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ABSTRACT
We study the effects of bidder collaboration in all-pay auc-
tions. We analyse both mergers, where the remaining play-
ers are aware of the agreement between the cooperating
participants, and collusion, where the remaining players are
unaware of this agreement. We examine two scenarios: the
sum-profit model where the auctioneer obtains the sum of all
submitted bids, and the max-profit model of crowdsourcing
contests where the auctioneer can only use the best submis-
sions and thus obtains only the winning bid. We show that
while mergers do not change the expected utility of the par-
ticipants, or the principal’s utility in the sum-profit model,
collusion transfers the utility from the non-colluders to the
colluders. Surprisingly, we find that in some cases such col-
laboration can increase the social welfare. Moreover, merg-
ers and, curiously, also collusion can even be beneficial to
the auctioneer under certain conditions.

Categories and Subject Descriptors
K.4 [Computers and Society]: Electronic Commerce; K.4.3
[Computers and Society]: Organizational Impacts—Com-
puter - supported collaborative work

Keywords
Collusion, Mergers, All-Pay Auction, Crowdsourcing

1. INTRODUCTION
Auctions are a key research area at the intersection of game
theory, economics and computer science, which have recently
received great attention in multi-agent systems as a pow-
erful tool for task and resource allocation. In addition to
explicit auctions such as those run in auction-houses or on
the web, certain multi-player interactions can be modelled
as “implicit” auctions. For example, firms competing in a
race to issue a patent can be viewed as participating in a
“latent” auction—the firm that invests the most in research
effort is likely to issue the patent first, and secure itself the
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market [13, 8]. Similarly, workers employed by a firm may
compete for a performance bonus or for titles such as “em-
ployee of the month” [11]. In the above examples, the player
who exerts the most effort is likely to win the prize. How-
ever, the effort expended is itself costly to all players. Such
scenarios therefore fall under the broad category of “all-pay
auctions” [14, 23, 17], where every bidder pays his bid, but
only the highest bid gets the reward [27, 10].

Recently, various firms employed a similar theme in so-
called crowdsourcing contests. For instance, the video ser-
vice Netflix issued a $1,000,000 prize in a contest to improve
its film recommender system [12]. In this challenge, many
movie recommendation algorithms were submitted, and the
winning algorithm that offered the best performance un-
der Netflix’s criteria was chosen to receive the prize and
replace the old algorithm. Another example is that of pro-
gramming contests, such as those organised by Topcoder1

or CodeChef.2 In such contests, participants get to read
a specification describing a problem to solve, design algo-
rithms to best solve this problem, and submit their code to
the principal running the contest. The winner is selected
according to commonly known criteria, and only he wins a
reward.

Crucially, in such scenarios the participants exert costly
efforts in preparing their submissions, but most of that“goes
to waste”—only the best submission is used by the principal,
and only the author of the best submission is compensated
for his work, in the form of a prize. Since the effort comes at
a cost to the participant but increases his chance of winning,
making a good decision regarding how much effort to exert is
critical. Furthermore, in certain cases, the participants may
find it worthwhile to pool their efforts and make a joint sub-
mission. Note that making several submissions would not
make sense for the cooperating players, as only the high-
est quality one of these could possibly win the competition,
while the others are guaranteed to be wasted effort.

One possible scenario of such collaboration is mergers,
where the collaborating players declare that they are work-
ing together and preparing a single submission. In this case,
the other participants can modify their behaviour accord-
ingly. An alternative scenario is that of collusion, when the
cooperating players keep their collaboration secret. If the

1www.topcoder.com
2www.codechef.com



other participants are unaware of this collusion, we expect
they would not deviate from an equilibrium behaviour, at
least in the short run. In this case, the colluders can opti-
mise the effort level they exert to maximise their utility. An
important question is then, how would such collaboration
affect the outcomes of the auction?

Against this background, we study the effects of merg-
ers and collusion on all-pay auctions. Surprisingly, while
these auctions were thoroughly investigated with respect to
Nash equilibria [27, 10, 14, 17] and, on the other hand, bid-
der collaboration was shown to have a dramatic effect on
the bidders’ and the auctioneers’ profits in many other set-
tings [19], the impact of such collaboration in the context of
all-pay auctions has been left relatively unexplored.

We distinguish between two auctioneer utility models:

1. Sum-profit—the auctioneer obtains bids from all par-
ticipants, so his utility is given by the sum of the bids.
One such setting is the “employee of the month” sce-
nario, where the employer enjoys the efforts of all em-
ployees but only rewards the hardest-working one.

2. Max-profit—the auctioneer only uses the best submis-
sion, so his utility is determined by the maximal bid.
The crowdsourcing contest falls under this category:
all bidders put in effort in order to win, but the auc-
tioneer only enjoys the effort of the best candidate.

1.1 Our Contribution
We first investigate the impact of mergers and collusion on
the players’ bidding strategies (representing the effort lev-
els exerted). We then analyse the expected utilities of the
participants and the principal running the auction. Further,
we examine the change in variance of the above parameters
due to mergers and collusion, which captures the risks for
the bidders and the auctioneer.

Specifically, we show that the bidders’ expected profits,
or that of the auctioneer in the sum-profit model, do not
change under mergers. However, mergers do increase the
principal’s utility in the max-profit model (although not as
much as collusion, when the number of bidders is large).
Collusion, in contrast, has a much bigger impact on player
interaction. While in the case with no collaboration the
participants exhaust all their surplus and get zero utility, if
they collude, their expected profit is always positive. If there
are only a few colluders, the outsiders’ utilities may become
negative, but if the number of colluders is large, even the
non-colluders gain and obtain a positive utility.

Surprisingly, even the individual utility per colluder in-
creases as their numbers grow, thus incentivising the bid-
ders to join against the auctioneer. However, it turns out
that under certain conditions the principal may even gain
from collusion, both under the sum-profit and the max-profit
models. Thus, as opposed to most auction settings where
collusion limits competition and harms the auctioneer or the
non-colluding bidders, in certain all-pay auctions all parties
can actually gain from collusion.

Finally, we show how the effect of bidder collaboration on
social welfare depends on the model of the principal’s utility.
In the sum-profit model, social welfare does not change un-
der mergers or collusion. In the max-profit model, mergers
increase the social welfare (as the principal’s utility increases
and bidder utility remains the same), but collusion may de-
crease social welfare, since the overall losses by non-colluders

may be larger than the increase in the principal’s utility.
The paper is organised as follows. In Section 2, we for-

mally define an all-pay auction setting and characterise its
symmetric equilibrium, which is required for our further
analysis. The sections that follow then contain the main
results regarding player collaboration in all-pay auctions: in
Section 3 we discuss mergers, and we examine the impact
of collusion in Section 4. In Section 5 we consider scenar-
ios where some outsiders become aware of collusion and/or
several colluding coalitions may form. Section 6 introduces
the related literature, and Section 7 concludes.

2. MODEL AND PRELIMINARIES
We consider an all-pay auction with a single auctioned item
that is commonly valued by all the participants. Our setting
is a symmetric restricted case of the all-pay auction studied
in [10], where players’ values for the item may be different.

Formally, we assume that each of the n bidders issues a
bid of bi, i = 1, . . . , n, and all bidders value the item at
1. The highest bidders win the item and divide it among
themselves, while the rest lose their bid. Thus, bidder i’s
utility from a combination of bids (b1, . . . , bn) is given by:

πi(b1, . . . , bn) =


1

| argmax
j

bj |
− bi bi ∈ argmax

j
bj

−bi bi /∈ argmax
j
bj

Our focus is on a symmetric equilibrium—a mixed equilib-
rium with full support of [0, 1], so that each bidder’s bid is
distributed in [0, 1] according to the same cumulative dis-
tribution function F , with the density function f (shown to
uniquely exist in [10, 25]). As the bids are distributed in a
continuous range, with a non-atomic distribution, we do not
need to address cases of ties between them.

When there are no colluders, the setting is similar to one
considered in [10, 17, 14], where various results on behaviour
of non-cooperative bidders have been provided. To enable
us to evaluate the effect of mergers and collusion on the
auction, we build on this previous analysis, which we briefly
overview in subsections 2.1 and 2.2.

2.1 Bids
With no colluders at all, the expected utility of any partici-
pant with a bid b is:

π(b) = (1− b) · Pr(winning|b) + (−b) · Pr(losing|b)

where Pr(winning|b) and Pr(losing|b) are the probabilities
of winning or losing the item when bidding b, respectively.
In a symmetric equilibrium with n players, each of the bid-
ders chooses his bid from a single bid distribution with a
probability density function fn(x) and a cumulative distri-
bution function Fn(x). A player who bids b can only win if
all the other n− 1 players bid at most b, which occurs with
probability Fn−1

n (b). Thus, the expected utility of a player
bidding b is given by:

π(b) = (1− b)Fn−1
n (b)− b

(
1− Fn−1

n (b)
)
= Fn−1

n (b)− b

In a mixed Nash equilibrium, all points in the support yield
the same expected utility to a player, so we have π(x) =
π(y) for all x, y in the support. For an equilibrium with full
support, this yields π(0) = π(x) for all x ∈ [0, 1]. Since
π(0) = 0, this means that for all bids, Fn−1

n (b) = b. Hence,

we have

(
b∫
0

fn(x)dx

)n−1

= b, implying that Fn(x) = x
1

n−1



and fn(x) = x
2−n
n−1

n−1
. Therefore, the expected bid is:

E(bid) =

1∫
0

x·
x

2−n
n−1

n− 1
dx =

1

n− 1

1∫
0

x
1

n−1 dx =
1

n− 1
·
n− 1

n
x

n
n−1

∣∣∣∣1
0

=
1

n

The bid’s variance is thus:

V ar(bid) =

1∫
0

x2 ·
x

2−n
n−1

n− 1
dx−

1

n2
=

1

2n− 1
−

1

n2

That is, both the expected bid and the bid’s variance
monotonically decrease with n.

2.2 Profits
Given the expected bids, we now more closely examine the
profits of all parties. A bidder’s profit (BP) is characterised
by the probabilistic density function (p.d.f.) gBP below:

gBP (z) =

{
fn(1− z)Fn−1

n (1− z) z > 0

fn(−z)(1− Fn−1
n (−z)) z ≤ 0

This gives the expected bidder’s profit of

E(BP ) =

0∫
−1

z
1

n− 1
(−z)

2−n
n−1 (1 + z) dz+

+

1∫
0

z
1

n− 1
(1− z)

2−n
n−1 (1− z) dz =

= −
1

n
+

1

2n− 1
−

1− n
n(2n− 1)

= 0

The bidders’ profit thus has the following variance:

V ar(BP ) =

0∫
−1

z2
1

n− 1
(−z)

2−n
n−1 (1 + z) dz+

+

1∫
0

z2
1

n− 1
z

2−n
n−1 (1− z) dz =

=
3n2 − 5n+ 2

n(2n− 1)(3n− 2)

Differentiating the above gives −2n2+4n−1
(1−2n)2n2 , which is negative

for all n ≥ 2, so the variance in the bidders’ profit decreases
as the number of bidders increases.

As the expected profit of all bidders is 0, the auctioneer’s
profit (AP) is equal to the total social welfare of the auction.
In the sum-profit model the auctioneer retains all the bids
so his expected profit is simply the sum of expected bids:

E(AP ) =

n∑
i=1

E(bid) =
n∑

i=1

1

n
= 1

In this case, the variance in the auctioneer’s utility equals
V ar(AP ) = n

2n−1
− 1

n
, monotonically increasing in n.

In contrast, in the max-profit model the auctioneer’s util-
ity is only the maximal bid, which has the following cumu-
lative distribution function (c.d.f.) GAP :

GAP (z) =

{
Fn
n (z) = z

n
n−1 z > 0

0 z ≤ 0

The expected profit is then given by:

E(AP ) =

1∫
0

(
1− z

n
n−1

)
dz =

n

2n− 1

This expression is monotonically decreasing in n. Notice
that this value always exceeds 1

2
, so the auctioneer expects

to receive more utility from the auction than the utility ob-
tained by all the winners together (as the total value of the
item is 1). To find the variance we note that E(AP 2) =

n
3n−2

. Thus, the variance for the max-profit auctioneer is:

V ar(AP ) =
n

3n− 2
−
(

n

2n− 1

)2

=
n(n− 1)2

(3n− 2)(2n− 1)2

This expression increases with n, as we had in the case with
the sum-profit auctioneer.

3. MERGERS: EQUILIBRIUM ANALYSIS
Consider the case where k out of n bidders work together,
and do not hide the fact from the remaining participants
that they are cooperating. These bidders coordinate their
behaviour, and can thus be thought of as a single player,
whose strategy space is the cartesian product of the strategy
space of the coordinating agents. We refer to this player as
the “merged player” representing the coalition of coordinat-
ing players, and refer to the remaining non-merged players
as the “singleton players”. In equilibrium, the joint player
best responds to the strategies of the non-merged players,
and the strategy of each singleton player is the best response
to the other singleton players and the merged player.

As we noted earlier, only a best submission wins the auc-
tion, so the merged player would only waste effort if the
agents composing it were to make more than one submis-
sion. Therefore, since the merging players would only make
a single submission (using one of the identities of the merg-
ing players), we may consider the joint player as a single
bidder, and examine the equilibrium in the resulting game.

The utility of the “merged” player follows that of a single
bidder. Therefore, we are essentially seeking a Nash equilib-
rium for n− k + 1 bidders, as the merging group would bid
using a mixed strategy with full support. The resulting equi-
librium is thus equivalent to the equilibrium of the auction
with no mergers, but with fewer players. It follows immedi-
ately from the analysis of the setting with no mergers that
the expected profit for each bidder in this equilibrium would
remain zero, that the variance would grow (as it is mono-
tonically decreasing in the number of bidders), and that the
expected bid would grow to 1

n−k+1
. In broad terms, this

means that for non-merging players, if they win the auction,
they would have a lower utility than previously, and if they
lose, they would lose more (as the bids get higher). How-
ever, the chances of winning do increase, due to the lower
number of “actual” participants.

The auctioneer’s profit in the sum-profit model would not
change, as the total sum of bids is still 1. However, in the
max-profit model, the auctioneer’s expected profit (and the
social welfare) will increase, while its variance will drop.

4. COLLUSION
We now analyse the setting with colluding bidders, where
the other players are not aware of their collaboration. We
first focus on the case with a fixed number of colluders, and



then show how the utility of each member depends on the
size of a coalition. Finally, we examine the effect of collusion
on the profit of the auctioneer and the social welfare.

We wish to emphasise that the analysis of collusion is by
definition a short-term analysis rather than an analysis of
player behaviour in equilibrium. In a merger of players in an
auction (be it an all-pay auction or any other auction), the
collaborating players obtain an unfair advantage by coordi-
nating their bids, but the fact that they are collaborating
is known to the other players. In contrast, the unfair ad-
vantage of colluding players stems from the fact that other
players are unaware of this cooperation; in other words, the
non-colluders are not best-responding to the colluders’ bids.

Our focus in this section is thus on what colluders can
achieve in the short term, while the non-colluders have not
yet figured out that the colluders are working together. In
this short term, the non-colluders believe that all the bid-
ders are operating independently, so they expect all the
bidders to behave according to the symmetric equilibrium.
The colluders can capitalise on this behaviour of the non-
colluders, and improve their utility. As the interaction re-
peats in further auctions, more and more non-colluders may
become aware of the agreement among the colluders. We
consider possible middle term reactions for the non-colluders
as they become aware of collusion in Section 5. Once all non-
colluders learn of the agreement between the collaborating
agents, the system converges to the long term equilibrium
that characterises the situation where the agreement be-
tween the colluders is common knowledge—the equilibrium
under mergers, which we already examined in Section 3.

4.1 Fixed Number Of Colluders
Suppose we have k colluders out of n bidders, and that the
remaining players are not aware of the collusion. Under our
assumptions regarding the short-term impact of collusion,
we expect the other bidders to play according to the sym-
metric equilibrium. When the colluders submit a single bid
b, they win if all the other n− k bids are at most b and lose
otherwise, so their total utility is:

π(b) = (1− b)Fn−k
n (b)− b(1− Fn−k

n (b)) = b
n−k
n−1 − b

The variance for a fixed bid b is:

V ar(b) = (1− b− (b
n−k
n−1 − b))2Fn−k

n (b)+

+ (−b− (b
n−k
n−1 − b))2(1− Fn−k

n (b)) =

= b
n−k
n−1 − b

2(n−k)
n−1

To find optimal utility we examine bid when derivative is 0:

π′(b) =
n− k
n− 1

b
1−k
n−1 − 1 = 0

This implies b
1−k
n−1 = n−1

n−k
, yielding the optimal bid:

b∗ =

(
n− k
n− 1

)n−1
k−1

To see how this may affect the profits of participants in the
auction, consider the following example.

Example 1. Recall that in the case with no cooperation,
there is a mixed Nash equilibrium in which each player bids

according to a p.d.f. fn(x) = x
2−n
n−1

n−1
, with an expected bid of

1
n

and an expected utility of 0. A sum-profit auctioneer thus

obtains the expected utility of 1, while a max-profit auction-
eer gains n

2n−1
.

Thus, in the auction with two bidders, the equilibrium bids
are withdrawn from the uniform distribution with a p.d.f.
f2(x) = 1, and the expected bid is 1

2
. If there are 3 partici-

pants, the bids are distributed according to the c.d.f. F3(x) =√
x, with the expected bid of 1

3
. The auctioneer’s expected

profit in the sum-profit model is 1, while in the max-profit
model with 3 bidders it is 3

5
.

Now, if 2 of these 3 bidders collude, our results show they
should bid 1

4
, which gives the colluders the expected profit of

1
4

, while an outsider has the expected loss of 1
6

. The prin-
cipal’s expected profit decreases in both models: in the sum-
profit model it drops from 1 to 7

12
, and in the max-profit

model, from 3
5

to 1
4
F3( 1

4
) +

1∫
1
4

bf3(b) db = 10
24
< 3

5
.

It is quite intuitive that the fewer the bidders that are left
outside the coalition, the easier it is for colluders to out-bid
them. We formally show this.

Lemma 2. The colluders’ optimal bid monotonically de-
creases with k, and monotonically increases with n, up to
1
e

.

Proof. We have to show that the derivatives of b∗(·) with
respect to k and n are negative and positive, respectively.
We have:

(b∗(k))′ = −

(
n−k
n−1

)n−1
k−1

(k − 1)2

(
(n− k) ln

(
n− k
n− 1

)
+ k − 1

)
For any 1 ≤ k < n, the first multiplicative term is positive,
we only need to examine the sign of the second term, and

so it suffices to show that (n − k) ln
(

n−k
n−1

)
+ k − 1 > 0.

Using the standard logarithm inequality ln(1+z) ≥ z
1+z

, we
obtain the required result:

(n− k) ln
(
n− k
n− 1

)
+ k − 1 ≥ (n− k)

1− k
n− k

+ k − 1 = 0

Now, differentiating w.r.t. n, we get

(b∗(n))′ =

(
n−k
n−1

)n−1
k−1

(n− k) ln
(

n−k
n−1

)
+ k − 1

(n− k)(k − 1)

By the same inequality as above,

(b∗(n))′ ≥

(
n−k
n−1

)n−1
k−1

(k − 1) + k − 1

(n− k)(k − 1)
=

1−
(

n−k
n−1

)n−1
k−1

n− k
> 0

for any 1 ≤ k < n, as required.

Finally, we rewrite b∗ as

((
1− k−1

n−1

)n−1
) 1

k−1

and note

that for a fixed k and n→∞, we have that

b∗ →
(
e−(k−1)

) 1
k−1

= e−1. This completes the proof.

However, even if the collaborators optimise their bid accord-
ingly, the number of outsiders still has a negative effect on
their expected utility.

Lemma 3. The colluders’ expected profit under the opti-
mal bid decreases with n and increases with k.



Proof. The overall expected profit for colluders when
bidding optimally is:

π(b∗) = (b∗)
n−k
n−1 − b∗ =

(
n− k
n− 1

)n−k
k−1

·
k − 1

n− 1

Differentiating this w.r.t. n gives

(
n−k
n−1

)n−k
k−1

ln
(

n−k
n−1

)
n− 1

which is negative as the first multiplicative term in the nu-
merator is positive, and the logarithm of n−k

n−1
< 1 is nega-

tive. Thus, the profit is monotonically decreasing in n. Now,
taking the derivative w.r.t. k results in

(
n−k
n−1

)n−k
k−1

(
− ln

(
n−k
n−1

))
k − 1

This expression is positive using the same argument as be-
fore, and so the total expected profit of colluders increases
with their number, k.

4.2 Optimal Number of Colluders
We now show that not only does colluders’ overall utility
increase with their group size, individual share of each mem-
ber also grows. This convexity implies colluders have strong
incentives to invite more players to participate in collusion.

Theorem 4. The expected profit per colluder increases
with k.

Proof. The individual expected profit for each member
of the coalition is:

h(k) =
π(b∗)

k
=

(
n− k
n− 1

)n−k
k−1

·
k − 1

k(n− 1)

The derivative w.r.t. k is given by:

h′(k) = −
(n− 1)

(
n−k
n−1

)n−k
k−1

(
k(n− 1) ln

(
n−k
n−1

)
+ (k − 1)2

)
(k − 1)k2

It suffices to show that the last multiplicative term in the
numerator is negative, or, equivalently, that:

ln

(
n− k
n− 1

)
< −

(k − 1)2

k(n− 1)

To this end, we use the standard logarithm inequality ln(1+
x) ≤ x. As required we have:

ln

(
n− k
n− 1

)
= ln

(
1 +

1− k
n− 1

)
≤

1− k
n− 1

< −
(k − 1)2

k(n− 1)

Hence, the colluders would seek to increase their numbers
as much as possible. Next, we explore the effect of collusion
on the auctioneer’s profit and the social welfare. We show
that this effect can be either positive or negative, depending
on the number of colluders and the total number of bidders.

4.3 Auctioneer’s Profits
We now show that if the total number of auction participants
is large enough, collusion may be beneficial to the principal
in both the sum-profit model and the max-profit model.

Theorem 5. In the setting with k colluders, the expected

auctioneer utility is n−k
n

+
(

n−k
n−1

)n−1
k−1

in the sum-profit model

and n−k
2n−k−1

(
1 +

(
n−k
n−1

) 2(n−k)
k−1

)
in the max-profit model.

The profit in both models decreases in the number of collud-
ers and increases in the total number of participants. For
sufficiently large n, they exceed the corresponding auction-
eer’s utilities in the setting without collusion.

Proof. The expected profit of a sum-profit auctioneer is
given by replacing the bids of 1

n
for each of the k collud-

ers with a joint single bid of
(

n−k
n−1

)n−1
k−1

. This results in a

total bid sum of n−k
n

+
(

n−k
n−1

)n−1
k−1

. Thus, collusion is ob-

viously profitable for the principal whenever the colluders’
bid is larger than k

n
. This, broadly speaking, is common for

smaller k and larger n (as, by Lemma 2, the bid increases
with n and decreases with k).

For the max-profit model, we examine the maximal bid’s
distribution, defined by the c.d.f. GAP as follows:

GAP (z) =


0 z < n−k

n−1

n−1
k−1(

n−k
n−1

)n−k
k−1

z = n−k
n−1

n−1
k−1

z
n−k
n−1 z > n−k

n−1

n−1
k−1

Where GAP (z) is not constant, its derivative is n−k
n−1

z
1−k
n−1 ,

so the expected auctioneer’s profit is:

E(AP ) =

(
n− k
n− 1

) 2n−k−1
k−1

+

1∫
(

n−k
n−1

)n−1
k−1

n− k
n− 1

z
n−k
n−1 dz =

=
n− k

2n− k − 1

1 +

(
n− k
n− 1

) 2(n−k)
k−1


We compare this with the expected principal’s profit in the
case of no collusion. To do so, we rewrite it as follows:

n− k
2n− k − 1

+
(n− 1)2

(2n− k − 1)(n− k)

((
1−

k − 1

n− 1

)n−1
) 2

k−1

The value of the above expression wobbles for low n and
k, but for a fixed k and increasing n (i.e., n → ∞) it ap-

proaches n−k
2n−k−1

+ (n−1)2

(2n−k−1)(n−k)
e−2. That is, while the

expected profit without collusion is edging close to 1
2
, with

colluders, the profit is closing in on
(
1
2

+ 1
2e2

)
, and there

exists a number of participants n for which the profit with
collusion is strictly greater than without collusion. For a
fixed n, the profit is monotonically decreasing in k, which
fits with earlier results indicating a lower bid from colluders,
as their cohort grows.

4.4 Social Welfare
We now analyse social welfare in the setting with colluders.
To this end, we need to calculate the expected profits of the
non-colluders. Surprisingly, as Theorem 6 below shows, in
some cases they may even benefit from other players col-
luding. Overall, however, the presence of colluders does not
affect the social welfare in the sum-profit model, and may
have either a positive or a negative effect in the max-profit
model, depending on the parameters of the setting.



Theorem 6. The social welfare in the sum-profit model
does not change due to collusion. In the max-profit model,
the presence of colluders may have different effects on the so-
cial welfare, depending on the relation between the number of
colluders and the total number of participants. In particular,
the social welfare drops for settings with many participants.

Proof. We calculate expected profit for non-colluders,
defined by p.d.f. g below, depending on colluders’ bid b∗:

g(z) =


f(−z)(1− Fn−k

n (−z)) −1 ≥ z < −b∗(k)
f(−z) −b∗(k) ≤ z ≤ 0

f(1− z)Fn−k
n (1− z) 0 < z < 1− b∗(k)

The expected profit of a non-colluder agent is: E(z) =
−b∗∫
−1

z
n−1

(−z)
2−n
n−1

(
1− (−z)

n−k−1
n−1

)
dz+

0∫
−b∗

z
n−1

(−z)
2−n
n−1 dz+

1−b∗∫
0

z
n−1

(1− z)
2−n
n−1 (1− z)

n−k−1
n−1 dz = k−n(b∗)

n−k
n−1

n(n−k)
.

This expression may be positive or negative, depending on
k and n. As the colluders’ bid does not exceed 1

e
, for small

k the expression takes a negative value. However, when k
is rather large with regard to n (e.g., when k is roughly n

2
),

it is positive. That is, the non-colluders may benefit from
collusion, despite not being aware of it.

Summing up the expected profits of all the parties in the
sum-profit model results in the same social welfare as in the
case of mergers or of no bidder cooperation:

k

n
−
n− k
n− 1

n−k
k−1

+
n− k
n− 1

n−k
k−1
−
n− k
n− 1

n−1
k−1

+
n− k
n

+
n− k
n− 1

n−1
k−1

= 1

However, in the max-profit model the results are more am-
biguous. For very large n, looking coarsely at the non-
colluders’ expected profit, we see that when we have n − k
such players, the sum of their expected losses approaches
− 1

e
. We already know that in this scenario the expected

profit of colluders is 0, so we need to examine this in re-
lation to the changes in the profits of the auctioneer (see
Section 4.3). In this case, the auctioneer’s profit approaches
1
2

+ 1
2e2

, so the social welfare drops below 1
2
, which is lower

than what would happen without colluders.

5. RESPONSE TO COLLUSION
Section 4 examined the short-term collusion impact, where
non-colluders continue behaving as the symmetric equilib-
rium prescribes (which is sub-optimal in the presence of
colluders). This approach is justified by the fact that this
symmetric equilibrium is a mixed one, so collusion may be
difficult to detect. However, after many interactions, a non-
colluder may notice that his winning rate is different from
what he would expect under the symmetric equilibrium, and
suspect foul play. How would he respond to the colluding
coalition? Would it make sense to collaborate with other
participants and play jointly against the colluders? In this
section we consider two scenarios for the middle-term: where
there exists a single player who is aware of collusion, and
where several colluding coalitions are possible.

5.1 A Player Aware of Collusion
If one of the players becomes aware of k other bidders col-
luding, he would never submit a non-zero bid below the col-
luders’ bid b∗(k), as then he would lose and get a negative
utility. He would rather respond by either bidding 0 (thus

obtaining zero utility), or placing a bid b which is higher
than b∗(k). In the latter case, his expected profit is:

π(b) =(1− b)Fn−k−1
n (b)− b(1− Fn−k−1

n (b)) = b
n−k−1
n−1 − b

Note that this is always positive (as b ≤ 1 and n−k−1
n−1

< 1),

hence it is always beneficial to bid above b∗(k) rather than
0. As the optimal bid for k+ 1 colluders is b∗(k+ 1), which
according to Lemma 2 is smaller than b∗(k), the best bid
for the responder is the smallest possible value above b∗(k).
Having a larger bid is less profitable, as the bidder’s expected
profit is monotonically decreasing in k when k > b∗(k).

Now, since this bid is larger than 1
n

, this means that in the
sum-profit model, it is beneficial for the auctioneer to expose
the existence of a collusion ring to some players. Similarly,
in the max-profit model, the expected profit grows (espe-
cially when k is significantly smaller than n), making the
revelation profitable to this auctioneer type as well.

5.2 Several Groups Of Colluders
If there are several groups of colluders that are not aware
of one another, each would bid its optimal value as pre-
scribed by the previous analysis. By Lemma 2, this bid
decreases with the size of a coalition, and so the smallest
coalition would outbid the others and get positive (though
sub-optimal) expected utility. Indeed, suppose there are m
colluder groups, each with ki colluders, and let kmin =
min{k1, k2, . . . , km}. The expected profit of the smallest
(winning) coalition is

(
n− kmin

n− 1

) n−1
kmin−1

·
n−

∑m
i=1 ki+m−1

n−1

−
(
n− kmin

n− 1

) n−1
kmin−1

=

(
n− kmin

n− 1

)n−
∑m

i=1 ki+m−1

kmin−1

−
(
n− kmin

n− 1

) n−1
kmin−1

As the bids are larger with a smaller number of colluders,
the auctioneer prefers several small groups of colluders over
a single big one. If kmin is large enough, it becomes worth-
while for a sum-profit auctioneer to uncover collusion rings
and publicise them. Similarly, for a max-profit auctioneer,
it may be worthwhile to expose the collusions (even more so
than for the sum-profit one). For example, for n > 6, the
sum-profit auctioneer would rather divide the bidders into
pairs. However, for the max-profit auctioneer, it is never
profitable to have all bidders be colluders. As the maximal
bid of colluders is 1

e
(by Lemma 2), and his expected profit

without them is above 1
2
, the max-profit auctioneer “needs”

non-colluders to increase his expected profit.

6. RELATED WORK
Research into all-pay auctions originates in political science,
dealing with lobbying [18, 9], but much of the analysis is
found in auction theory studies [22, 20].3 When bidders have
the same value distribution for the item, [25] showed that
there is a symmetric equilibrium in auctions where the win-
ner is the bidder with highest bid. A prominent study of all-
pay auctions in full information settings is [10], showing how
most valuations—apart from the top two—are irrelevant to
the analysis of the winner, and (using [18]), showing that in
most cases, the possible equilibria are those with full support
on the range from 0 to the second highest valuation; when

3Such collusion is also somewhat reminiscent of work on
political mergers [28, 5, 3].



all players have the same valuation, a full support is the only
symmetric equilibria possible. That work does not deal with
cooperation among players, but helps validate our choice of
focusing on full-support equilibria. Collusions in auctions
(nicknamed “bidding rings”) was examined for various auc-
tion types [26, 4, 6, 15, 7, 2]. First-price and second-price
auctions differ in their ability to“self-police”each bid [22, 20,
24], which affects the impact of collusion in them. A model
of mergers with full information was proposed in [19] for
many auctions, including auctions where each bidder makes
an investment, and gains are divided among the bidders. It
explores various auction models in which there is no single
winner, but rather profits are distributed among the play-
ers according to their investment relative to the others. It
shows that mergers, in many domains (e.g., when there is a
marked benefit to be the top bidder), are profitable for their
participants, while when there is not a significant benefit
to being the maximal bidder, mergers may still be benefi-
cial; however, players do not coalesce around a single bid,
but rather divide their resources among them. In this set-
ting the only first-price auction is an all-pay one, and due to
its full information assumptions, that work dismisses all-pay
auctions as uninteresting, since the bidders’ profit is always
0.

A recent paper models auction collusion using voting tech-
niques [21]. There, bidders prefer some adversaries winning
over others, and so collude with them. Work on partial infor-
mation in auction collusions is somewhat limited and focuses
on the principal’s ignorance rather than on bidders hiding
information from one another (e.g. [16, 1]). It neither deals
with all-pay auctions, nor with rival groups of colluders.

7. SUMMARY AND DISCUSSION
All-pay auctions are an important domain in which mergers
and collusion can have a strong impact. Indeed, bidders in
an all-pay auction are somewhat weak, as they lose their
bid irrespective of whether or not they obtain the item. In
this paper, we showed that they can increase their power,
and improve social welfare, by collaborating with one an-
other. Our technical results are summarised in Table 1. We
demonstrated that mergers have a small positive effect on
social welfare (which for n → ∞ actually converges to the
same value as in a non-cooperative auction), and only the
auctioneer benefits in expectation (bidders remain with an
expected utility of 0). In contrast, collusion may lower so-
cial welfare below the non-cooperative case, but makes the
auction more egalitarian: the colluders, and not just the
auctioneer, obtain a positive profit in expectation.

Now, not only do these properties help the bidders—the
lack of transparent information enables knowledgable play-
ers, as well as the auctioneer, to effectively manipulate the
auction to their benefit. For instance, auctioneers would
rather have small collusion rings. We identified the values
for which auctioneers may choose to reveal a collusion ring,
making it effectively a merger, so as to increase their utility.

As an example, consider the sum-profit auctioneer who
strives to have a large number of small collusion rings, ide-
ally several pairs, but who would be satisfied with a larger
number of colluders up to a certain limit (for large enough
n, approximately n

e
). In a sense, the auctioneer is imple-

menting a “divide and conquer” strategy on the bidders, as
he strives to keep them small and separate. On the other
hand, a max-profit auctioneer would like a small colluding

group, but wishes to have a significant number of players be
non-cooperative. This auctioneer makes use of the collud-
ers as a sort of “insurance”—with a large number of players,
variation gets smaller, and probability of a large bid falls.
However, colluders (and the fewer the better) give the auc-
tioneer a significant minimum-bid, on which he can rely.

Our approach in this paper has some limitations. First,
our model is a simplified version of the all-pay auction of
Baye et al. [10], where the participant with the maximal
effort always wins the auction. More realistic models have
a probabilistic relation between the effort levels and win-
ning, such as the Tulloc contest function (see [27, 10, 14]).
Also, our model is simplistic in that all participants are
symmetric and equal in their ability or skill, so for each
of them the same effort results in the same quality. Be-
yond the simplicity of our model, our analysis focuses on
the long-term of collaboration, where the agreement be-
comes common knowledge, or on the short-term, where the
non-colluders act naively and follow the sub-optimal mixed
equilibrium strategy. We only briefly touched on the middle-
term, where agents have partial information regarding the
coalitions of other bidders. A detailed analysis of the middle-
term dynamics is required in order to have a complete pic-
ture of the impact of bidder collaboration in all-pay auctions.
Our analysis further assumes a constant number of bidders,
which is common knowledge. This is not realistic in many
anonymous settings, where bidders may freely come and go.

Finally, we analyse only one contest structure, where there
is a simultaneous interaction among all the agents. Other
research examines alternative structures like tournaments,
or contests with multiple winners [17], and the impact of
collusion in such settings should also be studied.4

Several questions remain open for future research. First,
how would our results change in more general settings, such
as domains when players are assumed to have heterogeneous
skill levels, or where the contest structure is richer? How can
bidders detect collusion by other players, and how many re-
peated interactions would they need to do so? Can our the-
oretical results be corroborated by empirical evidence from
real-world all-pay auctions? Finally, (how) can crowdsourc-
ing contests be designed to be resistant to collusion?
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