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ABSTRACT
It is self-evident that in numerous Multiagent settings, self-
ish agents stand to benefit from cooperating by forming
coalitions. Nevertheless, negotiating a stable distribution of
the payoff among agents may prove challenging. The issue of
coalition formation has been investigated extensively in the
field of cooperative n-person game theory, but until recently
little attention has been given to the complications that arise
when the players are software agents. The bounded ratio-
nality of such agents has motivated researchers to study the
computational complexity of the aforementioned problems.

In this paper, we examine the communication complex-
ity of coalition formation, in an environment where each
of the n agents knows only its own initial resources and
utility function. Specifically, we give a tight Θ(n) bound
on the communication complexity of the following solution
concepts in unrestricted games: Shapley value, the nucleo-
lus and the modified nucleolus, equal excess theory, and the
core. Moreover, we show that in some intuitively appealing
restricted games the communication complexity is constant,
suggesting that it is possible to achieve sublinear complex-
ity by constraining the environment or choosing a suitable
solution concept.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity;
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems

General Terms
Theory
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1. INTRODUCTION
In an environment teeming with autonomous agents, it

is only natural for agents to cooperate in order to achieve
goals, even under the assumption that the agents are selfish.
Cooperation is realized through the formation of coalitions:
the members of each coalition share their resources, and
ultimately divide their payoff. In the second half of the 20th
century, some of the most prominent researchers in game
theory have studied cooperative games; the focus of most
research was determining which coalitions would form in a
given game, and how coalitions should divide their payoff
among their members.

The trick is to divide the payoff in a way that keeps the
coalition structure stable: the agents should be motivated to
remain loyal to their respective coalitions, instead of deviat-
ing and forming new coalitions that might guarantee them a
higher expected payoff. Different notions of stable solutions
have been proposed. The strongest, named the core of the
game, is sometimes empty. Other (weaker) solutions have
different desirable properties.

In the past few years, a new layer has been added to the
problem. The “players” in our cooperative game are soft-
ware agents, which are limited in various (practical) ways.
This complication has motivated researchers to study the
computational complexity of different solution concepts for
cooperative games [7, 1, 2, 4].

Another issue, that has so far received little attention in
multiagent systems research, is the communication complex-
ity of cooperative games in multiagent environments. In
the multiparty communication complexity model, each of
the players (agents1) holds some part of the input, and the
players wish to jointly compute some function on the input.
In this model, we assume the players have unlimited com-
putational power; we are only interested in the worst-case
number of bits of information they must pass among them-
selves. Although the study of communication complexity is
not natural in the context of some problems, it seems es-
pecially appropriate in the context of multiagent systems
in general2 (see for example [3]), and cooperative games in
particular.

Shehory and Kraus [8] analyzed the computational and
communication complexity of two algorithms for payoff di-

1Throughout the paper, we use the terms “players” and
“agents” interchangeably.
2As mentioned above, computational complexity issues are
also important (perhaps even more so) in multiagent sys-
tems. These issues are not taken into account in the com-
munication complexity model, but are studied separately.



vision in a multiagent environment. The environment intro-
duced by Shehory and Kraus induces a partitioning of the
information about the game among the agents — a fact that
makes this environment an obvious candidate for a study of
communication complexity.

In this paper, we analyze the communication complexity
of computing the payoff, in different solution concepts, of
an arbitrary player. This restricted problem (as opposed to
computing the payoffs for all the players) is important in its
own right: it is reasonable that an agent would like to know
a priori its expected payoff from a game, in order to decide
whether to participate in the game at all.3 It seems possible
that, for some solution concepts or specific types of games,
it may be sufficient for an agent to elicit information only
from a small subset of the other agents in order to compute
its payoff.

We focus on two categories of solution concepts:

• Singleton Solutions: Shapley value, the nucleolus (and
modified nucleolus), and equal excess theory.

• Solutions that are possibly empty: the core.

For such solution concepts, one can establish hardness of
suitable decision questions, such as determining whether the
payoff of a certain agent is greater than 0, or determining
whether the solution set is empty. Deciding these problems
is clearly easier than computing an agent’s payoff in a solu-
tion (the solution in the case of singleton solutions). Study-
ing division schemes that do not fall into one of the two
categories is less straightforward, since there are no appar-
ent decision problems that are easier than computing the
payoff in a solution. For example, one could ask whether
a given payoff configuration is a solution, but even if this
problem is hard, it may still be easy to generate just one so-
lution (out of a possibly large solution set). The insistence
on having such decision problems will become apparent in
Section 2.

We investigate an environment in which there are n agents,
each holding a constant amount of information. We show
a tight bound of Θ(n) on the communication complexity of
computing the payoff for an arbitrary player under all solu-
tion concepts mentioned above. Furthermore, we show that
in restricted (but common) types of cooperative games, the
communication complexity of finding the payoff of a player
in a solution is 1.

The rest of the paper is organized as follows. In Section 2
we explain the basics of cooperative games and communi-
cation complexity. In Section 3 we prove our results, and
discuss the communication complexity of restricted games.
In Section 4 we propose directions for future research.

2. PRELIMINARIES

2.1 Cooperative Games
We start by explaining the basic ideas of cooperative n-

person games in characteristic form, and defining restricted
types of games that will be needed later on. We next spec-
ify the different solution concepts. Last, we describe our
environment and connect this representation with games in
characteristic form.

3This becomes even more explicit when the agent has to pay
so as to join the game.

In the next few paragraphs, we follow Chapter 2 of [5].
A cooperative n-person game in characteristic form with

side payments is a pair (N ; v), where N = {1, 2, . . . , n} is a
set of players, and v is the characteristic function, which as-
signs a real number v(S) to each S ⊆ N . v(S) is the value of
S: the payoff the players in S can obtain by cooperating. It
always holds that v(∅) = 0. The collection of payoffs to the
players is expressed as a payoff vector: ~x = {x1, x2, . . . , xn}.

A coalition structure is a partition of N , of the form φ =
{S1, S2, . . . , Sr}, which specifies how the players in N divide
themselves into coalitions. A Payoff Configuration is a pair

(~x; φ) = {x1, x2, . . . , xn; S1, S2, . . . , Sr},

where ~x is a payoff vector and φ is a coalition structure, such
that:

∀j ∈ [r] : x(Sj) =def

X

i∈Sj

xi = v(Sj).

We shall refer to the coalition of all players as the grand
coalition.

Example 1. Consider the following 3-person game known
as “Odd Man Out”:

v({1}) = v({2}) = v({3}) = v(N) = 0;
v({1, 2}) = 4; v({1, 3}) = 5; v({2, 3}) = 6.

The payoff configuration (2, 2, 0; {1, 2}, {3}) would be ob-
tained if players 1 and 2 formed a coalition and split their
payoff equally.

A game is superadditive if:

∀S, T ⊆ N s.t. S ∩ T = ∅ : v(S ∪ T ) ≥ v(S) + v(T ).

Superadditivity is a reasonable assumption in many games,
since the union S ∪ T of two coalitions may, in the worst
case, act as two separate coalitions and receive the payoff
v(S) + v(T ).

We next discuss special types of games. In weighted ma-
jority games, the players are assigned weights w1, w2, . . . , wn,
and a criterion number q is specified, such that:

∀S ⊆ N : v(S) =

(

1
P

i∈S wi ≥ q

0
P

i∈S wi < q

Such a game is represented by the following shorthand no-
tation:

[q; w1, w2, . . . , wn].

Lemma 1. Let [q; w1, w2, . . . , wn] be a weighted majority
game, where for all i, wi ∈ {0, 1}. If q ≥ bn/2c + 1, then
the game is superadditive.

Proof. Let S, T ⊆ N such that S∩T = ∅. If |S| < q and
|T | < q, then clearly v(S ∪ T ) ≥ v(S) + v(T ). Otherwise,
assume without loss of generality that |S| ≥ q. Since q ≥
bn/2c + 1 and S ∩ T = ∅, it holds that |T | < q; it follows
that v(T ) = 0. Therefore,

v(S ∪ T ) = 1 = 1 + 0 ≥ v(S) + v(T ).

A different type of restricted game is an apex game. In
such games, the only coalitions that have nonzero value are
those that contain a distinguished player called the apex



(and are of size at least 2), or the remaining n − 1 players
(called the base) are included. Constant-sum apex games
have the weighted majority representation:

[n − 1; 1, . . . , 1, n − 2, 1, . . . , 1],

where n − 2 is the weight of the apex player.
Similarly to apex games, in veto games a distinguished

player is a necessary (but not sufficient) member of any coali-
tion with nonzero value. The general homogeneous weighted
majority representation of the veto game in which the veto
player needs only one ally is:

[n; 1, . . . , 1, n − 1, 1, . . . , 1],

where n − 1 is the weight of the veto player.

2.1.1 Solution Concepts
In this part of the paper, we follow Chapters 3 and 6 of [5],

as well as [9].
Over the years, many different solutions to characteris-

tic function games with side payments have been proposed.
These solutions differ in their notion of stability: given a
coalition structure, the payoff division should be such that
agents are not motivated to deviate, thus breaking down
coalitions. For example, if v({i}) > 0, any payoff configura-
tion where xi = 0 could not be stable, since player i would
prefer to receive the payoff he could get by himself.

2.1.1.1 The Core.
The core C of a game (N ; v) is the following set of payoff

configurations:

C = {(~x, φ) : ∀S ⊆ N, x(S) ≥ v(S)}.

Less formally, the core is the set of payoff configurations that
leave no coalition in a position to improve the payoffs to all
of its members.

The core is the strongest of all solution concepts; in fact,
it is so strong that in some cases the core is empty. In such
a case, at least one coalition will be dissatisfied with any
payoff configuration.

2.1.1.2 Shapley Value.
The Shapley value is a payoff division scheme that is char-

acterized axiomatically, and hence satisfies some important
desiderata. Player i is called a dummy if v(S ∪ {i}) = v(S)
for all coalitions S that do not include i; players i and j are
interchangeable if v((S − {i}) ∪ {j}) = v(S) for every coali-
tion S that includes i but not j. The axioms of the Shapley
value are:

• Symmetry: If i and j are interchangeable, then xi =
xj .

• Dummies: If i is a dummy, then xi = v({i}).

• Additivity: For any two games (N ; v) and (N ; w), xi

in (N ; v + w) equals xi in (N ; v) plus xi in (N ; w).

It is well known that the Shapley value, defined by:

xi =
X

S⊆N

(|N | − |S|)!(|S| − 1)!

|N |!
(vS − vS−{i}),

is the unique payoff division scheme that satisfies the axioms
listed above.

2.1.1.3 The Nucleolus and the Modified Nucleolus.
The excess of a coalition S with respect to the payoff vec-

tor ~x is: e(S, ~x) = v(S)−x(S). Given a payoff configuration
(~x; φ), an excess e(S, ~x) can be constructed for any coali-
tion S; there are 2n such coalitions. Let θ(~x) be a vector
of length 2n, whose components are all possible excesses,
sorted in non-increasing order:

θ(~x) = 〈θ1(~x), θ2(~x), . . . , θ2n(~x)〉

= 〈e(S1, ~x), e(S2, ~x), . . . , e(S2n , ~x)〉,

where for all i < j: e(Si, ~x) ≥ e(Sj , ~x). θ(~x) is said to be
lexicographically greater than θ(~y), denoted θ(~x) � θ(~y), if
there exists an integer q ∈ [2n] such that θp(~x) = θp(~y) for
all p < q, and θq(x) > θq(y). If θ(~x) is not lexicographically
greater than θ(~y), we write θ(~x) � θ(~y).

Example 2. Consider the following 3-person game:

v({1}) = v({2}) = v({3}) = 0; v(N) = 105
v({1, 2}) = 90; v({1, 3}) = 80; v({2, 3}) = 70.

Define a payoff configuration (~x, φ) = (15, 55, 35; N). The 23

excesses with respect to ~x are

(0, 0,−15,−55,−35, 20, 30,−20)

for coalitions (∅, N, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}), respec-
tively. Therefore,

~θ(~x) = (30, 20, 0, 0,−15,−20,−35,−55).

Similarly, for (~y; φ) = (45, 15, 45; N) we have:

~θ(~y) = (30, 10, 0, 0,−10,−15,−45,−45).

It follows that ~θ(~x) � ~θ(~y).

The nucleolus of a game is the set of all payoff configura-
tions for which the sorted vector of excesses is lexicograph-
ically minimal:

{(~x; φ) : θ(~x) � θ(~y) for all ~y, given φ}.

The modified nucleolus is defined identically, except that

instead of a vector ~θ with 2n excesses, a sorted vector with
2n − n− 2 excesses is constructed, with components e(S, ~x)
for all coalitions S such that 1 < |S| < n.

The nucleolus is unique for each coalition structure in any
characteristic function game. It is also known that the mod-
ified nucleolus for the grand coalition consists of a unique
payoff vector.

2.1.1.4 Equal Excess.
Equal excess theory yields a payoff vector that is the result

of a bargaining process. At each stage, a player lodges a
claim for a share of the value of each coalition of which he
is a member. As a starting point, each player expects an
equal share of the value of each such coalition.

More formally, the bargaining process consists of discrete
rounds. In round r, player i has an expectation of the pay-
off he will obtain from coalition S of which he is a mem-
ber; this expectation is denoted Er(i, S). Let Ar(i, S) =
maxT 6=S [Er(i, T )]; this is player i’s highest expectation from
the alternative coalitions to S. Player i’s expectation for
round r + 1 is created by:

Er+1(i, S) = Ar(i, S) +
v(S) −

P

j∈S Ar(j, S)

|S|
.



Example 3. Consider the following 3-person game:

v({1}) = v({2}) = v({3}) = v(N) = 0;
v({1, 2}) = 90; v({1, 3}) = 80; v({2, 3}) = 70.

In round 0, we have: E0(1, {1, 2}) = E0(2, {1, 2}) = 45,
E0(1, {1, 3}) = E0(3, {1, 3}) = 40, and finally E0(2, {2, 3}) =
E0(3, {2, 3}) = 35. If the game terminates at round 0 and
the coalition structure is {{1, 2}, {3}}, for instance, then
the payoffs would be (45, 45, 0). If negotiation continues to
round 1, then for example: A0(1, {1, 2}) = 40, A0(2, {1, 2}) =
35, and thus:

E1(1, {1, 2}) = 40 +
90 − 40 − 35

2
= 47.5.

For the same coalition structure as before, player 1’s payoff
after a round of negotiation would be 47.5.

If the bargaining process ends after m rounds, we say
it is the solution generated by m-round equal excess. As
far as we know, for all games examined, the sequence of
expectations converges to an asymptotic value, but there
is no proof of convergence. Assuming such a limit always
exists, we say it is the solution generated by ∞-round equal
excess.

2.1.2 Environment Description
We follow the presentation of the environment in [8] (with

some simplifications). An exact description of the environ-
ment is important for our purposes, since it induces a distri-
bution of the information about the game (or input) among
the agents.

Our environment consists of autonomous agents 1, 2, . . . , n,
with tasks to fulfill. Each agent has a given amount of the
resources l1, . . . , ls, which are required in order to deal with
tasks (we denote by Q the set of all possible vectors of quan-
tities of resources). An agent receives a payoff for fulfilling
tasks. These concepts can be formalized as a payoff func-
tion U i : Q → R+, which gives the payoff of agent i for some
arbitrary resources.

We assume that resources can be traded among agents.
We also assume that payoff can be transferred from one
agent to another (using money, or some other divisible de-
sirable commodity).4 The agents may try to tackle the tasks
alone, but may also prefer to form coalitions, thus pooling
(and redistributing) their resources. If S is a coalition, we
say that its value is v(S) if v(S) =

P

i∈S U i(qi), where q
is the vector of resources after optimal redistribution in the
coalition.

It is important to recognize that such an environment can
be represented using a characteristic function game, and
sometimes vice versa; hence the concepts from the previ-
ous subsections can be used. However, the representation
of the game proposed in this subsection is more realistic.
In essence, the information about the game is distributed
among the agents; each agent holds a constant amount of
information, namely its resources and payoff function.

Example 4. Consider the weighted majority game de-
fined by [q; w1, w2, . . . , wn]. There is only one resource, of

4Such a transfer of payoff is called a side payment. Recall
that we assumed side payments are possible when we de-
scribed characteristic function games in Section 2.1.

which each agent is given the initial quantity wi; the utility
function for all agents is:

U i(z) =

(

1 z ≥ q

0 z < q

In such games, the private information agent i has — its
resources and production function — essentially defines its
weight wi (which can be deduced from its resources), and the
value of q (which can be deduced from the common utility
function, and is therefore common knowledge).

We do not assume that the environment is superadditive
(although this is implied by the above definitions), and our
results also apply to environments that do not have this
property. However, note that in a superadditive game, we
can assume that the grand coalition forms at some stage,
and concern ourselves only with the payoff division (and
not the coalition structure).

2.2 Communication Complexity
In this subsection, we present the multiparty communi-

cation complexity model with which we shall deal. A rec-
ommended, more detailed overview of communication com-
plexity theory appears in [6].

There are several ways to generalize the two-party com-
munication complexity model (introduced by Yao in [10])
to a multiparty setting. In our model,5 player i (i ∈ N)
holds an input zi ∈ {0, 1}k. The players wish to compute
together a function f : ({0, 1}k)n → A. They communicate
via a “public blackboard” — all the players can see any bit
a player sends. We are only interested in the amount of
communication among the players, and therefore we allow
the players to have unlimited computational power.

A deterministic protocol P is a binary tree where each
internal node v is labeled by a function gi,v{0, 1}k → {0, 1},
for a single i ∈ N , and each leaf is labeled with a ∈ A. The
value of the protocol P on input (z1, z2, . . . , zn) is the label
of the leaf reached by starting from the root, and walking
on the tree: at each internal node v labeled by gi,v walking
left if gi,v(zi) = 0, and right if gi,v(zi) = 1. The cost of the
Protocol P on input (z1, z2, . . . , zn) is the length of the path
taken on this input. The cost of the protocol P is the height
of the tree. The deterministic communication complexity of
a function f is the minimum cost of P , over all protocols P
that compute f .

Intuitively, every internal node v labeled by gi,v is asso-
ciated with a bit sent by player i: 0 if gi,v(zi) = 0, and 1
otherwise. At each point in the protocol, the current node
in the tree is determined by the previous bits sent by the
players. In this way, players take into account the bits com-
municated so far.

It is also possible to consider the nondeterministic com-
munication complexity of f . An all-powerful prover is trying
to convince the players that f(z1, z2, . . . , zn) = a0. If it is in-
deed true that f(z1, z2, . . . , zn) = a0, then the prover should
be able to convince the players (by posting the answer and a
proof to the blackboard). However, if this is not the case, the
players should be able to detect the lie, regardless of what
the prover says. It is obvious that a lower bound on the

5Another interesting model is the “number on the forehead”
model, where each player holds a bit that all other players
can see, but he cannot.



nondeterministic communication complexity of a problem
is also a lower bound on the deterministic communication
complexity of the problem. Furthermore, it is also a lower
bound on the randomized communication complexity of the
problem.

Remark 1. Many problems in the multiparty model have
a nondeterministic communication complexity of o(n). For
example, each player holds one bit, and

f = max(z1, z2, . . . , zn).

If f(z1, z2, . . . , zn) = 1, the prover can post to the black-
board an index i of the player with zi = 1 (logn bits); this
player checks whether indeed zi = 1.

There are several techniques for obtaining lower bounds
on communication complexity. The most popular technique
is the fooling set.

Definition 1. Let f : ({0, 1}k)n → {0, 1}. A subset H
of ({0, 1}k)n is called a fooling set (for f) if there exists a
value f0 ∈ {0, 1} such that:

• For every (z1, z2, . . . , zn) ∈ H, f(z1, z2, . . . , zn) = f0.

• For every two distinct vectors

(z1
1 , z1

2 , . . . , z1
n), (z2

1 , z2
2 , . . . , z2

n) ∈ H,

there exist r1, r2, . . . , rn ∈ {1, 2} such that

f(zr1

1 , zr2

2 , . . . , zrn
n ) = 1 − f0.

Less formally, by “mixing” the coordinates of any two
vectors in the fooling set, we can obtain an input vector
whose value under f is 1 − f0.

It is known that the existence of a fooling set of size m
for f entails a lower bound of logm on the nondeterministic
communication complexity of f [6].

Remark 2. In the context of cooperative games, f is
the function which, given the resources and utility function
for all the players and a distinguished player, outputs that
player’s payoff in some solution, according to a fixed solu-
tion concept. However, when proving our lower bounds, we
will deal with boolean functions6 (so that we can use the
fooling set technique).

3. RESULTS
This section is devoted to proving a tight bound of Θ(n)

on the communication complexity of computing a player’s
expected payoff in the following solution concepts (in this
order): Shapley value, the nucleolus and modified nucleolus,
m-round equal excess and ∞-round equal excess, and the
core.

3.1 Upper Bound
Obtaining an upper bound on the communication com-

plexity of any solution concept in our environment is imme-
diate:

6Determining whether a given player’s payoff is greater than
0, or determining whether the solution set is nonempty. This
strengthens our results, since these decision problems are
weaker than computing payoff.

Proposition 1. The deterministic communication com-
plexity of any solution concept (even when computing the
payoff of all players) is O(n).

Proof. Recall that each agent holds a constant amount
of information. Therefore, all n agents can communicate
their entire part of the input (resources and utility function),
and then compute a solution.

3.2 Lower Bounds
The following lemma will soon be essential in the proof of

Lemma 3.

Lemma 2. log
`

n
b n

2
c+1

´

= Ω(n).

Proof. Without loss of generality, assume n is even (for
an odd n small changes are required, but the proof is simi-
lar). Observe that
 

n
n
2

+ 1

!

=
n!

(n
2

+ 1)!(n
2
− 1)!

=
n · (n − 1) · · · (n/2 + 2)

(n/2 − 1) · (n/2 − 2) · · · 1
.

We associate each factor in the denominator which is greater
than or equal to n/4+1, with a factor in the numerator that
is exactly twice as large. For example, n/4 + 1 is associated
with n/2 + 2. We have n/4− 1 such pairs, each with a ratio
of 2. The other n/4 factors in the numerator are all greater
than the other n/4 factors in the denominator. Therefore,

we have:
`

n
n
2

+1

´

≥ 2n/4−1, and hence:

log

 

n
n
2

+ 1

!

≥ log
“

2n/4−1
”

= n/4 − 1 = Ω(n).

The next definition and lemma are a part of the proof
of Lemma 4. They yield a somewhat roundabout proof for
Lemma 4, which is meant to provide intuition for the cor-
rectness of some of the main propositions.

Definition 2. The majority function, denoted by maj,
returns 1 if at least bn

2
c + 1 players have the bit 1, and 0

otherwise.

Let E be the set of input vectors such that the number of
ones is at most bn

2
c + 1, and denote by maj|E the majority

function restricted to the games in E.

Lemma 3. The nondeterministic communication complex-
ity of maj|E is Ω(n).

Proof. We exhibit a fooling set of size
`

n
n′

´

, where n′ =
bn

2
c + 1; the result follows from Lemma 2. The fooling set

consists of all binary vectors of length n with exactly n′

ones. Clearly, for any vector there is a majority of ones, and

thus it remains to show that for any two vectors ~w1 and ~w2

in the fooling set, we can create a vector ~w where wi = w1
i

or wi = w2
i for all i ∈ N , in such a way that maj(~w) = 0.

Indeed, for any two such vectors, there must be i0 ∈ N such
that w1

i0 = 1 but w2
i0 = 0. Let wi = w1

i for all i 6= i0, and

wi0 = w2
i0 = 0. ~w has exactly n′ − 1 ones, as required.

Lemma 4. Let G be the set of weighted-majority games
[q; w1, w2, . . . , wn] where q = bn−1

2
c+2, such that wi ∈ {0, 1}

for all i, w1 = 1, and #{i : i ≥ 2 ∧ wi = 1} ≤ bn−1
2

c + 1.



Assume that some singleton solution concept satisfies the
following property:

∀g ∈ G, maj|E (w2, w3, . . . , wn) = 1

=⇒ x1(g) > 0 for the grand coalition.
(1)

Then the nondeterministic communication complexity of com-
puting the payoff of an arbitrary agent in this solution con-
cept is Ω(n) (even to decide whether the payoff of a given
agent is greater than 0).

Proof. Notice that all games in G are superadditive by
Lemma 1, and thus we can assume the grand coalition forms.
There is an obvious reduction from maj|E with n−1 players
to games in G: given an input 〈w2, w3, . . . , wn〉 for maj|E ,
complete the vector of weights with w1 = 1, and set q =
n′ +1, where n′ = bn−1

2
c+1. Assuming property (1) holds,

then maj(w2, w3, . . . , wn) = 1 if and only if x1(g) > 0: “only
if” follows from the fact that if maj(w2, w3, . . . , wn) = 0,
then

P

i≥2 wi < n′, and so the value of all coalitions is 0.
We have that if the nondeterministic communication com-

plexity of deciding whether x1 > 0 is f(n) for some function
f , then the nondeterministic communication complexity of
maj|E with n − 1 players is at most f(n). From Lemma 3,
f(n) = Ω(n − 1) = Ω(n).

We now prove our lower bounds. We start with the so-
lution concepts that correspond to a singleton set of stable
payoff configurations. These proofs rely on Lemma 4.

Proposition 2. The nondeterministic communication
complexity of computing the payoff of an arbitrary agent ac-
cording to the Shapley value is Ω(n) (even to decide whether
the payoff of a given agent is greater than 0).

Proof. Let G be the set of weighted-majority games
[q; w1, w2, . . . , wn] where q = bn−1

2
c + 2, such that wi ∈

{0, 1} for all i, w1 = 1, and #{i : i ≥ 2∧wi = 1} ≤ bn−1
2

c+1.
We show that the Shapley value has property (1); this is suf-
ficient to complete the proof by Lemma 4.

Fix a game from G, and let S∗ = {i : wi = 1} (this
coalition includes player 1). If we assume that

maj|E (w2, w3, . . . , wn) = 1,

then |S∗| = q; it follows that x1 > 0, since:

x1 =
X

S⊆N

(|N | − |S|)!(|S| − 1)!

|N |!
(vS − vS−{1})

≥
(|N | − |S∗|)!(|S∗| − 1)!

|N |!
(vS∗ − vS∗−{1})

=
(n − q)!(q − 1)!

n!
· (1 − 0)

> 0.

In fact, since all q players with wi = 1 are interchangeable,
and the rest are null players, we have from the axioms that
characterize the Shapley value that x1 = 1

q
.

Proposition 3. The nondeterministic communication
complexity of computing the payoff of an arbitrary agent ac-
cording to the nucleolus7 and the modified nucleolus is Ω(n)
(even to decide whether the payoff of a given agent is greater
than 0).
7Recall that the nucleolus is a singleton for a given coalition
structure. Here we investigate the nucleolus of the grand
coalition.

Proof. Let G be the set of weighted-majority games
[q; w1, w2, . . . , wn] where q = bn−1

2
c + 2, such that wi ∈

{0, 1} for all i, w1 = 1, and #{i : i ≥ 2∧wi = 1} ≤ bn−1
2

c+1.
We show that the nucleolus has property (1); this is suffi-
cient to complete the proof by Lemma 4.

Fix a game from G, and let ~x be the nucleolus of the grand
coalition. We assume that maj(w2, . . . , wn) = 1; it follows
that #{i : wi = 1} = q. We wish to show that x1 > 0.
Consider the payoff division ~x∗, where x∗

i = 1
q

for all i such

that wi = 1, and x∗
i = 0 otherwise. e(R, ~x∗) = 0 for coali-

tions R that contain all players with wi = 1, and coalitions
that do not contain any of these players. Moreover, for any
other coalition, e(R, ~x∗) < 0: if the coalition contains k < q
players with wi = 1, then e(R, ~x∗) = − k

q
.

Now, assume x1 = 0. If there exists i such that wi = 0
but xi > 0, then the coalition S∗ = {i : wi = 1} must
have e(S∗, ~x) > 0, since v(S∗) = 1 but x(S∗) < 1. But this

means ~θ(~x) � ~θ( ~x∗), and thus we can assume the payoff is
distributed only among the players with wi = 1. e(R, ~x) = 0
for coalitions R that contain all players with wi = 1, and all
coalitions that do not contain any of these players. Addi-
tionally, it holds that e({1}, ~x) = 0. The number of zeros in
~θ(~x) is greater than the number of zeros in ~θ( ~x∗), and thus
~θ(~x) � ~θ( ~x∗); this is a contradiction to the assumption that
~x is the nucleolus.

For the modified nucleolus we have to slightly change the
end of the proof, because the excess of coalitions of size 1
is no longer considered. However, observe that if x1 = 0
(and we still have that xi = 0 for all players with weight
0), there must be a player i0 with wi = 1 and xi ≤ 1

q−1
;

hence, e({1, i0}, ~x) ≥ − 1
q−1

. It holds that the number of 0’s

in ~θ(~x) and ~θ( ~x∗) is equal, but the next smallest coordinate

in ~θ(~x) is at least − 1
q−1

, while in ~θ( ~x∗) it is − 2
q
. Hence,

~θ(~x) � ~θ( ~x∗) — a contradiction to our assumption that ~x is
the modified nucleolus of the grand coalition.

Proposition 4. The nondeterministic communication
complexity of computing the payoff of an arbitrary agent ac-
cording to m-round and ∞-round equal excess is Ω(n) (even
to decide whether the payoff of a given agent is greater than
0).

Proof. Let G be the set of weighted-majority games
[q; w1, w2, . . . , wn] where q = bn−1

2
c + 2, such that wi ∈

{0, 1} for all i, w1 = 1, and #{i : i ≥ 2∧wi = 1} ≤ bn−1
2

c+1.
We show that m-round equal excess has property (1); this
is sufficient to complete the proof by Lemma 4.

Fix a game from G, and let S∗ = {i : wi = 1}; we assume
that |S∗| = q. Observe that for all rounds r and players
i ∈ S∗: Er(i, S∗) = 1/q, by the symmetry of all players in
S∗. Moreover, clearly it holds (again, by the symmetry of
the players in S∗) that for all rounds r, i ∈ S∗ and T ⊆ N :
Er(i, T ) ≤ 1/q. Therefore,

∀r, ∀i ∈ S∗, ∀T ⊆ N s.t. S∗
( T : Ar(i, N) = 1/q. (2)

For all players i /∈ S∗ it holds that:

∀T ⊆ N : E0(i, T ) ≤ E0(i, T ∗) =
1

q + 1
, (3)

where T ∗ = S∗∪{i}. In subsequent rounds r, we claim that:

∀i /∈ S∗, ∀T ⊆ N : Er(i, T ) ≤
1

q + 1
. (4)



This can be proven by induction: the base is given by equa-
tion (3). For the induction step, we have that Ar(i, T ) ≤ 1

q+1
from the assumption. Any coalition T with non-zero value
of which player i is a member also contains S∗. For such
coalitions:

Er+1(i, T ) = Ar(i, T ) +
v(s) −

P

j∈T Ar(j, T )

|T |

≤
1

q + 1

+
1 −

P

j∈S∗ Ar(j, T ) −
P

j∈T−S∗ Ar(j, T )

|T |

(2)
=

1

q + 1
−

P

j∈T−S∗ Ar(j, T )

|T |

≤
1

q + 1

Consequently, for all rounds r:

Er+1(1, N) = Ar(1, N) +
v(N) −

P

j∈N Ar(j, N)

n
(2)
=

1

q

+
1 −

P

j∈S∗ Ar(j, N) −
P

j∈N−S∗ Ar(j, N)

n

(2)
=

1

q
−

P

j∈N−S∗ Ar(j, N)

n
(4)

≥
1

q
−

n − q

n

1

q + 1

> 0.

For m-round equal excess it holds that x1 = Em(1, N);
this completes the proof. Observe that we have from the
proof that even for m = ∞, E∞(1, N) > 0.

We now wish to analyze the communication complexity
of payoff division according to the core. The core is not
necessarily a singleton, but may be empty. Clearly, deter-
mining whether the core is empty is easier than computing
the payoff of a player in some payoff configuration that is in
the core.

Proposition 5. The nondeterministic communication
complexity of computing the payoff of an arbitrary agent ac-
cording to the core is Ω(n) (even to decide whether the core
is empty).

Proof. We exhibit a fooling set of size
`

n
n′

´

, where n′ =
¨

n
2

˝

+ 1; the result follows from Lemma 2. All the inputs in
the fooling set correspond to weighted majority games with
q = n′ − 1 =

¨

n
2

˝

; thus, an input in the fooling set can be
fully represented by the vector of the agents’ weights. The
vectors 〈w1, w2, . . . , wn〉 in the fooling set have 1 in exactly
n′ coordinates, and 0 in the other n−n′ coordinates. There
are

`

n
n′

´

such vectors. Fix a game ~w in the set; we wish to

show the core is empty. Since the game is superadditive,8

it is sufficient to show that there is no stable payoff division
for the grand coalition. Indeed, let ~x be a payoff vector,

8The proof of superadditivity is similar to Lemma 1, and
relies on the fact that if v(T ) = 1, T contains at least q
players with wi = 1, and so N − T contains at most one
such player.

and let i0 = argmaxi{xi : wi = 1}. The coalition S of q
players i with wi = 1 and i 6= i0 benefits by deviating, since
v(S) = 1 = x(S)+x(N−S) > x(S). It follows that ~x cannot
be in the core.

We still need to show that for any two vectors ~w1 and ~w2

in the fooling set, we can create a vector ~w where wi = w1
i

or wi = w2
i for all i ∈ N , in such a way that the core is

non-empty. For any two such vectors, there must be i0 ∈ N
such that w1

i0 = 1 but w2
i0 = 0. Let wi = w1

i for all i 6= i0,

and wi0 = w2
i0 = 0. ~w has 1 in exactly q coordinates. It

is clear that the following payoff distribution is in the core:
xi = 1/q for all i such that wi = 1, and xi = 0 for all other
players.

3.3 Restricted Games
In Section 2, we defined some restricted types of games.

In this subsection, we shall look more closely at apex and
veto games. These two types of games have natural, real-
world interpretations: in an apex game, the apex player may
be described as a limited monopolist (who requires only one
ally), while veto games are similar to such political bodies
as the United Nations security council.

Apex and veto games are particularly interesting in the
context of communication complexity, since a great deal of
information about the game can be communicated by simply
naming the apex or veto player.

Proposition 6. In constant-sum apex games, the deter-
ministic communication complexity of computing the payoff
of an arbitrary agent in any solution concept is 1.

Proof. Recall that constant-sum apex games have the
weighted majority representation

[n − 1; 1, . . . , 1, n − 2, 1, . . . , 1],

where n − 2 is the weight of the apex agent, and suppose
w.l.o.g. that the goal is to compute the payoff of agent 1.
It is sufficient that agent 1 simply announce (using one bit)
whether it is the apex player; it can do this by determining
whether its weight is n − 2 (in other words, checking that
it has n − 2 resource units). By the symmetry between the
non-apex agents, this knowledge is sufficient to compute the
payoff of agent 1.

Moreover, many important veto games have the weighted
majority representation:

[n; 1, . . . , 1, n − 1, 1, . . . , 1],

where n− 1 is the weight of the veto player. Obviously, the
deterministic communication complexity of payoff division
in these games is also 1.

4. CONCLUSIONS AND FUTURE WORK
In an environment with n-agents, each holding a constant

amount of information (the agent’s utility function and ini-
tial resources), we have shown that the communication com-
plexity of computing the payoff of an arbitrary player is
Θ(n) in the following solution concepts: Shapley value, the
nucleolus and modified nucleolus, equal excess theory, and
the core. Additionally, we have shown that in constant-sum
apex games and certain veto games, the deterministic com-
munication complexity is 1.



As our upper bound is trivial, clearly the significance of
the results lies in the lower bounds. Fortunately, a commu-
nication complexity lower bound of Ω(n) is usually not an
obstacle. Nevertheless, when interpreted negatively, our re-
sults show that solving cooperative games may be infeasible
in scenarios where the communication is severely restricted,
or the number of agents is very large.

Our approach has some limitations. The results in this
paper are relevant to coalition formation in our specific en-
vironment model; the bounds on communication complexity
may be different in other models, although the model which
was our focus is an intuitive and well-known one.

Another possible criticism of this work is that, even if a
payoff division among the n players is known in advance,
in general it takes O(n) communication to broadcast this
solution to the players. Nevertheless, recall that our goal
here was to determine the value of a specific player in a
given solution concept. As we noted in the introduction,
this problem is also important in its own right. Our analysis
of restricted games shows that Ω(n) communication is not
a lower bound for this problem in certain games.

There are several appealing directions in which this re-
search can be extended. An important task is to character-
ize the “interesting” games in which payoff division has a
communication complexity of o(n) (small O). A related is-
sue is to determine whether there exist reasonable singleton
solution concepts with communication complexity of o(n)
in general characteristic function games. It may also be the
case that the communication complexity may be lowered for
certain solutions, but only in specific games (where other so-
lutions are still hard), or particular environments.

Our methods of obtaining lower bounds have prevented
us from investigating such important solutions as the kernel
and the bargaining set (see [5]). These solutions should also
be examined in the future.

Another direction is to augment our model by adding an-
other parameter m, which is the amount of information each
agent holds (in our environment m = O(1), since we as-
sumed that each agent holds a constant amount of informa-
tion). We expect that the bounds for many of the solution
concepts can be generalized to Θ(n · logm), but the same
issues we studied here may be even more explicit in this
augmented model.
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