
Junta Distributions and the Average-Case Complexity of
Manipulating Elections

Ariel D. Procaccia Jeffrey S. Rosenschein
School of Engineering and Computer Science

The Hebrew University of Jerusalem
Jerusalem, Israel

{arielpro, jeff}@cs.huji.ac.il

ABSTRACT
Encouraging voters to truthfully reveal their preferences in
an election has long been an important issue. Previous stud-
ies have shown that some voting protocols are hard to ma-
nipulate, but predictably usedNP-hardness as the complex-
ity measure. Such a worst-case analysis may be an insuffi-
cient guarantee of resistance to manipulation.

Indeed, we demonstrate thatNP-hard manipulations may
be tractable in the average-case. For this purpose, we aug-
ment the existing theory of average-case complexity with
new concepts; we consider elections distributed with respect
to junta distributions, which concentrate on hard instances,
and introduce a notion of heuristic polynomial time. We use
our techniques to prove that a family of important voting
protocols is susceptible to manipulation by coalitions, when
the number of candidates is constant.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity;
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems;
J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics

General Terms
Algorithms, Theory, Economics

Keywords
Computational complexity, Voting

1. INTRODUCTION
In multiagent environments, it may be the case that dif-

ferent agents have diverse preferences, and it is therefore im-
portant to find a way to aggregate agent preferences. A gen-
eral scheme for preference aggregation is voting : the agents

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06 May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

reveal their preferences by ranking a set of candidates, and
a winner is determined according to a voting protocol. The
candidates can be various entities such as beliefs or plans,
and indeed may be potential real-life parliament members.

Things are made complicated by the fact that in many
settings (as in reality) the agents are self-interested. Such
an agent may reveal its preferences untruthfully, if it be-
lieves this would make the final outcome of the elections
more favorable for it. Consequently, the outcome may be
one that does not maximize social welfare. This problem is
provably acute: it is known [8, 10] that, for elections with
three or more candidates, in any voting protocol that is non-
dictatorial,1 there are elections where an agent is better off
by voting untruthfully.

Fortunately, it is reasonable to make the assumption that
the agents are computationally bounded. Therefore, al-
though in principle an agent may be able to manipulate an
election, the computation required may be infeasible. This
has motivated researchers to study the computational com-
plexity of manipulating voting protocols. It has long been
known [3] that there are voting protocols that are NP-hard
to manipulate by a single voter. Recent results by Conitzer
and Sandholm [5, 4] show that some manipulations of com-
mon voting protocols are NP-hard, even for a small number
of candidates. Moreover, in [6], it is shown that adding a
pre-round to some voting protocols can make manipulations
hard (even PSPACE-hard in some cases). Elkind and Lip-
maa [7] show that the notion of pre-round, together with
one-way functions, can be used to construct protocols that
are hard to manipulate even by a large minority fraction of
the voters.

In Computer Science, the notion of hardness is usually
considered in the sense of worst-case complexity. Not sur-
prisingly, most results on the complexity of manipulation
use NP-hardness as the complexity measure. However, it
may still be the case that most instances of the problem are
easy to manipulate.

A relatively little-known theory of average case complex-
ity exists [11]; that theory introduces the concept of distri-
butional problems, and defines what a reduction between
distributional problems is. It is also known that average-
case complete problems exist (albeit artificial ones, such as
a distributional version of the halting problem).

Sadly, it is very difficult to show that a certain problem
is average-case complete, and such results are known only
for a handful of problems. Additionally, the goal of the

1In a dictatorial protocol, there is an agent that dictates the
outcome regardless of the others’ choices.

existing theory is to define when a problem is hard in the
average-case; it does not provide criteria for deciding when
a problem is easy. A step towards showing that a manip-
ulation is easy on average was made in [7]. It involves an
analysis of the plurality protocol with a pre-round, but fo-
cuses on a very specific distribution, which does not satisfy
some basic desiderata as to what properties an “interesting”
distribution should have.

In this paper, we engage in a novel average-case analy-
sis, based on criteria we propose. Coming up with an “in-
teresting” distribution of problem instances with respect to
which the average-case complexity is computed is a difficult
task, and the solution may be controversial. We analyze
problems whose instances are distributed with respect to a
junta distribution. Such a distribution must satisfy several
conditions, which (arguably) guarantee that it focuses on
instances that are harder to manipulate. We consider a pro-
tocol to be susceptible to manipulation when there is a poly-
nomial time algorithm that can usually manipulate it: the
probability of failure (when the instances are distributed ac-
cording to a junta distribution) must be inverse-polynomial.
Such an algorithm is known as a heuristic polynomial time
algorithm.

We use these new methods to prove our main result: an
important family of protocols, called scoring protocols, is
susceptible to coalitional manipulation when the number of
candidates is constant. Specifically, we contemplate sensi-
tive scoring protocols, which include such well-known proto-
cols as Borda and Veto. To accomplish this task, we define a
natural distribution µ∗ over the instances of a well-defined
coalitional manipulation problem, and show that this is a
junta distribution. Furthermore, we present the manipula-
tion algorithm Greedy, and prove that it usually succeeds
with respect to µ∗.

We also show that all protocols are susceptible to a cer-
tain setting of manipulation, where the manipulator is un-
sure about the others’ votes. This result depends upon a
basic conjecture regarding junta distributions, but also has
implications that transcend our specific definition of these
distributions.

In Section 2, we outline some important voting protocols,
and properly define the manipulation problems we shall dis-
cuss. In Section 3, we formally introduce the tools for our
average case analysis: junta distributions, heuristic polyno-
mial time, and susceptibility to manipulations. In Section 4
we prove our main result: sensitive scoring protocols are sus-
ceptible to coalitional manipulation with few candidates. In
Section 5, we discuss the case when a single manipulator is
unsure about the other voters’ votes. Finally, in Section 6,
we present conclusions and directions for future research.

2. PRELIMINARIES
We first describe some common voting protocols and for-

mally define the manipulation problems with which we shall
deal. Next, we introduce a useful lemma from probability
theory.

2.1 Elections and Manipulations
An election consists of a set C of m candidates, and a set V

of n voters, who provide a total order on the candidates. An
election also includes a winner determination function from
the set of all possible combinations of votes to C. We note
that throughout this paper, m = O(1), so the complexity

results are in terms of n.
Different voting protocols are distinguished by their win-

ner determination functions. The protocols we shall discuss
are:

• Scoring protocols: A scoring protocol is defined by vec-
tor ~α = 〈α1, α2, . . . , αm〉, such that α1 ≥ α2 ≥ . . . ≥
αm and αi ∈ N ∪ {0}. A candidate receives αi points
for each voter which ranks it in the i’th place. Exam-
ples of scoring protocols are:

– Plurality: ~α = 〈1, 0, . . . , 0, 0〉.

– Veto: ~α = 〈1, 1, . . . , 1, 0〉.

– Borda: ~α = 〈m− 1, m− 2, . . . , 1, 0〉.

• Copeland: For each possible pair of candidates, simu-
late an election; a candidate wins such a pairwise elec-
tion if more voters prefer it over the opponent. A can-
didate gets 1 point for each pairwise election it wins,
and −1 for each pairwise election it loses.

• Maximin: A candidate’s score in a pairwise election is
the number of voters that prefer it over the opponent.
The winner is the candidate whose minimum score over
all pairwise elections is highest.

• Single Transferable Vote (STV): The election proceeds
in rounds. In each round, the candidate’s score is
the number of voters that rank it highest among the
remaining candidates; the candidate with the lowest
score is eliminated.

Remark 1. We assume that tie-breaking is always ad-
versarial to the manipulator.2

In the case of weighted votes, a voter with weight k ∈ N

is naturally regarded as k voters who vote unanimously. In
this paper, we consider weights in [0, 1]. This is equivalent,
since any set of integer weights in the range 1, . . . , polyn can
be scaled down to weights in the segment [0, 1] with O(logn)
bits of precision.

The main results of the paper focus on scoring protocols.
We shall require the following definition:

Definition 1. Let P be a scoring protocol with param-
eters ~α = 〈α1, α2, . . . , αm〉. We say that P is sensitive iff
α1 ≥ α2 ≥ . . . ≥ αm−1 > αm = 0 (notice the strict inequal-
ity on the right).

In particular, Borda and Veto are sensitive scoring proto-
cols.

Remark 2. Generally, from any scoring protocol with
αm−1 > αm, an equivalent sensitive scoring protocol can be
obtained by subtracting αm on a coordinate-by-coordinate
basis from the vector ~α. Moreover, observe that if a protocol
is a scoring protocol but is not sensitive, and αm = 0, then
αm−1 = 0. In this case, for three candidates it is equivalent
to the plurality protocol, for which most manipulations are
tractable even in the worst-case. Therefore, it is sufficient
to restrict our results to sensitive scoring protocols.

2This is a standard assumption, also made, for example,
in [5, 4].

We next consider some types of manipulations, state the
appropriate complexity results, and introduce some nota-
tions.

Remark 3. We discuss the constructive cases, where the
goal is trying to make a candidate win, as opposed to de-
structive manipulation, where the goal is to make a candi-
date lose. Constructive manipulations are always at least
as hard (in the worst-case sense) as their destructive coun-
terparts, and in some cases strictly harder (if one is able to
determine whether p can be made to win, one can also ask
whether any of the other m− 1 candidates can be made to
win, thus making p lose).

Definition 2. In the Individual-Manipulation prob-
lem, we are given all the other votes, and a preferred candi-
date p. We are asked whether there is a way for the manip-
ulator to cast its vote so that p wins.

Bartholdi and Orlin [3] show that IM is NP-complete in
Single Transferable Vote, provided the number of candidates
is unbounded. However, the problem is in P for most voting
schemes, and hence will not be studied here.

Definition 3. In the Coalitional-Weighted-
Manipulation (CWM) problem, we are given a set of
weighted votes S, the weights of a set of votes T which have
not been cast, and a preferred candidate p. We are asked
whether there is a way to cast the votes in T so that p wins
the election.

We know [5, 4] that CWM is NP-complete in Borda, Veto
and Single Transferable Vote, even with 3 candidates, and
in Maximin and Copeland with at least 4 candidates.

The CWM version that we shall analyze, which is specif-
ically tailored for scoring protocols, is a slightly modified
version whose analysis is more straightforward:

Definition 4. In the Scoring-Coalitional-Weighted-
Manipulation (SCWM) problem, we are given an initial
score S[c] for each candidate c, the weights of a set of votes
T which have not been cast, and a preferred candidate p.
We are asked whether there is a way to cast the votes in T
so that p wins the election.

S[c] can be interpreted as c’s total score from the votes in
S. However, we do not require that there exist a combina-
tion of votes that actually induces S[c] for all c.

Definition 5. In the Uncertain-Votes-Weighted-
Evaluation (UVWE) problem, we are given a weight for
each voter, a distribution over all the votes, a candidate p,
and a number r ∈ [0, 1]. We are asked whether the proba-
bility of p winning is greater than r.

Definition 6. In the Uncertain-Votes-Weighted-
Manipulation (UVWM) problem, we are given a single
manipulative voter with a weight, weights for all other vot-
ers, a distribution over all the others’ votes, a candidate p,
and a number r, where r ∈ [0, 1]. We are asked whether the
manipulator can cast its vote so that p wins with probability
greater than r.

If CWM is NP-hard in a protocol, then UVWE and
UVWM are also NP-hard in it [5]. These problems will
be studied in Section 5. We make the assumption that the
given distributions over the others’ votes can be sampled in
polynomial time.

2.2 Chernoff’s Bounds
The following lemma will be of much use later on. Infor-

mally, it states that the average of independent identically
distributed (i.i.d.) random variables is almost always close
to the expectation.

Lemma 1 (Chernoff’s Bounds). Let X1, . . . , Xt be
i.i.d. random variables such that a ≤ Xi ≤ b and E[Xi] = µ.
Then for any ε > 0, it holds that:

• Pr[1
t

Pt

i=1 Xi ≥ µ + ε] ≤ e
−2t ε

2

(b−a)2

• Pr[1
t

Pt

i=1 Xi ≤ µ− ε] ≤ e
−2t ε

2

(b−a)2

3. JUNTA DISTRIBUTIONS AND SUSCEP-
TIBLE MECHANISMS

In this section we lay the mathematical foundations re-
quired for an average-case analysis of the complexity of ma-
nipulations. All of the definitions are as general as possible;
they can be applied to the manipulation of any mechanism,
not merely to the manipulation of voting protocols.

We describe a distribution over the instances of a problem
as a collection of distributions µ1, . . . , µn, . . ., where µn is a
distribution over the instances x such that |x| = n. We wish
to analyze problems whose instances are distributed with re-
spect to a distribution which focuses on hard-to-manipulate
instances. Ideally, we would like to insure that if one man-
ages to produce an algorithm which can usually manipulate
instances according to this distinguished “difficult” distri-
bution, the algorithm would also usually succeed when the
instances are distributed with respect to most other reason-
able distributions.

Definition 7. Let µ = {µn}n∈N be a distribution over
the possible instances of an NP-hard manipulation problem
M . µ is a junta distribution if and only if µ has the following
properties:

1. Hardness: The restriction of M to µ is the manipula-
tion problem whose possible instances are only:

[

n∈N

{x : |x| = n ∧ µn(x) > 0}.

Deciding this restricted problem is still NP-hard.

2. Balance: There exist a constant c > 1 and N ∈ N such
that for all n ≥ N :

1

c
≤ Prx∼µn

[M(x) = 1] ≤ 1−
1

c
.

3. Dichotomy: for all n and instances x such that |x| = n:

µn(x) ≥ 2−polyn ∨ µn(x) = 0.

If M is a voting manipulation problem, we also require the
following property:

4. Symmetry: Let v be a voter whose vote is given, let
c1, c2 6= p be two candidates, and let i ∈ {1, . . . , m}.
The probability that v ranks c1 in the i’th place is
the same as the probability that v ranks c2 in the i’th
place.

If M is a coalitional manipulation problem, we also require
the following property:

5. Refinement: Let x be an instance such that |x| = n
and µn(x) > 0; if all colluders voted identically, then
p would not be elected.

The name “junta distribution” comes from the idea that
in such a distribution, relatively few “powerful” and difficult
instances represent all the other problem instances. Alterna-
tively, our intent is to have a few problematic distributions
(the family of junta distributions) convincingly represent all
other distributions with respect to the average-case analysis.

The first three properties are basic, and are relevant to
problems of manipulating any mechanism. The definition is
modular, and additional properties may be added on top of
the basic three, in case one wishes to analyze a mechanism
which is not a voting protocol.

The exact choice of properties is of extreme importance
(and, as we mentioned above, may be arguable). We shall
briefly explain our choices. Hardness is meant to insure
that the junta distribution contains hard instances. Balance
guarantees that a trivial algorithm which always accepts (or
always rejects) has a significant chance of failure. The di-
chotomy property helps in preventing situations where the
distribution gives a (positive but) negligible probability to
all the hard instances, and a high probability to several easy
instances.

We now examine the properties that are specific to ma-
nipulation problems. The necessity of symmetry is best ex-
plained by an example. Consider CWM in STV with m ≥ 3.
One could design a distribution where p wins if and only if
a distinguished candidate loses the first round. Such a dis-
tribution could be tailored to satisfy the other conditions,
but misses many of the hard instances. In the context of
SCWM, we interpret symmetry in the following way: for
every two candidates c1, c2 6= p and y ∈ R,

Pr
x∼µn

[S[c1] = y] = Pr
x∼µn

[S[c2] = y].

Refinement is less important than the other four prop-
erties, but seems to help in concentrating the probability
on hard instances. Observe that refinement is only relevant
to coalitional manipulation; we believe that in the analysis
of individual voting manipulation problems, the first four
properties are sufficient.

Definition 8. [11] A distributional problem is a pair
〈L, µ〉 where L is a decision problem and µ is a distribution
over the set {0, 1}∗ of possible inputs.

Informally, an algorithm is a heuristic polynomial time
algorithm for a distributional problem if it runs in polyno-
mial time, and fails only on a small fraction of the inputs.
We now give a formal definition; this definition is inspired
by [11] (there the same name is used for a somewhat different
definition).

Definition 9. Let M be a manipulation problem and let
〈M, µ〉 be a distributional problem.

1. An algorithm A is a deterministic heuristic polyno-
mial time algorithm for the distributional manipula-
tion problem 〈M, µ〉 if A always runs in polynomial

time, and there exists a polynomial p and N ∈ N such
that for all n ≥ N :

Pr
x∼µn

[A(x) 6= M(x)] <
1

p(n)
. (1)

2. Let A be a probabilistic algorithm, which uses a ran-
dom string s. A is a probabilistic heuristic polyno-
mial time algorithm for the distributional manipula-
tion problem 〈M, µ〉 if A always runs in polynomial
time, and there exists a polynomial p and N ∈ N such
that for all n ≥ N :

Pr
x∼µn,s

[A(x) 6= M(x)] <
1

p(n)
. (2)

Probabilistic algorithms have two potential sources of fail-
ure: an unfortunate choice of input, or an unfortunate choice
of random string s. The success or failure of deterministic
algorithms depends only on the choice of input.

We now combine all the definitions introduced in this sec-
tion in an attempt to establish when a mechanism is sus-
ceptible to manipulation in the average case. The following
definition abuses notation a bit: M is both used to refer
to the manipulation itself, and the corresponding decision
problem.

Definition 10. We say that a mechanism is susceptible
to a manipulation M if there exists a junta distribution µ,
such that there exists a deterministic/probabilistic heuristic
polynomial time algorithm for 〈M, µ〉.

4. SUSCEPTIBILITY TO SCWM
Recall [5, 4] that in Borda and Veto, CWM is NP-hard,

even with 3 candidates. Since Borda and Veto are examples
of sensitive scoring protocols, we would like to know how
resistant this family of protocols really is with respect to
coalitional manipulation. In this section we use the methods
from the previous section to prove our main result:

Theorem 1. Let P be a sensitive scoring protocol. Then
P , with candidates C = {p, c1, . . . , cm}, m = O(1), is sus-
ceptible to SCWM.

Intuitively, the instances of CWM (or SCWM) which are
hard are those that require a very specific partitioning of the
voters in T to subsets, where each subset votes unanimously.
These instances are rare in any reasonable distribution; this
insight will ultimately yield the theorem.

The following proposition generalizes Theorem 1 of [5] and
Theorem 2 of [4], and justifies our focus on the family of
sensitive scoring protocols. A stronger version of Proposi-
tion 2 has been independently proven in [9]. Nevertheless,
we include our proof, since it will be required in proving the
hardness property of a junta distribution we shall design.

Proposition 2. Let P be a sensitive scoring protocol.
Then CWM in P is NP-hard, even with 3 candidates.

Definition 11. In the Partition problem, we are given
a set of integers {ki}i∈[t], summing to 2K, and are asked
whether a subset of these integers sum to K.

It is well-known that Partition is NP-complete.

Proof of Proposition 2. We reduce an arbitrary in-
stance of Partition to the following CWM instance. There
are 3 candidates, a, b, and p. In S, there are K(4α1−2α2)−1
voters voting a � b � p, and K(4α1 − 2α2) − 1 voters
voting b � a � p. In T , for every ki there is a vote of
weight 2(α1 +α2)ki. Observe that from S, both a and b get
(K(4α1 − 2α2)− 1)(α1 + α2) points.

Assume first that a partition exists. Let the voters in T
in one half of the partition vote p � a � b, and let the other
half vote p � b � a. By this vote, a and b each have

(K(4α1 − 2α2)− 1)(α1 + α2) + 2K(α1 + α2)α2

= (α1 + α2)(4Kα1 − 1)

votes, while p has (α1 + α2)4Kα1 points; thus there is a
manipulation.

Conversely, assume that a manipulation exists. Clearly
there must exist a manipulation where all the voters in T
vote either p � a � b or p � b � a, because the colluders do
not gain anything by not placing p at the top in a scoring
protocol. In this manipulation, p has (α1 +α2)4Kα1 points,
while a and b already have (K(4α1 − 2α2) − 1)(α1 + α2)
points from S. Therefore, a and b must gain less than
(2α2K + 1)(α1 + α2) points from the voters in T . Each
voter corresponding to ki contributes 2(α1 +α2)α2ki points;
it follows that the sum of the ki corresponding to the voters
voting p � a � b is less than K + 1

2α2
, and likewise for the

voters voting p � b � a. Equivalently, the sum can be at
most K, since all ki are integers and α2 ≥ 1. In both cases
the sum must be at most K; hence, this is a partition.

Since an instance of CWM can be translated to an in-
stance of SCWM in the obvious way, we have:

Corollary 3. Let P be a sensitive scoring protocol. It
holds that SCWM in P is NP-hard, even with 3 candidates.

4.1 A Junta Distribution
Let w(v) denote the weight of voter v, and let W denote

the total weight of the votes in T ; P is a sensitive scoring
protocol. We denote |T | = n: the size of T is the size of the
instance.

Consider a distribution µ∗ = {µ∗
n}n∈N over the instances

of CWM in P , with m + 1 candidates p, c1, . . . , cm, where
each µ∗

n is induced by the following sampling algorithm:

1. ∀v ∈ T : Randomly and independently choose w(v) ∈
[0, 1] (up to O(logn) bits of precision).

2. ∀i ∈ {1, . . . , m}: Randomly and independently choose
S[ci] ∈ [(α1 − α2)W, α1W] (up to O(logn) bits of pre-
cision).

We assume that S[p] = 0, i.e., all voters in S rank p
last. This assumption is not a restriction. If it holds for a
candidate c that S[c] ≤ S[p], then candidate c will surely
lose, since the colluders all rank p first. Therefore, if S[p] >
0, we may simply normalize the scores by subtracting S[p]
from the scores of all candidates. This is equivalent to our
assumption.

Remark 4. We believe that µ∗ is the most natural dis-
tribution with respect to which coalitional manipulation in
scoring protocols should be studied. Even if one disagrees
with the exact definition of junta distribution, µ∗ should
satisfy many reasonable conditions one could produce.

We shall, of course, (presently) prove that the distribution
possesses the properties of a junta distribution.

Proposition 4. Let P be a sensitive scoring protocol.
Then µ∗ is a junta distribution for SCWM in P with C =
{p, c1, . . . , cm}, and m = O(1).

Proof. We first observe that the dichotomy and symme-
try conditions are obviously satisfied.

The proof of the hardness property relies on the reduction
from Partition in Proposition 2. The reduction generates
instances x of CWM in P with 3 candidates, where W =
4(α1 + α2)K, and

S[a] = S[b]

= (K(4α1 − 2α2)− 1)(α1 + α2)

= (α1 − α2/2)W − (α1 + α2),

for some K that originates in the Partition instance. These
instances satisfy (α1−α2)W ≤ S[a], S[b] ≤ α1W . It follows
that µ∗(x) > 0 (after scaling down the weights).3

We now prove µ∗ has the balance property. If for all i,
S[ci] > (α1 − α2/m)W , then clearly there is no manipula-
tion, since at least α2W points are given by the voters in T
to the undesirable candidates c1, . . . , cm. This happens with
probability at least 1

mm .
On the other hand, consider the situation where for all i,

S[ci] < (α1 −
m2 − 1

m2
α2)W ; (3)

this occurs with probability at least 1
(m2)m . Intuitively, if

the colluders could distribute the votes in T in such a way
that each undesirable candidate is ranked last in exactly
1/m-fraction of the votes, this would be a successful ma-
nipulation: each undesirable candidate would gain at most
an additional m−1

m
α2W points. Unfortunately, this is usu-

ally not the case, but the following condition is sufficient for
a successful manipulation (assuming condition (3) holds).
Partition the voters in T to m disjoint subsets p1, . . . , pi

(w.l.o.g. of size n/m), and denote by Wpi
the total weight of

the votes in pi. The condition is that for all i ∈ {1, . . . , m}:

(1− 1/m) · 1/2 · n/m ≤Wpi
≤ (1 + 1/m) · 1/2 · n/m. (4)

This condition is sufficient, because if the voters in pi all
rank ci last, the fraction of the votes in T which gives ci

points is at most:

(m− 1)(1 + 1/m)

(m− 1)(1 + 1/m) + 1− 1/m
=

m2 − 1

m2 + m− 2
.

Hence the number of points ci gains from the colluders is at
most:

m2 − 1

m2 + m− 2
α2 ≤

m2 − 1

m2
α2 < α1W − S[ci].

Furthermore, by Lemma 1 and the fact that the expected
total weight of n/m votes is 1/2 · n/m, the probability that

condition (4) holds is at least 1− 2e
− 2n

m3 . Since m is a con-
stant, this probability is larger than 1/2 for a large enough
n.
3It seems the reduction can be generalized for a larger
number of candidates. The hard instances are the ones
where all undesirable candidates but two have approxi-
mately (α1−α2)W initial points, and two problematic can-
didates have approximately (α1 − αm/2)W points. These
instances have a positive probability under µ∗.

Algorithm 1 Decides SCWM

1: procedure Greedy(S, ~w, p)
2: for all c ∈ C do . Initialization
3: S0[c]← S[c]
4: end for

5: for i = 1 to n do . All voters in T
6: Let j1, j2, . . . , jm s.t. ∀l, Si−1[cjl−1] ≤ Si−1[cjl

]
7: Voter ti votes p � cj1 � cj2 � . . . � cjm

8: for l = 1 to m do . Update score
9: Si[cjl

]← Si−1[cjl
] + w(ti)αl+1

10: end for

11: Si[p]← Si−1[p] + w(ti)α1

12: end for

13: if argmaxc∈CSn[c] = {p} then . p wins
14: return true

15: else

16: return false

17: end if

18: end procedure

Finally, it can easily be seen that µ∗ has the refinement
property: if all colluders rank p first and candidate c second,
then p gets α1W points, and c gets α2W + S[c] points. But
S[c] ≥ (α1 − α2)W , and thus p surely loses.

4.2 A Heuristic Polynomial Time Algorithm
We now present our algorithm Greedy for SCWM, given

as Algorithm 1. ~w denotes the vector of the weights of voters
in T = {t1, . . . , tn}.

The voters in T , according to some order, each rank p first,
and the rest of the candidates by their current score: the
candidate with the lowest current score is ranked highest.
Greedy accepts if and only if p wins this election.

This algorithm, designed specifically for scoring protocols,
is a realization of an abstract greedy algorithm: at each
stage, voter ti ranks the undesirable candidates in an order
that minimizes the highest score that any undesirable candi-
date obtains after the current vote. If there is a tie between
several permutations, the voter chooses the option such that
the second highest score is as low as possible, etc. In any
case, every colluder always ranks p first.

Remark 5. This abstract scheme might also be appro-
priate for protocols such as Maximin and Copeland. Simi-
larly to scoring protocols, in these two protocols the collud-
ers are always better off by ranking p first. In addition, the
abstract greedy algorithm can be applied to Maximin and
Copeland since the result of an election is based on the score
each candidate has (unlike STV, for example).

In the following lemmas, a stage in the execution of the
algorithm is an iteration of the for loop.

Lemma 2. If there exists a stage i0 during the execution
of Greedy, and two candidates a, b 6= p, such that

|Si0 [a]− Si0 [b]| ≤ α2, (5)

then for all i ≥ i0 it holds that |Si[a]− Si[b]| ≤ α2.

Proof. The proof is by induction on i. The base of the
induction is given by equation (5). Assume that |Si[a] −
Si[b]| ≤ α2, and without loss of generality: Si[a] ≥ Si[b].

By the algorithm, voter ti+1 ranks b higher than a, and
therefore:

Si+1[b]− Si+1[a] ≥ −α2. (6)

Since p is always ranked first, and the weight of each vote is
at most 1, b gains at most α2 points. Therefore:

Si+1[b]− Si+1[a] ≤ α2. (7)

Combining equations (6) and (7) completes the proof.

Lemma 3. Let p 6= a, b ∈ C, and suppose that there exists
a stage i0 such that Si0 [a] ≥ Si0 [b], and a stage i1 ≥ i0
such that Si1 [b] ≥ Si1 [a]. Then for all i ≥ i1 it holds that
|Si[a]− Si[b]| ≤ α2.

Proof. Assume that there exists a stage i0 such that
Si0 [a] ≥ Si0 [b], and a stage i1 ≥ i0 such that Si1 [b] ≥ Si1 [a];
w.l.o.g. i1 > i0 (otherwise at stage i0 it holds that Si0 [b] =
Si0 [a], and then we finish by Lemma 2). Then there must
be a stage i2 such that i0 ≤ i2 < i1 and Si2 [a] ≥ Si2 [b]
but Si2+1[b] ≥ Si2+1[a]. Since the weight of each vote is at
most 1, b gains at most α2 points by voter ti2+1. Hence the
conditions of Lemma 2 hold for stage i2, which implies that
for all i ≥ i2: |Si[a]− Si[b]| ≤ α2. In particular, i1 ≥ i2.

Lemma 4. Let P be a sensitive scoring protocol, and as-
sume Greedy errs on an instance of SCWM in P which has
a successful manipulation. Then there is d ∈ {2, 3, . . . , m},
and a subset of candidates D = {cj1 , . . . , cjd

}, such that:

d
X

i=1

(α1W − S[cji
])−

d−1
X

i=1

(i · α2) ≤W

d
X

i=1

αm+2−i

≤
d

X

i=1

(α1W − S[cji
]).

(8)

Proof. For the right inequality, for any d candidates,
even if all voters in T rank them last in every vote, the total
points distributed among them is W

Pd

i=1 αm+2−i. If this
inequality does not hold, there must be some candidate ci

that gains at least α1W − S[ci] points from the colluders,
implying that this candidate has at least α1W points. How-
ever, p also has at most α1W points, and we assumed that
there is a successful manipulation — a contradiction.

For the left inequality, assume the algorithm erred. Then
at some stage i0, there is a candidate cj0 who has a total of
at least α1W points (w.l.o.g. only one candidate passes this
threshold simultaneously). Denote T0 = {t1, t2, . . . , ti0},
and let WT0 be the total weight of the voters in T0. Voter
ti0 did not rank cj0 last, since αm+1 = 0, and thus ranking
a candidate last gives it no points. We have that there is
another candidate cj1 , such that: Si0−1[cj1] ≥ Si0−1[cj0].
By Lemma 3, Si0 [cj0] − Si0 [cj1] ≤ α2, and thus Si0 [cj1] ≥
α1W − α2. If these candidates were not always ranked
last by the voters of T0, there must be another candidate
cj2 who was ranked strictly higher by some voter in T0,
w.l.o.g. higher than cj1 . Therefore, we have from Lemma 3
that: Si0 [cj1]−Si0 [cj2] ≤ α2, and so cj2 has a total of at least
α1W − 2α2 points. By inductively continuing this reason-
ing, we obtain a subset D of d candidates (possibly d = m),
who were always ranked in the d last places by the voters
in T0, and for the l’th candidate it holds that: Si0 [cjl

] ≥
α1W − (l−1)α2. The total points gained by this l’th candi-
date until stage i0 must be at least α1W − (l−1)α2−S[cjl

].

Since the total points distributed by the voters in T0 to the
d last candidates is WT0

Pd

i=1 αm+2−i, we have:

d
X

i=1

(α1W − S[cji
])−

d−1
X

i=1

(i · α2) ≤WT0

d
X

i=1

αm+2−i

≤W

d
X

i=1

αm+2−i.

Lemma 5. Let M be SCWM in a sensitive scoring pro-
tocol P with C = {p, c1, . . . , cm}, m=O(1). Then Greedy
is a deterministic heuristic polynomial time algorithm for
〈M, µ∗〉.

Proof. It is obvious that if the given instance has no
successful manipulation, then the greedy algorithm would
indeed answer that there is no manipulation, since the al-
gorithm is constructive (it actually selects specific votes for
the colluders).

We wish to bound the probability that there is a manip-
ulation and the algorithm erred. By Lemma 4, a necessary
condition for this to occur is as specified in equation (8), or
equivalently:

W
d

X

i=1

α1 −W
d

X

i=1

αm+2−i −
d(d− 1)

2
α2 ≤

d
X

i=1

S[cji
]

≤W

d
X

i=1

α1 −W

d
X

i=1

αm+2−i.

(9)

In this case the algorithm may err; but what is the prob-
ability of equation (9) holding? Fix a subset D of size

d ∈ {2, . . . , m}.
Pd

i=1 S[cji
] is a random variable that takes

values in [d(α1−α2)W, dα1W]. By fixing values for the S[cji
],

we have that the probability of
Pd

i=1 S[cji
] taking values

in some interval [a, b] is at most the chance of S[cjd
] tak-

ing a value in an interval of size b − a, which is at most
b−a

α1W−(α1−α2)W
, since S[cjd

] is uniformly distributed. By

Lemma 1, W < n/4 with probability at most ε(n) = e−
n

8 .
On the other hand, if W ≥ n/4, then (9) holds for D with
probability at most

d(d−1)
2

α2

α1W − (α1 − α2)W
=

d(d− 1)

2W
≤

2d(d− 1)

n
=

1

pD(n)
,

for some polynomial pD. We complete the proof by showing
that equation (1) holds:

Pr
x∼µ∗

n

[Greedy(x) 6= M(x)]

≤ Pr[W ≥ n/4 ∧ (∃D ⊂ C s.t. |D| ≥ 2 ∧ (9) holds)]

+ Pr[W < n/4]

≤
X

D⊂C:|D|≥2

1

pD(n)
+ ε(n)

≤
1

poly n

The last inequality follows from the assumption that m =
O(1).

Clearly, Theorem 1 directly follows.

Algorithm 2 Decides UVWM

1: procedure Sample-and-Manipulate(~w, ν, p, r)
2: for all permutations of the m + 1 candidates do

3: π ← next permutation
4: ν∗ ← the manipulator votes π
5: . others’ votes are always distributed w.r.t. ν
6: if Sample(~w, ν∗, p, r) then

7: return true

8: end if

9: end for

10: return false

11: end procedure

5. SUSCEPTIBILITY TO UVWM
In this section we shall prove:

Theorem 5. Let P be a voting protocol such that there
exists a junta distribution µP over the instances of UVWM
in P , with the following property: r is uniformly distributed
in [0, 1]. Then P , with candidates C = {p, c1, . . . , cm}, m =
O(1), is susceptible to UVWM.

The existence of a junta distribution with r uniformly dis-
tributed is a very weak requirement (it is even quite natural
to have r uniformly distributed). In fact, the following claim
is very likely to be true:

Conjecture 6. Let P be a voting protocol. Then there
exists a junta distribution µP over the instances of UVWM
in P , with r uniformly distributed in [0, 1].

If this conjecture is indeed true, we have that all voting
protocols are susceptible to UVWM. If for some reason the
conjecture is not true with respect to our definition of junta
distributions, then perhaps the definition is too restrictive
and should be modified accordingly.

To prove Theorem 5, we require a procedure named Sam-
ple, which decides UVWE. Sample samples the given dis-
tribution on the votes n3 times, and calculates the winner
of the election each time. If p won more than an r-fraction
of the elections then the procedure accepts, otherwise it re-
jects. We omit the details of the procedure, as well as the
proof of the following lemma, due to lack of space.

Lemma 6. Let P be a voting protocol, and E be UVWE in
P with C = {p, c1, . . . , cm}. Furthermore, let µ be a distri-
bution over the instances of E, with r uniformly distributed
in [0, 1]. Then there exists N such that for all n ≥ N :

Pr
x∼µn

[Sample(x) 6= E(x)] ≤
1

polyn
.

We now present an algorithm, Sample-and-Manipulate
that decides UVWM; it is given as Algorithm 2. Here, ~w
denotes the weights of all voters including the manipulator,
and ν is the given distribution over the others’ votes.

Given an instance of UVWM, Sample-and-Manipulate
generates (m +1)! instances of the UVWE problem, one for
each of the manipulator’s possible votes, and executes Sam-
ple on each instance. Sample-and-Manipulate accepts if
and only if Sample accepts one of the instances.

Lemma 7. Let P be a voting protocol, and M be UVWM
in P with C = {p, c1, . . . , cm}, m = O(1). Furthermore,

let µ be a distribution over the instances of UVWM, with r
uniformly distributed in [0, 1]. It holds that Sample-and-
Manipulate is a probabilistic heuristic polynomial time al-
gorithm for 〈M, µ〉.

Proof. For each independent call to Sample, the chance
of failure is inverse-polynomial. By applying the union bound
we have that the probability of Sample failing on any of the
(m + 1)! invocations is at most (m + 1)! 1

polyn
, which is still

inverse-polynomial since m is constant. The lemma now fol-
lows from the fact that there is a manipulation if and only
if there is a permutation of candidates, such that if the ma-
nipulator votes according to this permutation, the chance of
p winning is greater than r.

Notice that Sample-and-Manipulate is indeed polyno-
mial by the fact that m = O(1), and we assumed that the
given distribution over the votes can be sampled in polyno-
mial time.

6. FUTURE RESEARCH
The issue of resistance of mechanisms to manipulation is

important, particularly in the context of voting protocols.
Most results on this issue use NP-hardness as the complex-
ity measure. One of this paper’s main contributions has
been introducing tools that can be utilized in showing that
manipulating mechanisms is easy in the average case. We
were concerned with the likely case of coalitional manipula-
tion, and showed that sensitive scoring protocols are suscep-
tible to such manipulation when the number of candidates
is constant.

These results suggest that scoring protocols cannot be
safely employed. More importantly, this paper should be
seen as a starting point for studying the average case com-
plexity of other types of manipulations, in other protocols.
In addition, the definitions in Section 3 are deliberately gen-
eral, and can be applied to manipulations of mechanisms
that are not voting mechanisms. One such mechanism of
which we are aware, whose manipulation is NP-hard, is
presented in [1, 2].

There is still room for debate as to the exact definition of a
junta distribution, especially if Conjecture 6 turns out to be
false. It may also be the case that there are “unconvincing”
distributions that satisfy all of the (current) conditions of a
junta distribution. It might prove especially fruitful to show
that a heuristic polynomial time algorithm with respect to
a junta distribution also has the same property with respect
to some easy distributions, such as the uniform distribution.

An issue of great importance is coming up with natural
criteria to decide when a manipulation problem is hard in
the average-case. The traditional definition of average-case
completeness is very difficult to work with in general; is there
a satisfying definition that applies specifically to the case of
manipulations? Once the subject is more fully understood,
this understanding can be used to design mechanisms that
are hard to manipulate in the average-case.

7. ACKNOWLEDGMENT
This work was partially supported by grant #039-7582

from the Israel Science Foundation.

8. REFERENCES
[1] Y. Bachrach and J. S. Rosenschein. Achieving

allocatively-efficient and strongly budget-balanced
mechanisms in the network flow domain for
bounded-rational agents. In The Nineteenth
International Joint Conference on Artificial
Intelligence, pages 1653–1654, Edinburgh, Scotland,
August 2005.

[2] Y. Bachrach and J. S. Rosenschein. Achieving
allocatively-efficient and strongly budget-balanced
mechanisms in the network flow domain for
bounded-rational agents. The Seventh International
Workshop on Agent-Mediated Electronic Commerce
(AMEC 2005), Utrecht, The Netherlands, July 2005.

[3] J. Bartholdi and J. Orlin. Single transferable vote
resists strategic voting. Social Choice and Welfare,
8(4):341–354, 1991.

[4] V. Conitzer, J. Lang, and T. Sandholm. How many
candidates are needed to make elections hard to
manipulate? In Proceedings of the International
Conference on Theoretical Aspects of Reasoning about
Knowledge, pages 201–214, Bloomington, Indiana,
2003.

[5] V. Conitzer and T. Sandholm. Complexity of
manipulating elections with few candidates. In
Proceedings of the National Conference on Artificial
Intelligence, pages 314–319, Edmonton, Canada, July
2002.

[6] V. Conitzer and T. Sandholm. Universal voting
protocol tweaks to make manipulation hard. In
Proceedings of the International Joint Conference on
Artificial Intelligence, pages 781–788, Acapulco,
Mexico, August 2003.

[7] E. Elkind and H. Lipmaa. Small coalitions cannot
manipulate voting. In International Conference on
Financial Cryptography, Lecture Notes in Computer
Science. Springer-Verlag, Roseau, The Commonwealth
of Dominica, 2005.

[8] A. Gibbard. Manipulation of voting schemes.
Econometrica, 41:587–602, 1973.

[9] E. Hemaspaandra and L. A. Hemaspaandra.
Dichotomy for voting systems. University of Rochester
Department of Computer Science Technical Report
861, 2005.

[10] M. Satterthwaite. Strategy-proofness and Arrow’s
conditions: Existence and correspondence theorems
for voting procedures and social welfare functions.
Journal of Economic Theory, 10:187–217, 1975.

[11] L. Trevisan. Lecture notes on computational
complexity. Available from
http://www.cs.berkeley.edu/˜luca/notes/
complexitynotes02.pdf, 2002. Lecture 12.

