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ABSTRACT
District-based elections, in which voters vote for a district
representative and those representatives ultimately choose
the winner, are vulnerable to gerrymandering, i.e., manipu-
lation of the outcome by changing the location and borders
of districts. Many countries aim to limit blatant gerryman-
dering, and thus we introduce a geographically-based ma-
nipulation problem, where voters must vote at the ballot
box closest to them.

We show that this problem is NP-complete in the worst
case. However, we present a greedy algorithm for the prob-
lem; testing it both on simulation data as well as on real-
world data from the 2015 Israeli and British elections, we
show that many parties are potentially able to make them-
selves victorious using district manipulation. Moreover, we
show that the relevant variables here go beyond share of the
vote; the form of geographic dispersion also plays a crucial
role.

CCS Concepts
•Theory of computation→ Solution concepts in game
theory; •Applied computing → Sociology;

Keywords
Voting; Gerrymandering; Districts

1. INTRODUCTION
Voting mechanisms are commonly used to select a sin-

gle option from a multitude of options. However, in some
cases, an intermediary step is used. In many parliamen-
tary democracies, the public votes for a representative of
their district,1 and those representatives choose the execu-
tive authority. For example, the electoral college in US pres-
idential elections and Westminster-system parliaments (UK,

1Various terms are used for this: districts in the US, con-
stituencies in the UK, ridings in Canada, etc. In this work
we shall use the term district.
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Canada, Australia, etc.) work in this way. The technique
is not unique to electoral contexts, but manifests itself in
many systems that have an organizational structure: com-
panies divided into divisions, in which each division makes a
recommendation, and then division heads reach a final deci-
sion; collections of sensors interpreting input, in which each
subgroup of sensors reports its understanding to a central
processing unit, etc.

One of the major issues facing district-based parliamen-
tary systems is the ability of participants in the system to
manipulate it by determining the districts, influencing the
outcome (so one’s opponents are either a minority in many
districts, or their majorities are very centralized in very few
districts containing a high concentration of them). In US
political jargon, this is commonly termed gerrymandering,
after Massachusetts governor Elbridge Gerry, who was ac-
cused in 1812 of creating a salamander shaped district in the
Boston area to benefit his party. US political parties have
used this technique to manipulate elections for years [22, 9],
and due to its use to disenfranchise African-American vot-
ers in some states, the US Voter Rights Act of 1965 included
provisions that required district changes in several states to
be approved by federal authorities [36].

In response to accusations of such manipulations, a call for
more “rational” districting has been heard from many quar-
ters [21, 39]. This is commonly understood to include a sys-
tem in which voters are close to the rest of their district [39].
In a sense, voters should always go to a ballot box (or central
area) that is closest to them, not one that is further away.
Moreover, this is a recurring problem, since setting of dis-
trict boundaries is not a one-time event—due to population
movement, district boundaries are constantly changing, and
countries adopt mechanisms to make sure they are updated
(in the US, a constitutionally mandated census triggers this
every decade; in the UK, parliament asks the Electoral Com-
mission to do this, etc.).

However, as this paper will make clear, even in settings
that seek a “rational” district division, manipulations are
still possible. We consider the problem using both theo-
retical and empirical tools. As one of the first papers in
computational social choice to include a spatial component,
we examine the complexity of designing voting districts in
which all voters vote in the ballot box nearest to them. We
show that the complexity of finding a geographical division
to make a preferred candidate win is NP-complete.
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However, we present a greedy algorithm that is able to find
some of the possible manipulations, and can be extended to
satisfy various constraints, appropriate for specific settings.
We use this algorithm with two data sets:

Simulations A set of simulations that try to mimic a dis-
tribution of population and political views, and ex-
amining whether relatively weak candidates can still
become winners, given a particular district structure.

Real world data Ballot box information from both the
2015 Israeli election and the 2015 UK election, to show
how different geographic divisions would result in dif-
ferent winners.

2. RELATED WORK
The effects of voting districts on election outcomes has

been widely debated, particularly in the US, where gerry-
mandering became an issue in the early 19th century, and
in the UK, where the existence of “rotten boroughs”2 caused
an outcry from the 18th century onwards, which was reme-
died in successive reform bills, from 1832 and onward.

Academic research in this field has dealt with the histor-
ical aspect [7, 5], the sociological aspect [27], and the legal
aspect, in particular following the Voting Rights Act of 1965,
focusing on particular countries (though mainly the US) [36,
22, 15].

However, the main area where this topic has been explored
is in political science [9]. This analysis mainly delved into
data of past elections [12, 28, 29, 24, 23, 19], along with
statistical assumptions [37]; it tried to determine when ger-
rymandering occurs, and how to calculate some of its prop-
erties in the case of two parties. Some work was done to
examine the difference between fully proportional represen-
tation versus the outcome under winner-take-all districts,
and to find distance metrics between these two results [16,
13, 17, 11]. This included analysis using the Banzhaf index
and voter power.

The computational social choice community, since the sem-
inal initial papers [3, 2], has dedicated a significant effort to
the issue of voter manipulation [42, 43, 31] and dealing with
the implications of the Gibbard-Satterthwaite theorem [18,
35]. The issue of institutional manipulation has been ex-
plored to a far lesser degree. Control problems, where a
central planner may influence the outcome using its power
over the voting process, have been explored to some extent
(e.g., [20] and the survey [10]), which included some prelim-
inary work on dividing voters into groups [8]. Focusing only
on a two-party scenario (as in the US), [30, 14] examined
optimal gerrymandering strategies (see overview of compu-
tational social choice literature, including control in [4, 34],
and more particularly on gerrymandering in [38]). More
closely related to our concerns, Bachrach et al. [1] defined a
ratio to indicate how unrepresentative a district election is,
and showed a few bounds on this value (and used voter sim-
ulations based on Mallow’s model of preferences, which we
use as well). In any case, to our knowledge, no paper in the
field has approached the problem from a spatial, geographic,
point of view.
2Voting districts based on centuries-old divisions which af-
ter some time contained a very small electorate, usually con-
trolled by very few people. Most notorious of these was Old
Sarum, set up in 1295 with 2 members of parliament, yet by
1831 contained only 11 voters, none of whom lived in it.

Closest in spirit to this paper is the work of Puppe and
Tasnádi [32, 33], which shows that dividing voters into dis-
tricts in a way such that the number of representatives of
a party will be proportional to its share of the votes, under
some general geographic constraints, is computationally in-
tractable. Several techniques on how to “fairly” divide areas
into districts (or how to dissolve a district [41]) have been
examined [25].

3. PRELIMINARIES
An election Ef = (C, V ) is comprised of a set V of n voters

(possibly weighted) and a set of candidates C. Let π(C) be
the set of orders over the elements of C. Each voter v ∈ V
has a preference order �v∈ π(C). A voting rule is a function
f : π(C)n → C.

In this work we will focus on the most common voting
rule, plurality. Under this voting rule, each voter awards
a point to a single candidate, and the candidates with the
maximal number of points are the winners. A tie-breaking
rule t : 2C → C is then used to select the ultimate winner
of the election.

In a district-based election, Ef,g voters are divided into
disjoint sets V1, . . . , Vs such that ∪si=1Vi = V . These sets
define a set of s elections Eif = (C, Vi). The ultimate winner

from amongst the winners of Eif is determined by g, which in
the analysis below will be plurality combined with a thresh-
old function (i.e., the winner will need to win a plurality
of the districts, and, potentially, above a certain number of
districts).

We are now ready to define the problem with which we
will be dealing:

Definition 1. The input of the gerrymanderingf prob-
lem is:

• A set of candidates C.

• A set of voters V = {v1, . . . , vn} ⊂ R2, where every
voter v ∈ V is identified by their location on the plane,
a weight wv > 0 and a strict preference �v∈ π(C) over
C.

• A set of possible ballot boxes B = {b1, . . . , bm} ⊂ R2.
Each ballot box is a district.

• Parameters l, k ∈ N, such that l ≤ k ≤ m.

• A target candidate p ∈ C.

In the gerrymanderingf problem, we are asked whether
there is a subset of k ballot boxes B′ ⊂ B, such that they
define a district-based election, in which every voter votes
at their closest ballot box in B′, the winner at every ballot
box is determined by voting rule f , then p wins in at least l
ballot boxes.

We use weights in order to ease handling of multiple voters
in the same location (which, therefore, all vote at the same
place) in order to ease handling of future proofs.

Remark 2. Note that while we use the term gerryman-
dering, this is not gerrymandering as the term is commonly
used: we require voters to vote at their closest ballot box, and
prevent designing “unnatural” districts, that force voters to
vote far from their local area.
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Figure 1: An example of a gerrymanderingplurality in-
stance with two candidates (a) and two possible outcomes,
(b) and (c), that result in different winners.

This prevents mathematically possible manipulations such
as setting each supporter of p in their own district, and
grouping all the rest in a contiguous single district.

In real life, not only are non-contiguous districts very rare,
but in many democratic countries (e.g., the UK) district di-
vision is done according to objective criteria, like compact-
ness (a desirable property also noted by [38]); we believe our
“vote at nearest ballot” approximates many such attempts.
The United States does not have an independent process for
division of districts, but some states have set up independent
bodies to do this.

Example 3. Consider a gerrymanderingplurality
instance with two candidates, 8 voters, and 4 possible bal-
lot boxes from which we are asked to choose 3, as illustrated
in Figure 1a. The voters who support candidate a are rep-
resented as circles, the voters who support candidate b are
represented as triangles, and squares represent potential bal-
lot boxes. Figure 1b shows a possible selection of 3 ballot
boxes (the filled squares are the selected ballot boxes) that
induces a partition into three districts (the boundaries are
the dashed lines) in which candidate a wins two out of the
three districts and thus wins the election, while Figure 1c
shows a possible selection of 3 ballot boxes such that can-
didate b wins two out the three districts and thus wins the
election.

4. THE COMPLEXITY OF
GERRYMANDERINGPLURALITY

We are now ready to present the main result of this paper.

Theorem 4. gerrymanderingplurality is NP-complete,
even when the number of candidates is a constant.

To show gerrymanderingplurality is NP-complete we will
reduce Planar X3C, a known NP-complete problem [6], to
gerrymanderingplurality.

Definition 5. In the Planar Exact Cover by 3-Sets (X3C)
we are given a bipartite planar graph G = (X ∪ S, E), where
X = {x1, . . . , x3n}, S = {S1, . . . , Sm}, and every element in
S in connected to exactly three elements in X, that is, for
every S ∈ S it holds that |{x ∈ X : (x, S) ∈ E}| = 3. We
are asked whether there is a subset S̄ ⊂ S such that every
element of X is connected to exactly one member of S̄, i.e.,
for all x ∈ X it holds that

∣∣{S ∈ S̄ : (x, S) ∈ E}
∣∣ = 1.

In what follows, when we are given a planar graph G, we
will associate every node of G as a point in R2. In addition,

we identify every element in S as a subset of X that contains
only the elements to which it is connected.

Before we can begin showing that our problem is NP-
complete by reduction from Planar X3C, we must add some
constraints to the Planar X3C problem.

Definition 6. In the Planar X3C* problem we are given
a bipartite graph G as in Planar X3C. However, the graph
G when embedded on the plane has the following properties
(similar to what is portrayed in Figure 2a):

1. For every x ∈ X, S, S′ ∈ S such that x ∈ S and x /∈
S′: d (x, S) < d (x, S′) where d (·, ·) is the Euclidean
distance.

2. For every x, x′ ∈ X, S ∈ S such that x ∈ S and x′ /∈ S:
d (x, S) < d (x′, S).

3. For every x ∈ X, S, S′ ∈ S such that x ∈ S ∩ S′:
d (x, S) < 2d (x, S′).

4. For every x, x′ ∈ X, S ∈ S such that x, x′ ∈ S:
d (x, S) < 2d (x′, S).

5. For very two elements x, x′ that belong to the same set
S ∈ S, the angle ∠xSx′ is at least π

3
and at most 5π

6
.

6. Every three elements that share a set induce a triangle,
and the triangles do not overlap.

Next, we show that adding these constraints on the planar
graph does not make the problem easier.

Lemma 7. Planar X3C* is NP-complete.

Proof sketch. In order to show that Planar X3C* is
NP-complete, we start with a 3,4-SAT instance. The 3,4-
SAT problem is a special case of the well-known SAT prob-
lem where each variable appears in at most four clauses, and
every clause contains at most three variables. This problem
is known to be NP-complete [40]. A 3,4-SAT instance will
be reduced to a Planar 3-SAT instance [26]. Next, the Pla-
nar 3-SAT instance will be reduced to a Planar 1-3-SAT
instance [6]. Finally, the Planar 1-3-SAT instance will be
reduced to Planar X3C* instance (via the reduction in [6]).

By following this reduction chain we are guaranteed that
the degree of every vertex is bounded by a constant, and
that all the constraints are satisfied.

Proof of Theorem 4. We reduce an arbitrary Planar
X3C* instance, G = (X ∪ S, E) to the following
gerrymanderingplurality instance.

First, we may assume that there is a map function π : S×
X → {1, 2, 3}, such that if x, x′ ∈ S, x 6= x for some S ∈ S,
then π (S, x) 6= π (S, x′). Hereafter, when we address a set
S = {xi, xj , xk}, we assume that π (S, xi) = 1, π (S, xj) = 2
and π (S, xk) = 3.

In the reduced gerrymanderingplurality instance there
are:

• 4 candidates C = {p, a, b, c};

• 4 sets of voters V = V po ∪ V pc ∪ V ol ∪ V ot ; and

• 2 sets of ballot-boxes B = BS ∪BO.
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(a) (b)

Figure 2: (a) The Planar X3C* gadget; the circles are
the elements and the square is the set. And (b) the
gerrymanderingplurality gadget; the squares are the bal-
lot boxes, the circles, pentagons, rhombi and triangles are
voters V po , V pc , V ol and V ot , respectively, along with their
preferences. Voters in V po are located in the outer part of
the gadget; voters in V po are located near the center of the
gadget; voters in V ol are located on the line between the
central ballot box and an outer ballot box; and the voters
in V ot are located on the inner triangle of the gadget.

For every element in X we will have a voter in V po , that is,
V po = {vx1 , . . . , vx3n}. For every (x, S), x ∈ S pair we will
have a voter in V pc , a voter in V ol and a voter in V ot . That is,
for every (x, S), x ∈ S pair we have three different voters, we
will distinguish between those voters by the set they belong
to. The weight of the voters in V ot is 3, and the weight of
all other voters is 2.

Voters in V po and V pc prefer candidate p, and voters in V ol
and V ot prefer some other candidate as follows: for every set
S = {xi, xj , xk},

• The voters in V ol and V ot that represent (xi, S) prefer
candidate a;

• The voters in V ol and V ot that represent (xj , S) prefer
candidate b; and

• The voters in V ol and V ot that represent (xk, S) prefer
candidate c;

The set of ballot boxes BS will have one ballot box for every
set in S. That is, BS = {bS1 , . . . , bm}. BO is the set of
outer -ring ballot boxes; BO will consist of one ballot box for
every (x, S), x ∈ S pair. That is, BO = {bx,S : x ∈ S}. To
conclude, there are 3n+ 9m voters and 4m ballot boxes.

Figure 2b illustrates one gerrymanderingplurality gad-
get. The three outer-ring ballot boxes are members of BO,
and the one central ballot box is a member of BS .

The location of a voter in V po will be as the location of
the corresponding element, on the outer triangle that the
gadget creates. The location of a ballot box in BS will be
as the location of the corresponding set.

Ballots and voters are organized as shown in Figure 2b:

• For every ballot box bx,S ∈ BO, the location of bx,S will
be on the line between x and S such that d (bx,S , S) =
d (bx,S , x).

• Location of a voter vx,S ∈ V ol will be on the line be-
tween bx,S and bS such that d (vx,S , bx,S) = ε, for some
small ε > 0.

• Voter vx,S ∈ V pc location is on the line between vx,S ∈
V ol and bS , near the center of the gadget, such that

d
(
vx,S(∈V p

c ), vx,S(∈V o
l )

)
= d

(
vx,S(∈V p

c ), bS
)
.

• For every set S = {xi, xj , xk}, set the location of
vxi,S ∈ V ot on the line between bxi,S and bxj ,S , in
the inner triangle of the gadget, such that

d (vxi,S , bxi,S) = d
(
vxi,S , bxj ,S

)
+ ε.

• Similarly, the location of vxj ,S ∈ V ot is on the line
between bxj ,S and bxk,S such that

d
(
vxj ,S , bxj ,S

)
= d

(
vxj ,S , bxk,S

)
+ ε.

• Finally, set the location of vxk,S ∈ V
o
t on the line be-

tween bxk,S and bxi,S such that

d (vxk,S , bxk,S) = d (vxk,S , bxi,S) + ε.

An example of a reduced gerrymanderingplurality gadget
is given in Figure 2b.

At this point we should note that:

• For every xi ∈ S, voter vxi ∈ V po is closer to ballot box
bxi,S , than to ballot box bS .

• For every x ∈ S ∩ S′, voter vx ∈ V po is closer to ballot
box bx,S , than to ballot box bS′ (this holds due to
requirement 3 in Definition 6).

• For every x ∈ S, x′ ∈ S′ such that x 6∈ S′, voter vx ∈
V po is closer to ballot box bx,S , than to ballot box bS′

and ballot box bx′,S′ (this holds due to requirements 1
and 2 in Definition 6).

• For every x ∈ S, voter vx,S ∈ V pc is closer to ballot box
bS , than to bx,S , and than to all other ballot boxes; and
voter vx,S ∈ V ol is closer to ballot box bx,S than to all
other ballot boxes (this holds due to requirements 2
and 5 in Definition 6).

• For every S = {xi, xj , xk}, voter vxi,S ∈ V ot is closer to
ballot box bxj ,S than to ballot box bxi,S ; voter vxj ,S ∈
V ot is closer to ballot box bxk,S than to ballot box bxj ,S ;
and voter vxk,S ∈ V

o
t is closer to ballot box bxi,S than

to ballot box bxk,S ;

The objective is to decide whether there is a subset of 2n+m
ballot boxes such that p will win in all of them.

First, assume G = (X ∪ S, E) is a “yes” X3C* instance.
Let S̄ ⊂ S such that

∣∣{S ∈ S̄ : (x, S) ∈ E}
∣∣ = 1, for ev-

ery x ∈ X. It must hold that S ∩ S′ = ∅ for every S 6=
S′ ∈ S,

⋃
S∈S̄ S = X and thus

∣∣S̄∣∣ = n. Now, let B′
S ={

bS : S /∈ S̄
}

, B′
O =

{
bx,S : S ∈ S̄, x ∈ S

}
and finally B′ =

B′
S ∪B′

O.
For every vx ∈ V po there exists only one S ∈ S̄ such that

x ∈ S. Therefore, bx,S ∈ B′ and voter vx will go to vote
there.

For every S = {xi, xj , xk} ∈ S̄, we have that vxi ∈ V po ,
vxi,S ∈ V pc , vxi,S ∈ V ol and vxk,S ∈ V ot will vote in bxi,S ,
therefore p will win as they would receive 4 votes and the
other candidates would get at most 3 votes. In the same
way, p will also win in bxj ,S and bxk,S .

For every S = {xi, xj , xk} /∈ S̄, we have that voters
vxi,S , vxj ,S , vxk,S ∈ V

p
o , voters vxi,S , vxj ,S , vxk,S ∈ V

o
l and
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voters vxi,S , vxj ,S , vxk,S ∈ V
o
t , will vote in bS . p will get 6

votes and every other candidate will get 5, and p will thus
win.

Hence p will win in every ballot box, and there are a to-
tal of 3n + m − n = 2n + m ballot boxes. Thus the re-
duced gerrymanderingplurality instance is a “yes” instance
as well.

Now, assume that the resulting gerrymanderingplurality
instance is a “yes” instance, so there is B′ ⊂ B such that
|B′| = 2n+m and p wins in all of the ballot boxes.

Let bx,S ∈ B′; it must hold that bS /∈ B′, otherwise, p
could not win at this ballot box, as vx,S ∈ V pc will vote at
bS and vx,S ∈ V ol will vote at bx,S .

Furthermore, assume S = {xi, xj , xk}, vxi,S ∈ V ot is closer
to bxj ,S than to bxi,S ; hence it must hold that bxj ,S ∈ B′.
In the same way, bxk,S ∈ B

′.
Therefore, for every S = {xi, xj , xk} we have that either{
bxi,S , bxj ,S , bxj ,S

}
∩ B′ = ∅, or

{
bxi,S , bxj ,S , bxk,S

}
⊂ B′

and bS /∈ B′.
For every S = {xi, xj , xk} ∈ S, let

l (S) =
∣∣{bxi,S , bxj ,S , bxk,S} ∩B′∣∣ ∈ {0, 3},

in addition, let t = |{S ∈ S : bS ∈ B′}|, and finally let r =
|{S ∈ S : l (s) = 3}|.

We have that |B′| = t + 3r ≤ m + 2r, as t + r ≤ m.
Moreover, |B′| = m+ 2n, hence n ≤ r. Falsely assume that
n < r; then there is vx ∈ V po such that x ∈ S ∩ S′ and
l (S) = l (S′) = 3. However, vx can vote only at one ballot
box, say bx,S , thus p will lose at bx,S′ , which contradicts the
assumption that p wins at every ballot box. Therefore n = r.
Finally, let S̄ = {S ∈ S : l (S) = 3}; we have that

∣∣S̄∣∣ = n,

and for every S, S′ ∈ S̄ S ∩ S = ∅ — otherwise as before,
for x ∈ S ∩ S′ where S, S′ ∈ S̄ it holds that bx,S , bx,S′ ∈ B′,
yet p cannot win at bx,S and at bx,S′ . Therefore, the X3C*
instance is a “yes” instance.

Remark 8. In the reduction we required that a specific
candidate win in all ballot boxes. However, any other bound
can be similarly proven, by adding dummy voters and ballot
boxes “far far away”.

5. GERRYMANDERINGPLURALITY

GREEDY ALGORITHM
While showing gerrymanderingplurality is NP-complete

in the worst case, we wish to examine its difficulty and ap-
plicability in the real world. To do so, we show a greedy al-
gorithm, and check its applicability by running it using both
simulations, which allow us to play with various variables,
as well as by analyzing the 2015 Israeli and UK elections,
seeing what parties we can make victorious just by adjusting
the number and border of districts.

We construct a greedy algorithm that takes as input a
set of candidates C, a set of voters V = {v1, . . . , vn} ⊂ R2,
each with a preference order over C, a set of ballot boxes
B = {b1, . . . , bSm} ⊂ R2, a target candidate p ∈ C, and a
parameter k ≤ m. The algorithm tries to find a subset of
the ballot boxes B′ sized k such that when every voter in V
votes at their closest ballot box in B′, the target candidate
wins a plurality of the districts.

The greedy algorithm initially sets B′ to be the full ballot
boxes set, and then eliminates ballot boxes from B′ one after
the other, until |B′| = k.

Algorithm 1 Greedy Gerrymanderingplurality

procedure GreedyGerrymandering(V,B, k, p)
B′ ← B
while |B′| > k do

for all b ∈ B′ do
fb ← findRatio(B′, b, V, p)

end for
b← arg maxb∈B′{fb}
B′ ← B′ \ {b}

end while
if p wins a plurality of ballot boxes then

return True
else

return False
end if

end procedure

procedure findRatio(B, b, V, p)
B′ = B \ {b}
return |{b̃∈B′:p wins in b̃}

maxc∈C,c6=p |{b̃∈B′:c wins in b̃}
end procedure

The objective of the greedy algorithm, in every elimina-
tion step, is to keep the ratio between the number of ballot
boxes that p wins to the number of ballot boxes that any
other candidate wins as high as possible. The pseudocode
of the greedy algorithm is given in Algorithm 1.

Remark 9. The objective of the greedy algorithm as de-
scribed in Algorithm 1, is to find a partition to k districts
such that p wins a plurality of districts, while the decision
problem is to decide whether there is a partition to k districts
such that p wins at least l of them. As noted in Remark 8,
the two problems are essentially equivalent; furthermore, Al-
gorithm 1 can be easily modified to meet the other objective.

This algorithm can produce very lopsided districts—some
with many voters, some with far fewer. However, it can eas-
ily incorporate a bound on this, by not eliminating ballot
boxes that result in too small (or large) districts and striv-
ing for equality of size if no candidate can win (in findRa-
tio). In our running of the algorithm we chose the current
bound of the US Senate, which allows equal representation
for each state, so the districts we analyze will never be more
lopsided than the US Senate is. Naturally, this number can
be tweaked for particular settings.

6. GERRYMANDERINGPLURALITY

SIMULATIONS
We start by exploring the possibilities of gerrymandering

in a set of simulations, to give us a better understanding of
how effective it may be. Simulations have an advantage over
real world data in that the former can include many more
variables and considerations to which we do not have access
in real-world data.

6.1 Simulation Setup
We chose a geographic grid of 30x30 (i.e., with 900 initial

ballots boxes), to distribute people on, in order to keep sim-
ulation size manageable. We randomly assigned 10 points
as major “cities”, defining for each a normal (i.e., Gaussian)
distribution with a mean of the city point (and a variance
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(a) (b)

Figure 3: Sample elections with variance of φ distribution
0.5 (a) and 0.25 (b). The color of each cell corresponds to the
candidate with the highest plurality score. The brightness
represents the number of voters in that cell.

of 7, for a wide metropolitan area). Each of the 1, 000, 000
voters is first randomly assigned to belong to one of the
cities, and then assigned a particular location according to
the city’s normal distribution. Each setting was run several
thousand times.

To set voter preferences we wanted to both create di-
versity, as well as to approximate the generally observed
urban-rural vote divide. Following much previous research,
we chose to use multiple Mallows distributions. A Mallows
distribution assumes a preference order σ ∈ π(C) which is
a ground truth, and a value φ ∈ [0, 1], which indicates how
probable are votes that are far from σ (when φ = 0, all voters
vote σ; when φ = 1, voters’ votes are uniformly random).

In order to create a more realistic distribution of votes,
which commonly included an urban-rural split, we used the
normal distribution to create a dispersion of votes aligned
with the distance from the “city”. We assign each city a
ground truth (to be explained below), and each voter’s pref-
erence order is chosen from a different distribution: use the
same normal distribution that allocated voters’ location, and
use the absolute distance from the city to determine the
value of φ for each voter, with the variance of the normal
distribution3 being of 0.5 or 0.25 (we present both results).
Therefore, if a voter is distant from the city, they also have a
higher probability of differing in their views from the city’s
ground truth.

Finally, we have 6 candidates, but we did not want to cre-
ate them equal—if they were equally popular, their expected
chance of success would be equal. Therefore, we intention-
ally created an unequal situation, in which some candidates
are more powerful than others. We did this by assigning 3
of the cities a ground truth in which the same candidate is
leading; an additional 2 cities had a ground truth of a sec-
ond candidate, and another 2 had a ground truth of a third.
The remaining 3 cities each had a ground truth with dif-
ferent candidates winning. Therefore, we had one initially
strong candidate (with 3 cities’ ground truth), 2 medium
strong candidates (each with 2 cities’ ground truth), and 3
weak candidates (each with a single city). Figure 3 shows
sample elections with variance of φ distribution 0.5 and 0.25.

6.2 Simulation Results
We expected weak candidates (that have been allocated

only a single city where they lead the ground truth pref-
erence order) to struggle to win. Somewhat surprisingly,

3We use the distance from the city, so actually half of a
normal distribution.
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Figure 4: Share of simulations in which a candidate who led
the ground truth ranking in 3, 2, or 1 cities managed to win
the election, depending on how many districts were possible.
Ratio of largest to smallest district was capped by that of
the US Senate; variance of φ distribution 0.5 (a) and 0.25
(b), so voters are more concentrated geographically.
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Figure 5: Share of simulations in which a candidate who
led the ground truth ranking in 3, 2, or 1 cities managed
to win the election, depending on how many districts were
possible. Ratio between districts was not bounded; variance
of φ distribution 0.5 (a) and 0.25 (b).

they did not do very badly—as can be seen in Figure 4a.
Moreover, as the number of districts drops, the ability of
less supported candidates to win actually grows, as they are
able to divide other candidates’ voters between their differ-
ent districts, essentially overwhelming their vote (thanks to
using plurality in each district).

We also examine what happens when we decrease the
spread of opinions by having a smaller variance of opinions—
we reduced the variance of potential values of φ, so most vot-
ers have significantly reduced noise compared to the ground
truth. As can be seen in Figure 4b, this essentially strength-
ened the power of the cities, as even“rural”voters were closer
to them in their preference order. This meant that it was
much harder for weak candidates to succeed, and the gap
between stronger and weaker candidates grows.

The dynamic shown here is not significantly different when
we examine the outcome without limiting the relative size
of districts (Figure 5). The rise in less-supported candidates
success rate as number of districts decrease is much more
rapid, since candidates are able to include their opponents
in a few large districts in many more cases (this also explains
the higher rate of success). Not limiting the difference be-
tween district sizes also seems to cause a “bump” when there
are extremely few districts, in which it is sometimes harder
for weaker candidates to push the powerful, 3-city, candidate
to a few districts.
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Figure 6: Maximal and minimal district number that can
enable a party to become the plurality winner (line graphs)
compared to share of popular vote and MK share (bar
graphs). Ratio between the population of the most populous
district and that of the least populous one was bounded.

7. GERRYMANDERINGPLURALITY IN THE REAL
WORLD

We now turn to real-sworld data. While it does not allow
us to easily explore the influence of various variables on the
results, we are able to see in recent election results (2015 UK
and Israeli elections) how different districting could affect
the outcome. Our results attest to the primacy of geograph-
ical dispersion as a key aspect, apart from voting share or
parliamentary seat share.4

7.1 Israeli Results
The dataset of the 2015 Israeli legislative election5 con-

tains the number of voters and vote distribution in every
Israeli city, town, village, and hamlet. We considered each
location both a voter and as a possible ballot box. All voters
in a particular locale were considered as if they were living
in the same central location. The location of the voters and
the ballot boxes is the geographic location of the place itself.
We had in our dataset 1098 locales.

In Figure 6 we show parties that won at least some of
the 120 seats in the Israeli 20th Knesset, the percentage
of the popular vote, and the percentage of Knesset seats
won in the election. Moreover, for every party the graphs
show the maximal and minimal number of districts such that
Algorithm 1 finds a partition to that number of districts such
that the party wins the plurality of districts.

Figure 6 shows that with Israeli voters’ distribution, the
ability to win is, in general, monotonic with the percent
of the vote. Interestingly, both Zionist Union and Joint
List parties have a very narrow band of district number
that allows them to win—they would need a rather tailored
district structure to win (examining Figure 8 shows they are
quite close to enlarging their possibility, so this may be an
artifact of these particular results).

When we do not constrain relative district sizes, as can be
seen in Figure 7, things are quite different. Unexpectedly,

4The elections we looked into use plurality, but, in general,
this technique can still be used, in a way, to analyze ger-
rymandering with other voting rules, by considering each
data point of a set of voters as a single weighted voter with
the voter’s full preference being according to the vote distri-
bution at that particular data point.
5http://votes20.gov.il/
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Figure 7: Results when not bounding the ratio between
largest and smallest districts.
Maximal and minimal district number that can enable a
party to become the plurality winner (line graphs) compared
to share of popular vote and MK share (bar graphs).
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Figure 8: Ratio between the number of districts the party
won and the maximal number of districts that any other
party won; in every iteration of Algorithm 1. When the
values are above 1, the greedy algorithm finds a partition
where the party wins a plurality of districts.

winning is no longer as tied to voting block, but much more
dependent on particular geographic distribution. The Ku-
lanu party won 7.49% of the votes, and the algorithm could
not find a partition to districts such that this party would
have won a plurality of districts; while the Jewish Home
party and the United Torah Judaism party both won below
7% of the popular vote, yet are able to win in a significant
number of district allocations, due to their particular geo-
graphic voter dispersal patterns, which are focused in ways
that allow them to relegate other candidates’ supporters into
few districts.

7.2 United Kingdom Results
The dataset of the 2015 British general election6 consists

of the number of votes for every party in every constituency.
As in the dataset of the Israeli elections, all voters in a par-
ticular constituency were considered as if they were living
in the same central location. We had in our dataset 650
constituencies.

Figure 9 shows for every party that won one of the 650
seats in the 56th Parliament of the United Kingdom, its

6http://www.electoralcommission.org.uk/our-work/
our-research/electoral-data
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Figure 9: Maximal and minimal district number that can
enable a party to become the plurality winner (line graphs)
compared to share of popular vote and MP share (bar
graphs)

percent of the popular vote, its percent of parliamentary
seats, and the number of districts the UK can be divided
into, that result in the party winning a plurality of districts.

Figure 9 shows that beyond the 2 large parties, the other
parties that were able to win by gerrymandering are geo-
graphically concentrated, despite parties with a larger share
of the vote being unable to do so. In Scotland (SNP) and
Northern Ireland (DUP) parties were able to find winning
gerrymandering, though parties with larger support (Liberal-
Democrats, UKIP, Greens), and even with more MPs (Liberal-
Democrats) were not able to do so.

Figure 10 shows the SNP had multiple district structures
that could make it victorious (unlike the DUP). Note that
while the SNP received a far smaller share of the UK vote
than the Zionist Union party did in Israel, thanks to its
geographical spread, it is much more flexible in the number
of districts in which it can become a winner.

8. DISCUSSION
In this work we introduced the gerrymandering prob-

lem, a control manipulation problem that is based on win-
ning district-based elections by using a particular division of
a spatial area into districts. We then examined solving this
problem with a greedy algorithm using simulations as well
as real-world data from the 2015 Israeli and UK elections.

It is obvious that if district lines were completely arbitrary,
the problem would be trivial: as was possible in pre-1832
Britain, with its multitude of rotten boroughs, one could de-
fine particular voters as a district on their own, while putting
a mass of voters into a single district, thus ensuring victory.
However, our requirement that voters vote in the nearest
geographical district to them prevents such barefaced gerry-
mandering (in fact, Elbridge Gerry’s own salamander shaped
district would not be allowed in our setting). This is in line
with current efforts to limit the possibility of gerrymander-
ing.

It is important to note that as we use compact and con-
tiguous districts, several of the suggested “fixes” to polit-
ically biased gerrymandering do not apply here. Despite
using this restricted type of gerrymandering we show in our
simulations and empirical work how different parties can be-
come winners with a carefully chosen district structure (and
this is beyond the structural issue detailed in [1]).
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Figure 10: Ratio between the number of districts the party
won and the maximal number of districts that any other
party won; in every iteration of Algorithm 1.

Our simulations show that even relatively weak candidates
can reach victory with well-structured gerrymandering, and
together wth the empirical work they clarify how, beyond
voting share and parliamentary weight, the significant issue
influencing the possibility of manipulation is the geographi-
cal dispersion of the voters. We hope further research will do
more to investigate the various variables that come into play
when manipulation is geographically based, and what is an
optimal gerrymandering strategy for various voter concen-
tration patterns. Moreover, examining sharper urban-rural
divides (as exists in the US) may be of interest, as it in-
creases the possibility of gerrymandering.

The relative size of districts is an important issue which we
took into account in our simulations and real-world analysis
in a fairly simple way—enforcing a fixed cap on the ratio
between their sizes (and we showed how different results
look when we do not enforce such a cap). Obviously, some
of the outcomes were much better than this cap—one of
the divisions in which Labour won a plurality of seats in the
British election had the maximal district only 2 2

3
larger than

the smallest one. While it is obvious that smaller parties will
struggle to gerrymander when a lower ratio is required, the
more specific relationship between geographic concentration,
district size ratio, and voter number, and how one can offset
any one attribute with another, is an interesting topic to
continue to explore in this area.
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