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ABSTRACT
Agents engaged in noncooperative interaction may seek to
achieve a Nash equilibrium; this requires that agents be
aware of others’ rewards. Misinformation about rewards
leads to a gap between the real interaction model—the ex-
plicit game—and the game that the agents perceive—the
implicit game.

If estimation of rewards is based on modeling, agents may
err. We define a robust equilibrium, which is impervious to
slight perturbations, and prove that one can be efficiently
pinpointed. We then relax this concept by introducing per-
sistent equilibrium pairs—pairs of equilibria of the explicit
and implicit games with nearly identical rewards—and re-
solve associated complexity questions.

Assuming that valuations for different outcomes of the
game are reported by agents in advance of play, agents may
choose to report false rewards in order to improve their even-
tual payoff. We define the Game-Manipulation (GM) de-
cision problem, and fully characterize the complexity of this
problem and some variants.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity;
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems

General Terms
Algorithms, Theory

Keywords
Computational complexity, Game theory

1. INTRODUCTION
Game theory has long been a standard tool in the analysis

of multiagent interactions. Cooperative game theory, for
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instance, is widely regarded as the standard model in the
context of coalition formation among autonomous agents.
Noncooperative game theory is, however, the field in which
a large portion of multiagent research is truly grounded, as
one often considers settings where agents choose actions in
their own self-interest [15].

Nash equilibrium is considered to be the prominent solu-
tion concept for noncooperative games; when players’ strate-
gies are in Nash equilibrium, no player stands to gain by
unilaterally changing its strategy. The applicability of this
concept to multiagent systems has motivated researchers to
study the complexity of finding a Nash equilibrium, in terms
of both the computation required [5, 7] and the communi-
cation involved [6].

Unfortunately, it seems impossible to efficiently find a
Nash equilibrium, and, to make things worse, agents usu-
ally lack complete information about their peers and envi-
ronment. This has led researchers to devote much effort to
learning in games, and in particular learning a Nash equi-
librium [9, 10, 1].

Whichever algorithm is used in order to guarantee that
agents reach an equilibrium, it is usually assumed that agents
can observe others’ rewards for given combinations of ac-
tions. But what are the possible sources of these observa-
tions? We suggest three: direct observation—an agent can
see another’s reward (for instance, in a poker game); mod-
eling the other agents and the environment; and preference
revelation—each agent announces its valuation for different
outcomes of the game.

In the first case, it seems reasonable that agents might
observe the correct rewards for other agents; in the last two
cases, this is not necessarily true. Below we use the implicit
games terminology proposed by Bowling and Veloso [2]: the
explicit game is the real game, whereas the implicit game is
the same game but with possibly different rewards.1

In the overall context of estimating rewards through mod-
eling, we study equilibrium concepts that satisfy some no-
tion of stability in the face of changing rewards. Our idea of
an ε-robust equilibrium is a strategy profile that remains an
equilibrium in any implicit game in which the rewards are
perturbed by at most ε. We characterize these equilibria
and show that they can be found efficiently. Since robust
equilibria rarely exist, we produce a relaxation in the form
of persistent equilibrium pairs, and study the complexity of
deciding the existence of such pairs.

The second setting we study is when errors originate in

1A somewhat simpler version of Bowling and Veloso’s im-
plicit games model is appropriate for our purposes.



strategic preference revelation. The subject of the complex-
ity of manipulation, especially in voting, has been the source
of much interest [4, 3, 14]. In our predicament, an agent may
improve its payoff by smartly revealing rewards that incite
the other agents to achieve an equilibrium of the induced
implicit game, but in fact itself plays a strategy that maxi-
mizes its own payoff in the explicit game.2

In more detail, the other gullible agents, observing the
implicit game, believe that the manipulator would play a
certain strategy, which is a part of a Nash equilibrium strat-
egy profile in the implicit game; they think this strategy
is a best response for the manipulator, and hence would
be played. However, the manipulator, aware of its true re-
wards in the explicit game, plays a different strategy, which
improves its outcome. The final outcome the manipulator
receives is often better than the one it gets for a strategy
profile that is an equilibrium in the explicit game.

We formalize the above discussion in the form of a decision
problem—Game-Manipulation (GM)—and prove that the
problem is in P for 2 players, but NP-complete for at least
3 players. We also examine three variants of GM.

2. PRELIMINARIES
We start with a short introduction to game theory, and a

formulation of some relevant results.

Definition 1. A game in strategic form (hereinafter, sim-
ply game) G is a tuple (N, A1, . . . , An, R1, . . . , Rn). N =
{1, . . . , n} is the set of players, Ai is the finite action set of
player i, and Ri : A → R is the reward function of player i,
where A = A1 × · · · × An.

Many of our examples will rely on 2-player games where
each player has two actions. We refer to the actions of player
1 as U (up) and D (down), and to the actions of player 2 as
L (left) and R (right). If one of the players has 3 actions,
we refer to the additional action as M (middle).

Definition 2. A strategy for player i is πi ∈ ∆(Ai); it
specifies the probability of player i playing each action in
its action set. A pure strategy gives probability 1 to some
action. A mixed strategy is a strategy that is not pure. A
strategy profile is a tuple containing one strategy for each
player.

For a strategy profile π, we denote by π−i the tuple con-
taining the strategies of all players other than i, and by πC

the tuple of strategies of the players in C ⊆ N .
A special case of games is zero-sum games. In such games,

there are two players with diametrically opposed interests,
i.e., R1 ≡ −R2. When dealing with zero-sum games, we
write R instead of R1; the goal of player 2 is to minimize
the reward. It is known that in zero-sum games:

max
π1∈∆(A1)

min
π2∈∆(A2)

R(π1, π2) = min
π2∈∆(A2)

max
π1∈∆(A1)

R(π1, π2).

This value is denoted by v(G). Strategies that guarantee
that the reward be at least v(G) (for player 1) or at most
v(G) (for player 2) are called optimal strategies.

2This is reminiscent of, though not identical to, the strate-
gically lying agents in [15].

Lemma 1. [11] In a zero-sum game G, a strategy π1 for
player 1 is optimal iff:

v(G) = min
a2∈A2

R(π1, a2).

Similarly, a strategy π2 for player 2 is optimal iff:

v(G) = max
a1∈A1

R(a1, π2).

Returning to general-sum games, we discuss the concept
of equilibrium. Given a strategy profile π = (π1, . . . , πn),
we say that πi is a best response (BR) to π−i iff for all
π′

i ∈ ∆(Ai): Ri(π) ≥ Ri(π
′
i, π−i).

Definition 3. A strategy profile π is a Nash equilibrium
(NE) iff for all i, πi is a best response to π−i.

It is a well-known fact that every game has a Nash equi-
librium.

Lemma 2. [12, Lemma 33.2] πi is a BR to π−i in G iff
every pure strategy in the support of πi is a BR to π−i.

Remark 1. A pair of optimal strategies in a zero-sum
game is a Nash equilibrium.

It is still unclear what the complexity of finding a Nash
equilibrium (NE) is. Nevertheless, some related questions
have been resolved.

Theorem 1. [5] Even in symmetric 2-player games, it is
NP-hard to decide the following problems:

1. Whether there is a NE where player 1 sometimes plays
a1 ∈ A1.

2. Whether there is a NE where all players have expected
utility greater than k.

3. Whether there is a NE where the social welfare is greater
than k.

4. Whether there is more than one Nash equilibrium.

Littman [10] defines a specialized type of equilibrium in
which we will be interested.

Definition 4. A Nash equilibrium π is a coordination
equilibrium iff all players achieve their highest possible value:

Ri(π) = max
a∈A

Ri(a) (1)

for all i ∈ N .

3. MODELING INACCURATE REWARDS
In this section, we discuss scenarios where players achieve

equilibria based on erroneous models. In such settings, an
agent estimates the payoffs other agents receive for action
profiles, relying on knowledge of its peers. It is therefore
likely that an agent might inaccurately estimate other agents’
rewards. A more extraordinary situation is the one where an
agent fails to correctly determine its own rewards; this may
happen when an agent models the game using an inaccurate
model of the environment. The mistakes are often assumed
to be bounded by a (relatively small) number ε.



Observing the formulation of Bowling and Veloso [2], we
dub the “real” game—the game with the actual rewards—
the explicit game, and the game with the same players and
action sets, but perhaps different rewards, the implicit game.
The explicit game is denoted by

G = (n, A1, . . . , An, R1, . . . , Rn),

while the implicit game is represented by

G̃ = (n, A1, . . . , An, R̃1, . . . , R̃n).

Definition 5. Let G be an explicit game, and G̃ be an

implicit game. The pair 〈G, G̃〉 is an ε-perturbed system iff

for all a ∈ A and all i ∈ N : |Ri(a) − R̃i(a)| ≤ ε.

Example 1. We briefly demonstrate how small changes
in the rewards of players in the explicit game significantly
impact players’ utilities in the Nash equilibrium. In all ex-
amples, the explicit game will be specified using parenthe-
ses, while the implicit game will be described using square
brackets.

(
(−10,−10) (9,−9)

(−9, 9) (10, 10)

)

The game has a single equilibrium at (D, R), with payoffs
(10, 10). Several small errors create the implicit game:

[
(−10,−10) (9,−11)
(−11, 9) (8, 8)

]

This game has a single equilibrium at (U, L) with payoffs
(−10,−10).

3.1 Robust Equilibria
It is desirable that games be robust to small perturbations

of the rewards, in the sense that there is a strategy pro-
file that is an equilibrium in every perturbed implicit game.
Should this property hold, mistakes would little affect the
outcome of the game.

Definition 6.

1. Let G be a game, and π a strategy profile. We say
that πi is an ε-robust best response to π−i in G iff for

all games G̃ such that 〈G, G̃〉 is an ε-perturbed system,

πi is a best-response to π−i in G̃.

2. Let G be a game. A strategy profile π is an ε-robust
equilibrium iff for all i, πi is an ε-BR to π−i in G.

Remark 2. Robust equilibrium is clearly a special case
of ex-post Nash equilibrium in games with incomplete infor-
mation.

Example 2. In the following explicit game, (U, L) is a
1-robust equilibrium, while (D, R) is an equilibrium that is
not ε-robust for any ε > 0.

(
(2, 2) (0, 0)
(0, 0) (0, 0)

)

It is often advantageous for agents to jointly achieve a
robust equilibrium—if such an equilibrium exists. How hard
is it to find one? We first address the existence problem.

Definition 7. In the Robust-NE problem, we are given
a game G, a strategy profile π, and ε > 0, and are asked
whether π is an ε-robust NE in G.

Lemma 3. Let G be a game, and πi be an ε-robust BR to
π−i in G. Then πi is a pure strategy.

Proof. Assume that the claim is not true. Hence, there
exists a game G, and a strategy profile π, s.t. πi is a BR
to π−i, but πi(âi) > 0 and πi(â

′
i) > 0 for âi, â

′
i ∈ Ai. By

Lemma 2, both âi and â′
i must be BR to π−i in all G̃ such

that 〈G, G̃〉 is an ε-perturbed system. Observe the game G̃,

which is identical to G, except that R̃i(a) = Ri(a)+ ε for all
a such that ai = âi. As

Ri(âi, π−i) = Ri(â
′
i, π−i),

it must hold that

R̃i(âi, π−i) = R̃i(â
′
i, π−i) + ε.

This is a contradiction.

Lemma 4. âi ∈ Ai is an ε-robust BR to π−i iff for all
ai 6= âi,

Ri(âi, π−i) ≥ Ri(ai, π−i) + 2ε. (2)

Proof. Assume first that âi is an ε-robust BR. For some
â′

i 6= âi, observe the implicit game in which R̃i(a) = Ri(a)−ε

for all a ∈ A such that ai = âi, and R̃i(a) = Ri(a) + ε for
all a ∈ A such that ai = â′

i. Clearly it holds that

R̃i(âi, π−i) = Ri(âi, π−i) − ε,

and

R̃i(â
′
i, π−i) = Ri(â

′
i, π−i) + ε.

As âi is still a BR in G̃,

R̃i(âi, π−i) ≥ R̃i(â
′
i, π−i).

Equation (2) directly follows.
In the other direction, assume Equation (2) holds. We

must show that for all â′
i ∈ Ai and implicit games G̃ such

that 〈G, G̃〉 is an ε-perturbed system,

R̃i(âi, π−i) ≥ R̃i(â
′
i, π−i). (3)

It holds that

|R̃i(âi, π−i) − Ri(âi, π−i)| ≤ ε,

and

|R̃i(â
′
i, π−i) − Ri(â

′
i, π−i)| ≤ ε.

From these equations and our assumption, Equation (3) im-
mediately follows.

Lemma 5. Robust-NE is in P.

Proof. It is sufficient to show that it is possible to deter-
mine, in polynomial time, whether a strategy is an ε-robust
BR. By Lemma 3, we can assume the given strategy πi is
a pure strategy âi. By Lemma 4, we only have to check if
Equation (2) holds for all other pure strategies in Ai—and
this can be accomplished in polynomial time.

The theorem follows directly from the above lemmas.



Theorem 2. It is possible to find an ε-robust equilibrium,
or determine that one does not exist, in time that is polyno-
mial in |A|.

Remark 3. The time required is polynomial in the num-
ber of pure action profiles |A|, which may be exponential
in the number of players n. Nevertheless, notice that our
NP-hardness results given below hold even when the size
of the input is |A|. Moreover, unless a game is special and
can be concisely represented, the size of the representation
of the game is at least |A|.

Proof of Theorem 2. Given a game G, by Lemma 3,
in order to determine whether there exists a robust equilib-
rium it is sufficient to test each pure a ∈ A for this prop-
erty. By Lemma 5, the test can be executed in polynomial
time.

Remark 4. It is possible to define the robustness level ε∗

of a given game as the maximal ε such that there exists an ε-
robust equilibrium in the game. The above results show that
the robustness level can also be calculated in polynomial
time, using the formula:

ε
∗ = max

â∈A
min
i∈N

min
ai 6=âi

Ri(â) − Ri(ai, â−i)

2
.

Indeed, given â ∈ A, by Lemma 4 the value

min
i∈N

min
ai 6=âi

Ri(â) − Ri(ai, â−i)

2

is a non-negative number ε iff â is an ε-robust equilibrium,
and is not ε′-robust for all ε′ > ε. By Lemma 3, it is sufficient
to maximize over all pure strategy profiles in order to find
the robustness level.

3.2 Persistent Equilibrium Pairs
Robust equilibria are characterized by Lemmas 3 and 4;

in particular, a robust equilibrium must be a pure strategy
profile. It seems that, although efficiently solvable, robust
equilibrium is too strong a solution concept. We wish to
relax our notion of robustness.

Suppose the players have errors in their game models,
and achieve an equilibrium in the implicit game. Even if
the new equilibrium is not an equilibrium in the explicit
game, we would like to know how “far” (in terms of rewards)
this equilibrium is from an equilibrium in the explicit game.
If there is a pair of equilibria in the explicit and implicit
games that are “close”, we think of this pair as satisfying
some notion of stability. Of course, the distance between
the equilibria depends on the magnitude of the mistakes.
Formally:

Definition 8. Let 〈G, G̃〉 be a perturbed system. An
ordered pair 〈π, ρ〉 where π is a Nash equilibrium in G and

ρ is a Nash equilibrium in G̃ is an ε-persistent equilibrium

pair of 〈G, G̃〉 iff for all i ∈ N , |Ri(π) − R̃i(ρ)| ≤ ε.

Remark 5. If 〈π, ρ〉 is an ε-persistent equilibrium pair in

the ε-perturbed system 〈G, G̃〉, then

∀i, |Ri(π) − Ri(ρ)| ≤ 2ε.

A persistent equilibrium pair differs from a robust equi-
librium in two respects: it is relevant only to a specific per-
turbed system (instead of every ε-perturbed system), and it
can hold that π 6= ρ, as long as the rewards are close.

Before proving some existence theorems for such pairs in
special games, we deal with the complexity of determining
whether a given perturbed system has a persistent equilib-
rium pair.

Definition 9. In the Persistent-Pair problem, we are

given an explicit game G, an implicit game G̃, and a number

ε ≥ 0. We are asked whether 〈G, G̃〉 has an ε-persistent
equilibrium pair.

Theorem 3. Persistent-Pair is NP-complete, even for
two players.

Proof. The problem is in NP. Indeed, a specific choice
of π and ρ can serve as a witness; it can be determined in
polynomial time whether indeed π is a NE in G, ρ a NE in

G̃, and whether their rewards differ by at most ε.
We prove that the problem is NP-hard via a reduction

from the problem of determining whether a given game has
a NE where all players have expected payoff of at least
k. Given an instance 〈G, k〉 of the former problem, the
reduction creates an instance of Persistent-Pair: define
rmax = maxi∈N,a∈A Ri(a); G is identical to the given game,

G̃ is the game where all rewards are rmax, and ε = rmax−k.3

Notice that all equilibria in G̃ have a payoff of rmax to all
players. Assume that the given instance is a “yes” instance;
thus, there is an equilibrium π with payoff of at least k to
all players, but clearly with payoff at most rmax. Picking

some equilibrium ρ in G̃, we have for all i:

|Ri(π) − R̃i(ρ)| ≤ rmax − k = ε.

Therefore, 〈π, ρ〉 is an ε-persistent equilibrium pair. In the
other direction, assume that the given instance is a “no”
instance. Any equilibrium π in G has a player i such that

Ri(π) < k. Hence, for any equilibrium ρ in G̃ it holds that:

R̃i(ρ) − Ri(π) > rmax − k = ε.

A setting where a persistent equilibrium pair is guaranteed
to exist is one where some of the equilibria of the explicit and
implicit games satisfy special properties. One such example
is requiring that both games have coordination equilibria.4

Proposition 4. Let 〈G, G̃〉 be an ε-perturbed system, and

let π and ρ be coordination equilibria in G and G̃, respec-
tively. Then 〈π, ρ〉 is an ε-persistent equilibrium pair.

Proof. By the definition of an ε-perturbed system, it
holds that for all i ∈ N and action profiles a ∈ A:

R̃i(a) ≥ Ri(a) − ε.

As ρ is a coordination equilibrium in G̃, it follows that for
all i ∈ N :

R̃i(ρ) = max
a∈A

R̃i(a) ≥ R̃i(π) ≥ Ri(π) − ε

Reversing the roles of R and R̃, G and G̃, π and ρ com-
pletes the proof.
3It is safe to assume that rmax ≥ k, otherwise the given
instance is clearly a “no” instance.
4Our interest in coordination equilibria stems from
Littman’s results: Littman [10] presented a method of
achieving Nash equilibrium provided the (stochastic) game
has a coordination equilibrium.



Another important case where persistent equilibrium pairs

always exist is when G and G̃ are both zero-sum games.

Definition 10. An ε-perturbed system 〈G, G̃〉 is zero-

sum iff both G and G̃ are (2 player) zero-sum games.

Remark 6. In zero-sum perturbed systems, the errors
are implicitly assumed to be consistent, in a way: an error
e in the reward of one of the players entails an error −e in
the reward of the other.

Proposition 5. Let 〈G, G̃〉 be a zero-sum ε-perturbed sys-

tem, and let π and ρ be optimal strategy profiles in G and G̃,
respectively. Then 〈π, ρ〉 is an ε-persistent equilibrium pair.

Proof. We have by Lemma 1:

v(G) = min
a2∈A2

R(π1, a2),

and

v(G̃) = min
a2∈A2

R̃(ρ1, a2).

Consequently,

R(π1, π2) = v(G)

= max
x∈∆(A1)

min
a2∈A2

R(x, a2)

≥ min
a2∈A2

R(ρ1, a2)

= R(ρ1, â2)

=
∑

a1∈A1

ρ1(a1)R(a1, â2)

=
∑

a1∈A1

ρ1(a1)R̃(a1, â2)

+
∑

a1∈A1

ρ1(a1)
[
R(a1, â2) − R̃(a1, â2)

]

≥ R̃(ρ1, â2) − ε
∑

a1∈A1

ρ1(a1)

= R̃(ρ1, â2) − ε

≥ min
a2∈A2

R̃(ρ1, a2) − ε

= v(G̃) − ε

= R̃(ρ1, ρ2) − ε.

Reversing the roles of G and G̃, R and R̃, π and ρ completes
the proof.

As interesting as persistent equilibria are, their weakness
is in the implicit assumption that all players make the same
mistakes in the estimation of the rewards—all players ob-
serve the same implicit game. What happens if only one
of the players errs? In this case, this player (say player 2)

converges to an equilibrium strategy ρ in G̃, while the other
player converges to an equilibrium strategy π in G. We
would like to know what happens when π1 is played against
ρ2 in the explicit zero-sum game.

Proposition 6. Let 〈G, G̃〉 be a 2-player zero-sum ε per-
turbed system, π an optimal strategy profile in G, and ρ an

optimal strategy profile in G̃. Then:

1. R(ρ1, π2) ≥ v(G) − 2ε.

2. R(π1, ρ2) ≤ v(G) + 2ε.

Proof. For part 1, assume the contrary, namely that

R(ρ1, π2) < v(G) − 2ε. Then:

R(ρ1, ρ2) = v(G̃)

≤ R̃(ρ1, π2)

≤ R(ρ1, π2) + ε

< v(G) − ε

= R(π1, π2) − ε.

This is a contradiction to Proposition 5. The proof of the
second part is symmetrical.

4. REVEALING FALSE REWARDS
In the previous section we examined settings where agents

achieve a false equilibrium, as a result of erroneous estima-
tion of rewards. In this section, we look at settings where
agents reveal their preferences to other agents, by reporting
their valuations for different action profiles. In such cases,
an agent may improve its payoff by reporting false valua-
tions. When this happens, we say the lying agent reveals its
preferences strategically, and refer to it as a manipulator.

Example 3. The following example presents a successful
manipulation by player 1. Observe the explicit game:

(
(0, 0) (1, 1)
(1, 1) (2, 0)

)

The unique NE is (D, L), with payoff 1 to both players. We
would like to know if player 1 can do better. By changing
player 1’s rewards, we obtain the implicit game:

[
(0, 0) (1, 1)

(−1, 1) (−1, 0)

]

Observing the implicit game, player 2 achieves the only NE:
(U, R), i.e., plays strategy R. Player 2 believes (U, R) is a
Nash equilibrium, and thus player 1 can do no better than
play U . However, being aware of the real rewards and know-
ing that player 2 would play R, player 1 counters with D,
receiving a payoff of 2 (and leaving player 2 with a sucker’s
payoff of 0).

The next definition formalizes the above discussion.

Definition 11. In the Game-Manipulation (GM) prob-
lem, we are given an explicit n-player game G, a player
i ∈ N , and an integer k ∈ Z. We are asked whether there is

an implicit game G̃ where only the rewards of i are changed,
a (possibly mixed) strategy profile ρ and πi ∈ ∆(Ai), such

that ρ is a Nash equilibrium in G̃, and Ri(πi, ρ−i) > k.

Example 4. We construct a “no” instance of the GM
problem. The explicit game is:

(
(0, 0) (1, 1) (0, 10)
(0, 10) (1, 1) (0, 0)

)

Player 1’s payoff in any Nash equilibrium is 0; set i = 1 and
k = 0. Player 1 cannot improve its payoff by manipulation,
since in every Nash equilibrium in the implicit game it holds
that player 2 never plays M . Indeed, for any strategy profile,
suppose w.l.o.g. that player 1 plays U with probability at



least 1
2
. Then player 2’s reward for playing action M with

probability p is p, but shifting to a strategy that increases
the probability of playing R by p increases the reward for
player 2 by 5p.

4.1 Complexity of GM
Our goal in this subsection is to prove:

Theorem 7 (Dichotomy of GM). GM with at least
3 players is NP-complete, while GM with 2 players is in P.

The proof is naturally decomposed into two parts.

Proposition 8. GM with at least 3 players is NP com-
plete.

Proof. To show that GM is in NP, observe that for

a given instance of the problem, a specific example of G̃,
ρ and πi is a witness; it can be ascertained in polyno-

mial time whether indeed ρ is a Nash equilibrium in G̃ and
Ri(πi, ρ−i) > k.

For the NP-hardness, we prove that the problem of deter-
mining whether there exists a NE in a 2-person game where
player 1 sometimes plays â1 ∈ A1 reduces to GM with 3
players. Given an instance of the former problem, construct
as an instance of the latter a three-player game G, where
player 3 has only one action. The rewards for players 1 and
2 for any action profile are the same as in the given game
(when the action of player 3 is disregarded), and the payoff
for player 3 is 1 for any action profile where player 1 plays
â1, and 0 otherwise. We also set k = 0, and the manipulator
to be player 3 (i=3).

Assume the given instance has a NE π where player 1
plays â1 with probability r > 0. Construct the instance of

GM as above, and choose G̃ ≡ G. Clearly, when players
1 and 2 use π1 and π2 in G (and player 3 plays his single
action), this is a Nash equilibrium with the property that
player 3 has payoff r.

On the other hand, it is clear that if (π1, π2) is not a Nash
equilibrium in the given instance, then (π1, π2, a3) (where
a3 is the single action in A3) is not a Nash equilibrium in

any G̃ where only the rewards of player 3 have changed.
Therefore, if the given instance has no NE where player 1

sometimes plays â1, every NE in every admissible G̃ has the
property that player 1 plays â1 with probability 0, and thus
the utility of player 3 is 0.

In the second part of the theorem’s proof we require the
following lemma. For ease of exposition, in the lemma and
subsequent proposition we consider player 1 to be the ma-
nipulator, but this is of course an arbitrary choice.

Lemma 6. A given instance of GM with two players where
player 1 is the manipulator is a “yes” instance iff there ex-
ists a pure strategy profile (â1, â2) such that R1(â1, â2) > k,
and a strategy ρ1 ∈ ∆(A1) such that â2 is a best-response to
ρ1 (in the explicit game).

Proof. Assume first that there exists a pure strategy
profile (â1, â2) such that R1(â1, â2) > k, and a strategy

ρ1 ∈ ∆(A1) such that â2 is a best-response to ρ1. Define G̃

to be the implicit game where the rewards of player 1 are all
identical. It follows from the assumption that â2 is a best-

response to ρ1 and from the construction of G̃ that (ρ1, â2)

is a Nash equilibrium in G̃. Setting ρ2 from the definition of
GM to be â2 and π1 to be â1 proves that the given instance
is a “yes” instance of the GM problem.

In the other direction, assume we are given a “yes” in-
stance of GM (with two players, where player 1 is the manip-

ulator). Let G̃ be an implicit game where only the rewards
of player i are changed, and let ρ = (ρ1, ρ2) and πi ∈ ∆(Ai)

be strategies such that ρ is a Nash equilibrium in G̃, and
R1(π1, ρ2) > k. There must be â1 ∈ A1 such that π1(â1) > 0
and R1(â1, ρ2) > k. Hence, there must be â2 ∈ A2 such that
ρ2(â2) > 0 and R1(â1, â2) > k. By the assumption, (ρ1, ρ2)

is a Nash equilibrium in G̃; from Lemma 2 it follows that
any action which is sometimes played in ρ2 is a best response
to ρ1, and in particular â2 is a best-response to ρ1.

Proposition 9. GM with 2 players is in P.

Proof. We present an algorithm for GM, and prove that
it always terminates in polynomial time.

1: for each (â1, â2) ∈ A s.t. R1(â1, â2) > k do

2: if ∃ρ1 ∈ ∆(A1) s.t. â2 is a BR to ρ1 then

3: return true

4: end if

5: end for

6: return false

It follows straightforwardly from Lemma 6 that a given in-
stance of GM is a “yes” instance iff the above algorithm ac-
cepts. Therefore, we only need to show that the algorithm
can be implemented efficiently.

The algorithm performs the test in line 2 a polynomial
number of repetitions; this test can also be performed in
polynomial time. Indeed, there is ρ1 such that â2 is a best
response to ρ1 iff there is a feasible solution to the linear
program with the following constraints:

find ρ1(a1) such that

∀a2 ∈ A2,
∑

a1∈A1

ρ1(a1)[R2(a1, â2) − R2(a1, a2)] ≥ 0

∑

a1∈A1

ρ1(a1) = 1

∀a1 ∈ A1, 0 ≤ ρ1(a1) ≤ 1

It is well-known that it is possible to determine whether a
linear program has a feasible solution in polynomial time.
This completes the proof of the proposition, as well as the
proof of Theorem 7.

4.2 Variations on GM
In this subsection, we are concerned with variations on

the GM problem.
GM is naturally generalized to a setting where there are

several manipulators. The manipulators are all interested in
securing a payoff greater than k. However, each manipulator
is still selfish, and does not hesitate to improve its own payoff
at the expense of other manipulators. Hence, we require that
the manipulators’ strategies in the explicit game also be in
equilibrium.

Definition 12. In the Coalitional-Game-
Manipulation (CGM) problem, we are given an explicit
n-player game G, a subset of players C ⊆ N , and an integer

k ∈ Z. We are asked whether there is an implicit game G̃

where only the rewards of the players in C are changed, a



(possibly mixed) strategy profile ρ and πC ∈
∏

i∈C
Ai, such

that ρ is a Nash equilibrium in G̃, πi is a best response to
(πC−i, ρ−C) in G for all i ∈ C, and ∀i ∈ C, Ri(πC , ρ−C) > k.

Example 5. We clarify the definition by showing a coali-
tional manipulation in a three-player game, in which players
1 and 2 are manipulators. The game is described by two ma-
trices: the left is associated with an action of player 3 that
we dub B (backward), while the right matrix is associated
with F (forward).

(
(2, 2, 0) (1, 1, 0)
(1, 1, 1) (0, 0, 1)

) (
(1, 1, 2) (0, 0, 0)
(0, 0, 0) (0, 0, 0)

)

In this game there is a Nash equilibrium at (U, L, F ), with
payoff (1, 1, 2). Now observe the implicit game:

[
(2, 2, 0) (1, 1, 0)
(1, 1, 1) (2, 2, 1)

] [
(1, 1, 2) (0, 0, 0)
(2, 2, 0) (0, 0, 0)

]

(U, L, F ) is no longer an equilibrium, but (D, R, B) is. Player
3 plays B, and the manipulators counter with (U, L); the
utility of both manipulators is 2. The manipulators are not
motivated to deviate, since U is a best response for player 1
against (L, B) in the explicit game, and L is a best response
against (U, B).

Proposition 10. CGM with at least 3 players is NP-
complete, while CGM with 2 players is in P.

Proof sketch. With 2 players, the CGM problem is
identical to the GM problem, so the result for this case fol-
lows from Proposition 9. For at least 3 players, we examine
two cases.5 If there are at least two non-manipulators, the
proof is similar to the proof of Proposition 8; again, we use a
reduction from the problem of determining whether a given
game has a Nash equilibrium where player 1 sometimes uses
a given strategy. In this case, a given instance is reduced to
a game where all the manipulators are players with only one
action, and their rewards are greater than 0 only for action
profiles that include the given action.

If there are at least two manipulators, the proof is just
as straightforward, using a reduction from the problem of
determining whether a given game has a Nash equilibrium
where all players have expected utility at least k. A given
two-player game is reduced to an instance where the two
manipulators have exactly the same rewards as in the given
game, and a single non-manipulator has a single action.

Remark 7. It is also possible to formulate the CGM prob-
lem for a cooperative setting, where the manipulators act as
a coalition. In this case, we would only require that the
total reward of the coalition be greater than k, and would
drop the requirement that the manipulators’ strategies be
in equilibrium in the explicit game—but this is outside the
scope of this paper.

In the GM problem, the manipulator was only concerned
about its own reward. Nevertheless, some “Robin Hood”
type manipulators might wish to engage in deceit in order
to improve the welfare of all players.

Example 6. Consider the explicit game:



(1, 1) (0, 0)
(0, 0) (−1, 10)
(0, 10) (9, 9)




5We assume there is at least one non-manipulator.

The unique NE is (U, L), with payoff 1 to both players. In
this case, player 1 can significantly increase the payoff to
both players by reporting false rewards.




(0, 1) (0, 0)
(1, 0) (1, 10)
(0, 10) (0, 9)




In the implicit game, there is a single equilibrium in (M, R).
Player 2 plays R, but player 1 counters with D. Conse-
quently, both players get a payoff of 9. The social welfare
increased from 2 to 18.

Definition 13. In the Benevolent-Game-
Manipulation (BGM) problem, we are given an explicit
n-player game G, a player i ∈ N , and an integer k ∈ Z. We

are asked whether there is an implicit game G̃ where only
the rewards of i are changed, a (possibly mixed) strategy
profile ρ and πi ∈ ∆(Ai), such that ρ is a Nash equilibrium

in G̃, and
∑

i∈N
Ri(πi, ρ−i) > k.

Proposition 11. BGM with at least 3 players is NP-
complete, while BGM with 2 players is in P.

Proof sketch. BGM with at least 3 players is clearly
in NP. For the NP-hardness, we prove that the problem of
determining whether there exists a NE in a 2-person game
where the expected social welfare is at least k reduces to
BGM with 3 players. Given an instance of the former prob-
lem, construct as an instance of the latter a three-player
game G, where player 3 is the manipulator and has only
one action; the rewards for players 1 and 2 for any action
profile are the same as before (when the action of player 3
is disregarded), and the payoff for player 3 is 0 for all action
profiles. The parameter k of the BGM instance is the same
as in the given instance. It is easily verified that this is a
polynomial-time reduction.

For the two player setting, we notice that Lemma 6 can
be reformulated so as to be useful here, as well; therefore,
similarly to the proof of Proposition 9, we need only test
each (â1, â2) ∈ A such that R1(â1, â2) + R2(â1, â2) > k for
the property: there exists ρ1 ∈ ∆(A1) such that â2 is a BR
to ρ1. This, as before, can be done in polynomial time.

Returning to the selfish manipulator setting (the GM for-
mulation), another issue requires attention. Even if the ma-

nipulator succeeds in finding G̃, ρ, and πi as before, it is
not at all certain that the other players, observing the im-

plicit game G̃, would achieve ρ. This is only guaranteed if

ρ is a unique NE in G̃. We define a strong manipulation to
be exactly as before, except that we now require that ρ be
unique.

Definition 14. In the Strong-Game-
Manipulation (SGM) problem, we are given an explicit n-
player game G, a player i, and an integer k. We are asked

whether there is an implicit game G̃ where only the rewards
of player i are changed, a (possibly mixed) strategy profile
ρ and πi ∈ ∆(Ai), such that ρ is a unique Nash equilibrium

in G̃, and Ri(πi, ρ−i) > k.

Remark 8. Example 3 is in fact an example of a strong
manipulation.

Proposition 12. SGM with at least 3 players is coNP-
hard.



Proof sketch. The complement of the problem of de-
termining whether there exists more than one Nash equilib-
rium is the problem of determining whether a given game
has a unique Nash equilibrium; this problem (with 2 play-
ers) is coNP-hard, and it reduces to SGM with 3 players.
Indeed, almost the same reduction as in the proof of Propo-
sition 11 also works in this case: the rewards for players 1
and 2 for any action profile are the same as in the given in-
stance (when the action of player 3 is disregarded), and the
payoff for player 3 is 0 for all action profiles. k is set to be
−∞. Again, it can be verified that this is a reduction.

5. CONCLUSIONS
We have demonstrated that when agents achieve a Nash

equilibrium on the basis of fallacious rewards, their utilities
may change substantially. For the setting where agents esti-
mate rewards by relying on a model of other agents and the
environment, we have defined the concept of ε-robust equi-
librium, and have shown that if one exists, it can be found
efficiently. However, our characterization of these equilib-
ria implies that they rarely exist. Accordingly, we have re-
laxed the definition to obtain persistent equilibrium pairs.
Although such pairs always exist when the explicit and im-
plicit games are both zero-sum or both have coordination
equilibria, in general deciding the existence of such a pair is
NP-hard. We wish to comment that the problem of deter-
mining whether some multiagent setting has a robust equi-
librium or persistent pair is not associated with the agents
(which are not aware of the explicit game), but rather with
the system designer, who strives to create a stable system.

We have also considered mistakes that are grounded in
false reports by manipulative agents. We have shown that
the Game-Manipulation problem is in P for 2 players, and
is NP-complete for at least 3 players. In addition, we have
demonstrated that similar results hold for the “coalitional”,
“benevolent”, and “strong” variations of GM. These results
suggest that manipulation may not be a major concern when
there are at least three agents, but it remains to determine
how hard it is to decide these problems in the average-case.
The “benevolent” setting seems especially interesting: al-
though, in general, one wishes to avoid manipulations, a
well-intentioned lie can help agents avoid paying the price
of anarchy [13].

It is important to note that the results in this paper are
general, in the sense that they are independent of the spe-
cific algorithms the agents use to reach an equilibrium. It
suffices to assume that they all use such an algorithm (not
necessarily the same one). Moreover, the results are stated
with respect to games in normal form; this makes them ap-
plicable in repeated games, as a Nash equilibrium of the
stage game is also an equilibrium of the repeated game
when played repeatedly. Nevertheless, multiagent interac-
tions are often modeled in the wider framework of stochas-
tic (Markov) games. A very interesting direction for future
research would be to generalize our results to such games.

Another way to extend our research is to derive results
concerning other equilibrium concepts, such as correlated
equilibria [12]. We are motivated to explore this solution
concept specifically, since there has been work on learning
correlated equilibria [8]. In the context of manipulation, the
problems GM, BGM, and SGM can be defined exactly as
before, with the exception that the equilibria are correlated
instead of Nash. Problems that are reformulated for cor-

related equilibria are expected to be easier, as correlated
equilibria can be found in polynomial time.
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