correlation between the effects of the agent actions, and
providing for implicit information transfer between the agents.
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Figure 1: Springed bar setting

Formally, the system state is described by the positions of the two
agents on the bar,S = [1 : dmax]2, wheredmax is the length of
the bar in “steps”, and the initial state is an unbalanced one, so that
s0 = (1, dmax

2
+1). The action sets areAi = {left, stay, right},

and the transition probability is built according to the physics of
motion as previously described.

In this paper, we consider only one observation scenario among
the original two: both agents receive independent noisy observa-
tions about their joint position. That is,Oi = S = {all positions
of the two agents}, Ω1 = Ω2 and creates uniform noise over the
immediate neighborhood of the real joint position of agents.

However, unlike the original paper [10], we have modified ac-
tion selection to accommodate multiple targets, as described in Sec-
tion 2.1. We then set the agents two conflicting targets. One is to

balance the springed bar, while the other is to maintain a preset dis-
tance between themselves. Note that these targets are not require-
ments of the system state, but of the laws governing its behavior.
For instance, distance maintenance is expressed by a dynamics ma-
trix, that shifts any given state into one that possesses the correct
distance property, and EMT-based control sets out to achieve this
kind of law within the system.

Although the two behavioral targets we have chosen are compat-
ible, that is, there exists a position of agents on the bar that satisfies
both, the targets are indeed conflicting and interfering. For exam-
ple, assume that we want agents to be at a distance of4 from each
other. Denote by0 the coordinate line at the center of the bar, and
assume that the system’s noisy response forced the agents into po-
sitions−2 and+3. In this case, the balancing target can encourage
the motion of the left agent from−2 to −3 thus balancing the bar,
but violating the distance constraint. On the other hand, the dis-
tancing target could be satisfied by the same agent moving right to
−1, violating bar balancing even further.

In our experiment sets, we tested both the reaction of EMT-
control to multiple targets, and to their balancing by weight vector
~w. The bar length was set to 14, so that the leftmost position on
the bar would have coordinate 1 and the rightmost position would
have coordinate 15, and the agents were also required by the second
target to keep the distance between them at 4 steps.

Despite the constant conflict between the two targets, multiagent
EMT-based control equipped with our multi-target action selection
approach managed to maintain both targets quite closely. Although
relentless system noise caused fluctuations, as seen from an ex-
ample run at Figure 2, these fluctuations occurred around the only
common position that satisfies the demands of both targets. In fact,
the mean values of distance between agents and the position of the
center of mass almost perfectly matches the ideal, as can be seen
from the value distributions in Figure 3, which in our experiments
would be 4 and 8 respectively.
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Figure 2: Example Run of Dual-Target Springed-Bar Problem

As was mentioned above, our experiments included different bal-
ancing vectors~w, e.g., the distribution in Figure 3 was obtained
from the weight vector~w = (0.2, 0.8), that is, setting the bal-
ancing target at0.2 and the distancing target at0.8. Changing the
weights vector to be~w = (0.4, 0.6) exposes an interesting property
of multi-target EMT-based control. Since the targets were weakly
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Figure 3: (Fitted normal) Distribution of distance and center
of mass in dual-target springed-bar problem with (0.2, 0.8) bal-
ancing

compatible, the algorithm maintained both targets with the new bal-
ancing vector, as it did with the old one. The difference occurred
when the control algorithm had to correct system behavior in re-
sponse to noise — the algorithm was more ready to briefly deviate
from the distancing target than the balancing one, as shown by the
distributions in Figure 4.
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Figure 4: (Fitted normal) Distribution of distance and center
of mass in dual-target springed-bar problem with (0.4, 0.6) bal-
ancing

However, as the weight of the the balancing target increased, not
only the variance of the distance between the agents changed, but
also the mean. EMT-based control began to lean strongly towards
the balancing target, almost abandoning the distancing target. This
can be seen clearly from Figure 5, which depicts changes of the
distance and center of mass distributions mean, as a function of
weight of the target.

Note that the balancing target had a very strong presence at the
weight 0.4, as expressed by the mean and variance of the center
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Figure 5: Means of distributions with respect to the weight of
the balancing target. Error bars depict variance.

of mass distribution. On the other hand, the distancing target at
the weight of0.4 had much less attention from EMT-based control.
This inequality in attention to targets with respect to symmetric
weight vectors was at first surprising, but can be explained. It has
to do with the strength of preference as expressed by the two targets
used.

While constructing the targets for the EMT-based controller, a
simple inverse exponential scheme was selected to produce the pref-
erences. The balancing target was constructed to have inverse ex-
ponential preference over the center of mass deviation from an
ideal, while the distancing target was composed based on deviation
from the distance ideal. However, simple parameter selection for
this scheme produced two targets with differentstrengthof prefer-
ence. While the balancing target included preferential differences
of dozens of orders of magnitude, the distancing target featured
preference differences of only 2–4 orders of magnitude.

As a result, any change in system dynamics had much higher
impact with respect to the balancing behavioral preference, which
thus had a stronger effect on proper system behavior. The distance
tactical target was very mild in comparison, and thus had less influ-
ence on action choices.

4. SIMULATED OBJECT TRACKING EX-
PERIMENTS

The experiments above with multiple targets were the first step
in testing EMT-based controllers for inter-controller interference.
It is possible and even necessary to consider situations where sep-
arate controllers interact via the environment, interfering with one
another. This situation often occurs naturally in robotics, and we
chose to test EMT-based control in that domain.

4.1 Robot Motion with EMT Control
Computerized algorithmic control of a robot, unlike low-level

reactive control, requires a discretization of sensory information
received by the robot, and later the carrying out, by the robot’s ac-
tuators, of a discrete action description. In effect, the actual robot
serves as an interface between the real world and a discrete con-
troller, transforming sensory information to fit the internal environ-
ment model used to make decisions.



Two adjustments are required, in order to apply EMT control to
robotic motion.

If the internal model is chosen to be a Markovian model,
< S, A, T, O, Ω, s0 >, then sensory discretization requires map-
ping real world sensations onto the observation setO. This makes
the set of statesS abstract — it is only indirectly connected to the
real world, and alls ∈ S gain meaning through the observation
probability functionΩ.

Abstraction ofS has several consequences. First, a control al-
gorithm based on a Markovian model would usually require the
transition functionT : S × A → Π(S), also called the “action
model,” to be strongly coherent with the environmental dynamics
of the system state’smeanings, determined byO andΩ. However,
the EMT Controller manages to achieve reasonable, though not op-
timal, results even with an inaccurate action model (Section 4.2).

Second, if EMT Control is to be applied, its strategic layer has
to create a tactical target by “reverse engineering” — a high-level
target is described by limitations onobservations, and the strategic
layer usesΩ to convert it into system state dynamics,r : S →
Π(S).

Other than the two adjustments above, the basic EMT Controller
remains unchanged for robot control.

4.2 Target-Following Experiment
We designed a straightforward simulation experiment, within the

Player/Stage simulation environment [6], to see whether EMT Con-
trol would be effective for robot control, and whether it would be
able to cope with implicit controller interference and an inaccurate
environment model.

In the experiment, two independent EMT Controllers,EMTC1

andEMTC2, were applied to linear and rotation speed modulation
of a single (simulated) Pioneer-2X robot, with the task of follow-
ing another robot’s motion. The sensory information was received
through ablob finder— an on-robot camera with basic image anal-
ysis that makes possible the detection of color blobs within the pic-
ture. Camera information was approximately mapped onto the ob-
servation sets: color blob relative area and centering within the pic-
ture. Thus, the observation distributions provided state meanings
of linear distance forEMTC1, and angular distance forEMTC2.

To follow (but not capture) an object, a robot must solve two
balancing problems: stay within a certain distance from the object,
and stay directed straight at it.

A well-studied formal balancing problem exists that can easily
be adopted for robotic controllers: the Drunk Man Walk (DMW).
This problem concerns a weakly-controlled random walk over a
linear graph, as depicted in Figure 6. The actions in this model tilt
the probability of left and right steps, while the observation distri-
bution blurs the current position.

Figure 6: Drunk Man state transition diagram. α is subject to
action effect.

Since EMT-based control was shown to be successful at solving
this problem [9], we chose to use the DMW as the internal model
for the EMTC1 andEMTC2 controllers. Their balancing acts
translated into a tactical target in a natural way, essentially project-

ing all states inSi ontos = |Si|
2

.
Notice, however, that the transition function of a DMW (our ac-

tion model) is not entirely coherent with the real world’s reactions,
and with the meaning of system states. This incoherence actu-
ally serves our purposes, since we want to verify the performance
of EMT-control with respect to an imperfect model. For exam-
ple, EMTC1 uses system statesS1 to represent distance from a
followed object, and since their meaning is based on the camera
picture, they represent an irregular set of distances. This lack of
regularity would dictate uneven transition probabilities from dif-
ferent states under the same action, but this is not the case in the
DMW model, where all system states are symmetric. A similar
problem exists withinEMTC2, because change in the visible an-
gle of an object may depend on its linear speed as well as on its
angular speed. However, this is not accounted for by the DMW
model withinEMTC2.

This incoherence indeed influences the EMT Controller’s per-
formance; however, it was still able to successfully perform the
tracking task. A sample run of the EMT-controlled robot can be
seen in Figure 7, depicting three positions of the robots at differ-
ent times. In this run, the followed robot (which we shall call the
prey) performed a constant loop, and the EMT-controlled robot that
followed it (thepredator) managed to capture this motion.1 The
predator traces a smaller loop, concentric with the one traced by
the prey. However, due to action model incoherence, the predator
did not perform optimally and reacted to the change in the prey’s
position with insufficient correcting actions. Effectively, it resulted
in the predator being significantly further away from the prey than
was required by the tactical target.

Figure 7: Target Following with a Weakly Coherent Model

5. DISCUSSION AND FUTURE WORK
In this research we explored the performance of EMT-based con-

trol in response to multiple interacting targets, as well as interacting
environment models. In the latter, EMT-based control was applied

1Predator/Prey terminology is used here for naming convenience
only, since there is no actual ‘capture’ intended.



in an experimental setting with the additional complication of an
incoherent environment model.

For EMT to handle explicit multiple objectives, we introduced
an additive weighing scheme that integrated directly into EMT op-
erations, and allowed it to select actions in a well-balanced way. In
fact, in our experiments EMT control managed in many situations
to achieve both targets, despite their interference and, at times, con-
flict with one another.

Our results also showed that EMT-based control is sensitive to
the strength of its tactical targets, and actions are selected in cor-
respondence to that strength. As the proposed weighing scheme
affects EMT’s attention to targets as well, we conclude that it can
and should become a part of an overall target design process, al-
lowing for finer tuning of the combined behavior.

The simplicity with which tactical behavioral targets can be bal-
anced within EMT-based control suggests further development of
dynamic balancing schemes, guided, perhaps, by some external
global system behavior evaluation. For example, in our car driv-
ing scenario above, it might be the successful passing of a bend in
the road.

As our weighted balancing scheme is closely related to other
multi-objective algorithms, it is important to continue research into
the possibility of their integration. Since EMT-based control in-
cludes a prediction mechanism, expert-based balancing approaches
(such as [4, 12, 8]) would be of particular interest. Insights from
multi-objective reinforcement learning (e.g., [5, 2]) could also be
used.

EMT sensitivity to preference strength can be further exploited
by introducing non-linear balancing and weight schemes, in effect
amplifying preferences as needed, without complicating tactical
target design.

The proposed multi-target approach, combined with the natu-
ral abilities of EMT control with respect to implicit interference of
multiple controllers, can be readily used in a multi-robot setting,
quickly providing a sustainable behavior of a team. Formation re-
stricted navigation, multi-featured manipulator control, multi-robot
sweeping, and many other tasks become susceptible to the use of
EMT with the aid of our multi-target approach, and we plan to ex-
plore these applications in the future.
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