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ABSTRACT
Strategyproof (SP) classification considers situations in which a
decision-maker must classify a set of input points with binary la-
bels, minimizing expected error. Labels of input points are reported
by self-interested agents, who may lie so as to obtain a classifier
more closely matching their own labels. These lies would create
a bias in the data, and thus motivate the design oftruthful mecha-
nisms that discourage false reporting.

We here answer questions left open by previous research on strat-
egyproof classification [12, 13, 14], in particular regarding the best
approximation ratio (in terms of social welfare) that an SP mech-
anism can guarantee forn agents. Our primary result is a lower
bound of3− 2

n
on the approximation ratio of SP mechanisms under

the shared inputs assumption; this shows that the previously known
upper bound (for uniform weights) is tight. The proof relies on a
result from Social Choice theory, showing that any SP mechanism
must select a dictator at random, according to some fixed distri-
bution. We then show how different randomizations can improve
the best known mechanism when agents are weighted, matching
the lower bound with a tight upper bound. These results contribute
both to a better understanding of the limits of SP classification, as
well as to the development of similar tools in other, related domains
such as SP facility location.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence—
Multiagent Systems

General Terms
Theory, Algorithms, Economics

Keywords
Mechanism design, Classification, Game theory

1. INTRODUCTION
Approximate mechanism design without money(AMDw/oM) is

a rapidly growing area of research in game theory and multiagent
systems, whose goal is the design of mechanisms for multiagent
optimization problems (without the mechanisms’ use of payments).
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While the underlying problems (e.g., finding the median, or finding
the optimal classifier) typically have efficient algorithms, these al-
gorithms may fail in the presence of strategic behavior. Therefore
we seek mechanisms that have additional game-theoretic proper-
ties (usually strategyproofness) at the expense of a suboptimal, i.e.,
approximate, behavior.

One particularly interesting AMDw/oM problem is the design
of truthful learning algorithms, which incentivize experts to reveal
their true opinions, even in cases where they disagree with one an-
other. Within this framework, we focus on binary classification—
that is, there is a set of (known) data points that our mechanism
needs to classify as positive/negative. Data points can represent,
for example, medical records of tumors that an expert-system has
to classify as eithermalignantor benign. Following the standard
classification literature, the classifier is selected from a predefined
set of classifiers (e.g., linear separators in some space) known as
theconcept class.

Our mechanism outputs a classifier based on labels collected
from n distinct experts. The goal of the mechanism is to maximize
social welfare, by selecting a classifier that is closeon averageto
the opinions of all experts. However, experts may disagree as to
the correct label of a specific point. Furthermore, they may behave
strategically, i.e., report false labels if this will bias the resulting
classifier to be closer to their opinion. We are therefore interested
in strategyproof(SP) classification mechanisms, where no agent
(expert) can “gain” by lying. As a result, the outcome is just an
approximationof the optimal classifier, i.e., the selected classifier
makes more errors than the optimal one. We seek the best possible
approximation ratio that can be guaranteed using SP mechanisms.

1.1 Motivation
Note that the restriction to a predefined concept class is an impor-

tant part of the problem. Without it, we could simply classify each
data point separately. However, as rigorously demonstrated in the
machine learning literature, it is precisely this restriction that en-
ables us to generalize, i.e., to apply the outcome classifier on new,
unseen, cases. Previous papers on SP classification and learning
(see the next section) cover real-world examples where the need to
generalize justifies this restriction.

Nevertheless, SP classification might be required also for one-
time decision making. The following is an example showing how
concept class restrictions can be derived from external constraints.

An example.
Consider a situation in which two or more parties (the agents of

our scenario) are in a conflict regarding the ownership of a certain
piece of land. The property is abundant with resources in various



locations (the data points), and the parties may attribute different
(possibly negative) importance to each resource. A neutral arbi-
trator agrees to hear them out and divide the field between them
in a way that will maximize the average utility of all the involved
parties. It is reasonable to assume that this division has some con-
straints, for example, that the border has to be a straight line, or
that it has to pass through a specific location. This leaves us with
a (large, possibly infinite) set of borders, or classifiers, from which
the arbitrator may choose. Knowing how their reported preferences
affect the decision, each party may misreport its true evaluation of
each resource, in an attempt to achieve a favorable outcome.

1.2 Related Work

Strategyproof classification.
The first paper on SP classification was by Meir, Procaccia, and

Rosenschein [12], who studied a highly restricted case in which
only two classifiers are available. The authors proposed a sim-
ple deterministic 3-approximation mechanism, and proved that no
better (deterministic) SP mechanisms exist. They further demon-
strated a randomized SP mechanism that guarantees an approxima-
tion ratio of 2, and that this bound is also tight.

We follow an extension of this model outlined by the same au-
thors in [13], where arbitrary concept classes can be used, but the
same set of data points is stillsharedby all agents. Notably, no
bounded approximation ratio can be guaranteed by deterministic
SP mechanisms, but the authors show how selecting a random agent
as a dictator guarantees an approximation ratio of 3, and one that is
even better (3 − 2

n
) when agents are non-weighted. However, it is

unknown whether better randomized mechanisms exist.
A similar model without the shared inputs assumption has also

been studied, showing mainly negative results [14]. Using results
from social choice theory, the authors showed that deterministic
SP mechanisms cannot guarantee any useful approximation ratio.
They further conjectured that a similar reduction can be used to
supply a lower bound for randomized mechanisms, but failed to
supply one that does not require further technical assumptions.

Approximate mechanism design without money.
Mechanisms that deal with strategic behavior of agents have been

proposed recently for a large range of applications. While certain
restrictions may allow the design of optimal SP mechanisms [19],
often this is not the case, and approximation is a must. Outside the
classification domain, SP learning algorithms were studied for both
clustering [17] and regression [16, 4]. Other mechanisms have been
proposed for facility location (see e.g., [1, 11], and [18], which also
provides a clear overview of the field), matching [2, 6], resource al-
location [8, 9] and more. As our motivating example shows, prob-
lems in one domain can sometimes be formalized in other domains
as well. There are also interesting similarities between some of the
results and techniques in those various domains.

Other related work.
A closely related, yet different, challenge isadversarial classi-

fication [10, 3, 5]. Here the underlying assumption is that labels
are chosen intentionally to hamper the mechanism (for example to
avoid spam detection), whereas in our setting the agents are ratio-
nal, rather than adversarial. Another difference is that the goal of
SP classification is to preclude untruthful behavior in the first place,
and not to cope with it.

1.3 Our Contribution
We close the gap left open by [13], matching their3 − 2

n
upper

bound for the non-weighted case with an equal lower bound, thus
proving its tightness. The proof relies on the fact that every SP
mechanism must be (randomly) dictatorial on a subdomain, thereby
showing that the technical assumptions in [14] can be eliminated.

We then consider the weighted case, giving three different SP
mechanisms for two agents that beat the known upper bound of
3. While the approximation ratio of the first mechanism is still
suboptimal (

√
5), it is based on simple heuristics, and shows an

interesting relation to the golden ratio. The other two mechanisms
guarantee 2-approximation, thereby matching both the upper and
lower bounds for two non-weighted agents. Finally, we present a
new mechanism for any set of weighted agents, with a guaranteed
approximation ratio of3 − 2

n
, thereby improving the previously

known upper bound and matching it with the lower bound.

2. MODEL AND NOTATIONS

2.1 Classification
We adopt the shared input model presented in [13], being con-

sistent where possible with their notations. We refer the reader to
previous work on SP classification [12, 13, 14] for more details.

We typically denote sets and their elements byA= {a1, a2, . . .},
and vectors bya = (a(1), a(2), . . .). ∆(A) contains all probabil-
ity distribution vectors over the setA. JEK denotes the indicator
variable of the expressionE. To facilitate reading, subscripts are
sometimes omitted when clear from the context.

Classifiers.
A classification settingis a pair 〈X , C〉, whereX (the input

space) is some finite set, andC (the concept class) contains func-
tions of the formc : X → {−,+}. In the land-ownership problem
for example,C contains all the allowed partitions of the territory.

An instanceof the setting〈X , C〉 is a tuple defined asS =
〈X, I, {Yi}i∈I ,w〉, whereX ∈ X k is the (public) set of data
points to be classified,I is the set ofn ≥ 2 agents,Yi : X →
{−,+} is the “correct” labeling according to agenti, andwi ∈ R

is her weight (
∑

i∈I wi = 1). Yi is referred to as agenti’s type,
and it is private information. We denote the partial dataset of agent
i by Si = 〈X,Yi〉. S contains all possible datasets over the input
spaceX . Let Sn,k be the set of all possible datasetsS such that
|I| = n, |X| = k. We also allow the limit casek = ∞, in which
caseYi : X → [0, 1]Q states the (rational) positive fraction on each
input point.S contains all datasets (finite and infinite).

Theprivate riskof a classifierc ∈ C is defined as the fraction of
agenti’s dataset that is misclassified byc, i.e.,

Ri(c, S) =
1

k

∑

〈x,y〉∈Si

Jc(x) 6=yK =
1

k

∑

x∈X

Jc(x) 6=Yi(x)K .

As Ri(c, S) can be seen as a measure ofdissatisfactionthat i suf-
fers due to outcomec, theglobal riskRI(c, S) measures the social
welfare, i.e. the (dis)satisfaction of the entire society. It is defined
as a weighted average over all agents,

RI(c, S) =
∑

i∈I

wi · Ri(c, S) =
1

k

∑

i∈I

∑

x∈X

wiJc(x) 6= Yi(x)K .

Let p ∈ ∆(C) be a lottery over the concept classC, that assigns
the probabilityp(w) to the conceptcw. For simplicity we treatp
as if it is a classifier, and extend the risk to lotteries linearly, i.e.,
R(p, S) =

∑

w∈X p(w) · R(cw, S).
We denote byERM(S) ∈ C (for Empirical Risk Minimizer)

the concept that makes the smallest number of errors onS. ci is a
shorthand forERM(Si) whenS is clear from the context.



Mechanisms.
A randomized mechanismis a functionM : S → ∆(C), i.e.,

that for every input dataset of any size, outputs a lottery over clas-
sifiers. We denote byM(S) or pM(S) (or justp whenM, S are
clear from the context) the outcome of the randomized mechanism
M on the input datasetS.

Note that we can define a mechanism using a lotteryd over
several other mechanismsM1,M2, . . ., wherepM(S)(c) equals
∑

d(j)pMj(S)(c). We define the following properties:
A dictator mechanism is identified with a single agenti. For any

S, M returnsci(S) with probability 1.
A dupleis a mechanism that assigns probability 0 to all concepts,

except (at most) two.
A random-dictator(RD) mechanism is identified with a lottery

d ∈ ∆(I) over dictator mechanisms. This distribution may depend
on agent weights, if relevant. The two following RD mechanisms
are notable special cases:

• The weighted random dictator(WRD) mechanism returns
ci(S) w.p. wi.

• Theheaviest dictator(HD) mechanism always returnsch(S),
whereh = argmaxi∈Iwi. Ties are broken in favor of the
agent with the higher index, thush is uniquely defined.

A random-dictator-duple(RDD) mechanism is a lottery over
dictators and duples.

A mechanism is said to be anL-approximationmechanism if its
expected risk is at mostL times the optimal risk. Formally, for
every datasetS

RI(M(S), S) ≤ L · RI(c
∗(S), S).

A mechanism is said to bestrategyproof(SP), if no agent can
gain (in expectation) by lying. Formally, for every datasetS, agent
i, and alternative labelsSi = 〈X,Y i〉,

Ri(M(S), S) ≤ Ri(M(S−i, Si), S).

Note that duples and dictator mechanisms are always SP. Moreover,
RDs and RDDs are also SP.1

Intuitively, good mechanisms are both SP and have a low approx-
imation ratio; thus, we are interested in the best possible approxi-
mation ratio that can be achieved by randomized SP mechanisms.
The following bounds are known:

THEOREM 1 (MEIR, PROCACCIA AND ROSENSCHEIN[12]).
If |C| = 2, then there is a randomized SP mechanism that guaran-
tees a 2-approximation ratio. Furthermore, no SP mechanism can
do better.

Thus for classes of two functions, SP mechanisms are thoroughly
understood. For general concept classes, there are upper bounds:

THEOREM 2 (MEIR, PROCACCIA AND ROSENSCHEIN[13]).
For any concept classC, the WRD mechanism guarantees a 3-
approximation ratio. If all agents have equal weight, then the ap-
proximation ratio is3− 2

n
.

There are examples showing that these are the best approxima-
tion ratios that WRD can guarantee. However, it has been unknown
whether there areother SP mechanisms that are better. Our work
comes to answer this question. We make use of two additional
properties of classification mechanisms.
1This is since duples and dictators are SP indominant strategies,
not just in expectation, and therefore any combination of them (as
long as it does not depend on labels) is still SP.

Let a ·S be aduplicationof S, i.e., every data point inS appears
exactlya times ina · S, with the same labels. A mechanism is
consistentif for all a ∈ N, S ∈ S, M(S) = M(a · S).

A probability distributionp isµ-granular if all probabilitiesp(c)
are multiples ofµ, i.e., if there is some integer vectorq such that
q · µ = p. A mechanism is said to beµ-granular if for all S,
M(S) is µ-granular. Note that when we deal with mechanisms
that are implemented on digital computers, it is useful to assume
that they will beµ-granular for someµ.

2.2 Voting
Our proofs make extensive use of voting functions and their rela-

tions with classification mechanisms. We bring here the definitions
relevant to our needs. For a more detailed background on voting,
see e.g., [15].

In a voting scenario there is a set of voters (agents)I, and a finite
set of candidatesC. Each voter has a strict preference orderRi over
all candidates. We denote byc ≻i c′ the fact that voteri prefers
c over c′. A preference profileR = (R1, . . . , Rn) contains the
preference order of each voter (agent). LetRn be the set of all
possible preference profiles forn voters,R =

⋃

n≥2 Rn.
A randomized voting ruleis a functionf : R → ∆(C). Note

that preferences are private, thus the voting rule must use the orders
reported by the agents. The definitions of a duple, RD and RDD
also apply to voting rules. While the definition of manipulation in
deterministic voting rules is straightforward (i.e., there is an agent
that can gain by reporting false preferences), it does not apply as-is
to randomized rules. This is since the preferences of agenti over
lotteries of candidates are not uniquely defined byRi. To that end,
we must introduce cardinal (dis)utilities.2

A utility scaleui ∈ R
|C| fits orderRi if for all c, c′ ∈ C,

ui(c) < ui(c
′) ⇐⇒ c ≻i c

′.

We adopt the same notation to classification settings, meaning that
the risk ofc is higher than the risk ofc′.

A manipulationin f (by Gibbard) consists of a profileR, a utility
scaleui that fitsRi, and an alternative orderR′

i, such thati gains
according toui (formally, thatui(f(R)) > ui(f(R−i, R

′
i))). A

voting rule isstrategyproof(SP) if there are no manipulations inf .

THEOREM 3 (GIBBARD ’77 [7]). Letf be a randomized vot-
ing rule. If f is SP, then it is a lottery over duples and dictatorial
rules.

3. RESULTS

3.1 Multiple Agents with Uniform Weights
In this section we match the upper bound of3− 2

n
with a lower

bound, thus proving it is tight.
We use a simple input space with three input pointsX ={x, y, z}.

There are 3 classifiers,C = {cx, cy, cz}, wherecw(w′) =“+” for
w = w′ and “-” otherwise. When both the agent and the dataset are
clear from the context, we use the shorthandr(w) = Ri(cw, S).

THEOREM 4. LetM be an SP mechanism for the scenario
〈X , C〉. Then for anỹǫ > 0 and any|I| = n ≥ 2, there is an
instanceS with uniform weights such that

RI(M(S), S) >

(

3− 2

n
− ǫ̃

)

RI(c
∗(S), S).

Also, ifM is eitherconsistentorµ-granular, then we can find such

a dataset which is finite, and hask = O
(

1
ǫ̃
, 1
µ

)

data points.

2For consistency with the risk, we treat lower utility asbetter.



We will restrict the allowed datasets as follows. First,X contains
exactlyk data points on each input point, i.e.,3k data points in to-
tal. We denote byki(w), ki(w) the number of positive and negative
labels for each point. We further restrict the labels of each agent,
such that: one input point ofX is all negative (i.e.,ki(·) = 0); one
is all positive (i.e.,ki(·) = k); and the third has at least one label
of each (i.e.,1 ≤ ki(·) ≤ k − 1).

We refer to this third point as thecontingent point.3 Clearly,M
is still SP w.r.t. the restricted case.

The risk of each classifier can be simply written (e.g., forcx) as

r(x) = Ri(cx, S) =
1

3k

(

ki(x) + ki(y) + ki(z)
)

.

Note that every partial datasetSi is now identified with a strict
preference orderRi overC (for ease of exposition, assumeRi =
(cx ≻i cy ≻i cz)), and a rational numberαi ∈ (0, 1) which is the
fraction of negative labels on the contingent point y.

To see this, observe that

r(x) =
1− αi

3
; r(y) =

1 + αi

3
; r(z) =

3− αi

3
. (1)

Consequently,cx, cz classify the contingent point (which is y in this
case) as negative, andcy classifies it as positive.

We can therefore write eachSi as〈Ri, αi〉.
Our proof sketch can be summarized as follows:

1. Give a simpler, normalized presentation of the risk scale.

2. Show thatM is monotonic.

3. Show that any (monotonic) SP mechanism must ignore the
value ofα.

4. ThusM is actually a randomized voting rule overC.

5. SinceM is SP, it is an RDD.

6. Duples are bad, soM is almost entirely an RD.

7. We show a datasetS on which RD mechanisms have a close
to 3− 2

n
approximation ratio.

Crucially, all steps except the last one (Lemma 11) are indepen-
dent of agent weights.

Proof of Theorem 4.The preference order of agenti over lotteries
in a given settingS, is completely defined by her risk scale, i.e., by
the vectorr = (r(x), r(y), r(z)). Note that the risk of lotteryp
according to risk scaler is the inner productRi(p, S) = r · p.

DEFINITION 1. Two risk scalesr, t are equivalent, if for any
two outcomesp,p′ ∈ ∆(C),

r · p < r · p′ ⇐⇒ t · p < t · p′,

i.e., if they induce the same order over outcomes.

LEMMA 5 (NORMALIZATION ). Let Si = 〈Ri, αi〉, then the
risk scalesr = (r(x), r(y), r(z)) and t = (0, αi, 1) are equiva-
lent.

Proof. We denote byδ(w) = p(w)− p′(w). Note that

δ(x) + δ(y) + δ(z) = 0. (2)

3For infinite datasets withk = ∞ this means that the contingent
point must have a non-zero fraction of each sign.

In addition, it holds from (1) that

r(y)− r(x)
r(z)− r(x)

=
1 + αi − (1− αi)

3− αi − (1− αi)
=

2αi

2
= αi. (3)

p · r < p
′ · r ⇐⇒

0 >p(x)r(x) + p(y)r(y) + p(z)r(z)

− (p′(x)r(x) + p′(y)r(y) + p′(z)r(z))

=δ(x)r(x) + δ(y)r(y) + δ(z)r(z)

=δ(x)r(x) + δ(y)r(y) + δ(z)r(z)

− (δ(x) + δ(y) + δ(z))r(x) (from (2))

=δ(y) (r(y)− r(x)) + δ(z) (r(z)− r(x)) ⇐⇒

0 >δ(y)
r(y)− r(x)
r(z)− r(x)

+ δ(z) (division by a positive number)

=δ(y)αi + δ(z) (from (3))

=δ(x)t(x) + δ(y)t(y) + δ(z)t(z) = p · t− p
′ · t,

thusp · t < p′ · t, as required. �

Due to Lemma 5, we can work with the normalized risk scalet

instead ofr. This also holds for utility scales of voting functions.

REMARK 1. Normalization only works for a fixed scaler. If t
is the normalized scale ofr, it is not true for example thatp · t >
p · t′ derivesp · r > p · r′.

The following notations are used in our next two lemmas. Let
Si = 〈Ri, α〉, S′

i = 〈Ri, α
′〉. Assume w.l.o.g. thatRi = (x ≻i

y ≻i z) (i.e., x has the lowest risk fori). Letp = M(S) andp′ =
M(S′) denote the outcome of the mechanism on both datasets. Let
t andδ(w) as in Lemma 5.

SinceM is SP, we have the following constraints:

1. Ri(p, S) ≤ Ri(p
′, S) (otherwise,i can easily gain by re-

portingS′
i instead ofSi).

2. Ri(p, S
′) ≥ Ri(p

′, S′) (otherwise,i can gain by reporting
Si instead ofS′

i).

We user(w) andr′(w) as shorthand forRi(w, S) andRi(w, S′),
respectively.

The next lemma shows that SP mechanisms must be “mono-
tone”, i.e., adding more positive labels to a point can only increase
the probability that it will be classified as positive.

LEMMA 6 (MONOTONICITY). If α < α′, thenp(y) ≥ p′(y).

Proof. From the first constraint we have thatp · r ≤ p′ · r. From
Lemma 5 we can replacer with the normalized riskt, and thus

p · t ≤ p
′ · t ⇒

p(y)α+ p(z) ≤ p′(y)α+ p′(z) ⇒
δ(y)α ≤ −δ(z) (4)

Similarly, from the second constraint we have that

δ(y)α′ ≥ −δ(z) (5)

Taking the two inequalities together,

δ(y)α ≤ −δ(z) ≤ δ(y)α′ ⇒
αδ(y) ≤ α′δ(y) ⇒

δ(y) ≤ α′

α
δ(y) ⇒ (sinceα′

α
> 1)

δ(y) ≥ 0 ⇒ p(y) ≥ p′(y) �



OBSERVATION 7. If there is a manipulation under utility scale
(0, α, 1), the same manipulation must workeitherfor any1 > t >
α, or for any0 < t < α. This follows directly from(4), since the
inequality must hold as we changeα in one of the directions.

Our next lemma shows that the size of the positive fraction on
the contingent point is irrelevant, as long as the preference order
Ri is kept.

LEMMA 8 (INVARIANCE OF LABELS).

M(S−i, Si) = M(S−i, S
′
i).

Proof. We need to show that the constraints induced by strate-
gyproofness become inconsistent unless the outcomesp andp′ co-
incide. Unfortunately, the constraints that follow fromα andα′

will not suffice, and it is in fact possible to find a pair of outcomes
that hold them. The crux lies in adding athird pointβ between the
first two, showing that new constraints reach a contradiction.

We renameα′ to γ, so that we haveα < β < γ. We denote the
outcome ofM on each dataset aspα, pβ , andpγ , wherepα =
M(S−i, 〈Ri, α〉), etc. Rewriting (4) and reversingpα, pγ ,

(pγ(y)− pα(y))α ≥ pα(z)− pγ(z) (6)

Usingβ, we similarly derive the constraints:

(pβ(y)− pα(y))β ≤ pα(z)− pβ(z) (7)

(otherwise reporting(Ri, α) is a manipulation inβ), and

(pγ(y)− pβ(y))γ ≤ pβ(z)− pγ(z) (8)

(otherwise reporting〈Ri, β〉 is a manipulation inγ).
Now, assume (towards a contradiction) thatpα(y) 6= pγ(y).

From monotonicity we have thatpα(y) > pγ(y), and strict in-
equality also holds for at least one of the subintervals, i.e., either
pα(y) > pβ(y) or pβ(y) > pγ(y).

(pγ(y)− pα(y))α ≥ pα(z)− pγ(z) (from (6))

= (pα(z)− pβ(z)) + (pβ(z)− pγ(z))

≥ (pβ(y)− pα(y))β + (pγ(y)− pβ(y))γ (from (7),(8))

> (pβ(y)− pα(y))α+ (pγ(y)− pβ(y))α
(from monotonicity andα < β, γ)

= (pβ(y)− pα(y) + pγ(y)− pβ(y))α

= (pγ(y)− pα(y))α, which is a contradiction.

Thuspα(y) = pγ(y), i.e.,δ(y) = 0. From (4) and (5) it follows
thatδ(z) = 0. Finally, from (2) we have thatδ(x) = 0 as well, and
thereforeM(S−i, Si) = p = p′ = M(S−i, S

′
i).

A subtle issue lies in the finitek case, since the proof works only
for pairsα, γ that differ by at least 2 points (so there isβ between
them). However, fork ≥ 5, take anyα < α′ < γ < γ′. We then
have thatpγ = pα = p′

γ = p′
α, i.e., the same distribution must be

used at every point. �

LEMMA 9 (REDUCTION). M is an RDD.

Proof. This lemma completes the argument thatM is effectively
a voting rule, and therefore subject to the known limitations of SP
voting rules. It must use our assumptions onM in order to bound
the sample size; however, we first prove the lemmawithout these
assumptions, for the limit case ofk = ∞.

We define a voting rulef as follows. For any profileR, construct
the corresponding datasetS by settingSi = 〈Ri, αi〉 for some

arbitraryαi ∈ (0, 1). The (randomized) outcome off is defined
to beM(S). From Lemma 8, the choice ofαi does not affect the
outcome off .

Assume (towards a contradiction) that there is a collection of
datasetŝS on whichM is not an RDD. LetR̂ be the corresponding
preference profiles tôS; thusf is not an RDD on these profiles.
From Theorem 3,f is not SP, and thus has a manipulation.

W.l.o.g., there is a manipulation (inf ) for voter i, such that
x ≻i y ≻i z. By scalingui, we can further assume thatui(x) =
0, ui(y) = β, ui(z) = 1.4

From Observation 7 we can assume that the same manipulation
works withβ = 1

k′ for somek′ ∈ N (or β = 1− 1
k′ , which is the

symmetric case).
It is easy to see that ifSi = 〈Ri, β〉, then reporting the false

labelingS′
i = 〈R′

i, αi〉 is a manipulation for agenti in M:

ui(f(R)) > ui(f(R−i, R
′
i)) ⇒

Ri(M(S), S) > Ri(M(S−i, S
′
i), S),

sinceui is also the normalized risk scale forSi. This is in contra-
diction toM being SP; therefore,M is an RDD.

Since 1
β

is not bounded, we allowki(y)/k to take arbitrarily
small values, which is the limit caseSk=∞.

Boundingk under the consistency assumption.
We next show how the lemma still holds forany k, provided

that M is consistent. It holds from the previous paragraph that
M behaves as an RDD for all datasets of sizek′ or more. Let
k′′ ≥ k such thatk′′ = a · k for some integera. Now consider all
a duplications of datasets of sizek, i.e., all duplicated datasetsa ·S
s.t.S ∈ Sk. SinceM is an RDD forSk′′ , it is in particular an RDD
for the duplicated datasetsa ·Sk ⊆ Sk′′ , and from consistency also
for Sk.

Boundingk under theµ-granularity assumption.
We show that under this assumption,M is RDD for all datasets

of sizek′ ≥ 2
µ

. Denote byp,p′ the output ofM on the setsSi and
S′
i, respectively, and letδ = p − p′. Recall that the normalized

utility scale ofi is (0, β, 1). SinceR′ is a manipulation, we have
that

ui(f(R))− ui(f(R−i, R
′
i)) = βδ(y) + δ(z) > 0. (9)

We wish to show that there existsβ′ ∈
[

µ

2
, 1− µ

2

]

such that
if we takeβ = β′, thenR′ remains a manipulation (and thenk′

samples suffice).

Case 1 If δ(z) = 0, then from (9) we haveδ(y) > 0. Thus, taking
β = µ still ensures thatR′ is a manipulation, sinceµδ(y) +
δ(z) = µδ(y) > 0.

Case 2 If δ(z) > 0, then by the assumption ofµ-granularity we have
thatδ(z) ≥ µ. Also, we have the naïve bound ofδ(y) ≥ −1.
By settingβ = µ

2
we getµ

2
δ(y)+δ(z) ≥ −µ

2
+µ = µ

2
> 0.

Case 3 If δ(z) < 0 then by (9) we getδ(y) ≥ βδ(y) > −δ(z).
Thus, we can write−δ(z) = aµ andδ(y) = bµ for integers

4More formally, if there is a manipulation according toui, then
from Lemma 5 the same manipulation works with the utility scale
u′ = (0, β, 1), whereβ = ui(z)−ui(y)

ui(z)−ui(x) .



S1 Sj , j 6= 1
x y z R1(c) x y z Rj(c)

ki(·)/k 1− ǫ 1 0 1 ǫ 0
err of cx ǫ 1 0 1 + ǫ 0 ǫ 0 ǫ
err of cy 1− ǫ 0 0 1− ǫ 1 1− ǫ 0 2− ǫ

Table 1: The first row shows the positive fraction on each point
in S. The next rows describe the errors that each classifier
makes on each point. Ri(c, S) is the sum of error fractions of c
over the three points inSi.

1
µ
≥ b > a ≥ 0. From this we get

−δ(z)
δ(y)

=
aµ

bµ
≤ aµ

(a+ 1)µ
=

a

a+ 1
= 1− 1

a+ 1

≤ 1− 1
1
µ
+ 1

= 1− µ

1 + µ
< 1− µ

2
.

Thus, we have
(

1− µ

2

)

δ(y) + δ(z) > 0. �

We introduce a small constantǫ > 0, whose value will be deter-
mined later. For now it is sufficient to require that the number of
samplesk would be at least1

ǫ
, so that the contingent point can have

a positive fraction ofǫ or less.

LEMMA 10. If M returns a duple with some probability greater
than3ǫ, then its approximation ratio is at least 3.

Proof. Suppose that with probability of at least3ǫ, M returns a
duple over{cx, cy}. We define a datasetS, in which all agents label
z as positive ,x as negative, and y with a positive fraction ofǫ (i.e.,
ki(z) = k, ki(x) = 0, andki(y) = 1).5 The optimal classifier
c∗(S) is of coursecz, with a global risk ofr∗ = 1

3k
.

However,M must returncy (or cx) w.p. of at least3ǫ; thus its
risk is at least3ǫ · RI(cy, S) = 3ǫ

(

1
3
(1 + 1

k
)
)

> ǫ ≥ 3 · r∗. �

We can therefore assume thatM returns a random dictator w.p.
of at least1− 18ǫ (there are 6 different duples, and each one has a
probability of at most3ǫ).

LEMMA 11. Assume alln agents have the same weight. IfM
returns a random dictator (i.e., some lotteryd over agents), then
the approximation ratio ofM is at least3 − 2

n
− ǫ′′, whereǫ′′ =

2nǫ+ 96ǫ > 0.

Proof. Let i (w.l.o.g. i = 1) be the agent selected with the highest
probability (i.e.,d(1) ≥ 1

n
). We define the datasetS as follows:

S1 = 〈(y ≻ x ≻ z), 1 − ǫ〉, and for allj 6= 1, Sj = 〈(x ≻ y ≻
z), ǫ〉. Thus the selected concept of agent 1 isc1 = cy, and the
selected concept of any other agent iscj = cx (which is also the
optimal concept). The construction ofS is given in Table 1. To
simplify computations, we do not divide the risk by the number of
points and agents, and thus the global risk is in the range[0, 3n].
Thus,

r∗(S) = RI(cx, S) = R1(cx, S1)+(n− 1)Rj(cx, Sj) (10)

= 1 + ǫ+ (n− 1)ǫ = 1 + nǫ, whereas

RI(cy, S) = R1(cy, S1) + (n− 1)Rj(cy, Sj) (11)

= 1− ǫ+ (n− 1)(2− ǫ) = 2n− 1− nǫ.

5In the limit case replace1
k

with ǫ, as any fraction is allowed.

Our RD mechanism returnsc1 = cy w.p. of d(1) ≥ 1
n

, and the
best thing it can do is returnc∗ = cx w.p. of1− 1

n
. The risk of the

mechanism can be lower-bounded as follows:

RI(M) ≥ 1

n
RI(cy, S) +

n− 1

n
r∗

≥ 1

n
(2n− 1− nǫ) +

n− 1

n
(1 + nǫ) (from (10),(11))

= 2− 1

n
− ǫ+ 1 + nǫ− 1

n
− ǫ

= 3− 2

n
+ (n− 2)ǫ = 3− 2

n
+ (ǫ′′ − ǫ′′) + (n− 2)ǫ

= 3− 2

n
− ǫ′′ + (2nǫ+ 96ǫ) + nǫ− 2ǫ

> 3− 2

n
− ǫ′′ +

(

3− 2

n
− ǫ′′

)

nǫ

= (3− 2

n
− ǫ′′)(1 + nǫ) = (3− 2

n
− ǫ′′)r∗.

�

Finally, we bound the total risk ofM. Due to Lemma 9, the
outcome ofM is an RDD, i.e., a lottery over all6 possible du-
ples, andn possible dictators. We denote byRD the event thatM
selected any of the dictators. Note that due to Lemma 10, either
Pr(RD) ≥ 1− 18ǫ, or the approximation ratio ofM is at least 3
(and thus we are done).

Assume therefore thatPr(RD) ≥ 1 − 18ǫ. From Lemma 11
we have thatRI(M(S), S|RD) ≥ (3 − 2

n
− ǫ′′)r∗(S) (for S

as defined in the lemma). Denoteǫ′ = 18ǫ, ǫ̃ = ǫ′′ + 6ǫ′ =
(2n+ 200)ǫ.

RI(M(S), S) = Pr(RD)RI(M(S), S|RD)

+ Pr(¬RD)RI(M(S), S|¬RD)

≥Pr(RD)RI(M(S), S|RD)

≥(1− ǫ′)

(

3− 2

n
− ǫ′′

)

r∗(S) (from Lemmas 10,11)

>(1− ǫ′)

(

3− 2

n
− ǫ̃+ 6ǫ′ − 4

n
ǫ′ − 2ǫ̃ǫ′

)

r∗(S)

=(1− ǫ′)

(

3− 2

n
− ǫ̃

)

(1 + 2ǫ′)r∗(S)

=
(

1 + ǫ′ − 2(ǫ′)2
)

(

3− 2

n
− ǫ̃

)

r∗(S)

>

(

3− 2

n
− ǫ̃

)

r∗(S).

This concludes our proof, as for anỹǫ, we only need to setǫ
small enough (i.e.,k large enough). Specifically,k ≥ 1

ǫ
= 2n+200

ǫ̃

will suffice. �

3.2 Two Weighted Agents
In this section, we restrict our analysis to datasets that are com-

posed of just two partial datasets. Due to [13] we know that the
WRD mechanism guarantees a 3-approximation ratio in the worst-
case. Moreover, we know that for this mechanism the analysis is
tight when the smaller weight approaches 0. As for a lower bound,
we know from [12] that it is at least 2. Theorem 4 does not con-
tribute anything in this case, both because weights are non-uniform,
and because3− 2

n
for n = 2 is still 2.

Due to Lemmas 9 and 10, we know that in this case too, any
SP mechanism must be an RD (with high probability), but we still
have the freedom to define the probability of selecting each of the



two dictators, according to their weights.
Unless explicitly stated otherwise, we assume w.l.o.g. thatw1 ≤

1
2

≤ w2, and denotew = w1. We consider the HD and WRD
mechanisms, as described in Section 2.1. Clearly both mechanisms
are SP.

Consider Theorem 2. A slight variation of its proof reveals a
more accurate bound. Letwmin = mini∈I wi be the weight of the
lightest agents (in the two agent case,wmin = w).

THEOREM 12. WRD has an approximation ratio of3−2wmin,
and this bound is tight.

The following lemma will be useful in the analysis of our pro-
posed mechanisms. The proof is omitted due to space constraints.

LEMMA 13. LetS = 〈X, I, {Yi}i∈I ,w〉 be some instance with
n agents. Suppose we remove an agent (w.l.o.g. agent 1), thereby
creating an instanceS′ = 〈X, I ′, {Yi}i∈I′ ,w

′ = (w2, . . . , wn)〉.
Let c′ = c∗(S′) be the optimal classifier forS′; then

RI(c
′, S) ≤ 1 + w1

1− w1
RI(c

∗(S), S).

THEOREM 14. HD has an approximation ratio of1+w
1−w

, and
this bound is tight.

Proof. The upper bound follows immediately from Lemma 13, asc′

is selected by the remaining, heavier, agent. For tightness, consider
the following scenario. Letw ≤ 1

2
. There are2 samples:X =

{x, y}. Agent 1 classifies both as “-”, and agent 2 classifiesx as “+”
andy as “-”. There are two classifiers,C = {c+, c−}, that classify
both samples as “+” and “-”, respectively. The optimal classifier is
obviouslyc−, whose risk is1 − w. However, the heaviest dictator
is agent2, who choosesc+ (we assume a bias for tie-breaking).
The risk ofc+ is 2w + 1 − w = 1 + w. Thus, the approximation
ratio in this case is1+w

1−w
. �

Next, we combine HD and WRD into a better SP mechanism.
Let T = 3−

√
5

2
. We define thethreshold dictator(TD) as follows.

• The TD mechanism behaves like WRD whenw > T and
like HD otherwise.

COROLLARY 15. TD has a worst-case approximation ratio of√
5, and this bound is tight.

Proof. Supposew ≤ T . Then from Theorem 14 the approximation
ratio of TD is 1+w

1−w
≤ 1+T

1−T
=

√
5. Now supposew > T ; then from

Theorem 12 the approximation ratio of TD is3− 2w ≤ 3− 2T =√
5. The lower bound is achieved forw = T . �

Curiously, the optimal thresholdT is such that the ratio between
agents’ weights is exactlyΦ, the golden ratio.

A natural question is whethereven betterSP mechanisms exist,
and in particular mechanisms that match the lower bound of3 −
2
2

= 2. Interestingly, the answer isyes, and we now give two
examples of such mechanisms.

• The square-weight random dictator(SRD) mechanism re-

turnsci w.p. w2

i∑
j∈I w2

j

.

THEOREM 16. For two agents, the SRD mechanism has a worst-
case approximation ratio of2.

Proof. We will use the following lemma, showing a reduction to a
simpler problem (proof omitted).

LEMMA 17. Consider a setting with only two concepts that dis-
agree on all points{c−, c+}, and letM be an RD mechanism for
two agents. IfM guaranteesL-approximation in this restricted
setting (forL ≥ 2), thenM is anL-approximation mechanism.

Due to Lemma 17, we can assume thatc1, c2 completely disagree,
and that one of them is the optimal classifierc∗. Assume w.l.o.g.
thatc∗ = c1, and denote the optimal risk byr∗.

Suppose first thatw > 1−w. This is the easy case, as it implies
that the better classifier is selected with greater probability. Assume
therefore thatw ≤ 1−w, and consider mechanism HD. In the latter
case, we have thatRI(HD(S), S) = 1 − r∗. From Theorem 14
we have that1− r∗ ≤ 1+w

1−w
r∗, therefore

RI(SRD(S), S) =
w2RI(c1, S) + (1− w)2RI(c2, S)

w2 + (1− w)2

=
w2r∗ + (1− w)2(1− r∗)

w2 + (1− w)2
≤

w2r∗ + (1− w)2 1+w
1−w

r∗

w2 + (1− w)2

=
w2r∗ + (1− w)(1 + w)r∗

w2 + (1− w)2
=

1

2w2 − 2w + 1
r∗.

≤ 1

1/2
r∗ = 2r∗,

where the last inequality exists since2w2−2w+1 has a minimum
in w = 1

2
. �

By considering Lemma 17 together with Theorem 1, it follows
directly that there is another 2-approximation mechanism, using the
same randomization suggested by Meir, Procaccia and Rosenschein
for the two-function setting [12]. We refer to this mechanism as
MPR8.6

3.3 More than Two Weighted Agents
In this final section we extend our results beyond the two-agent

setting, describing a worst-case optimal SP mechanism for any set
of weighted agents.

We first try the threshold approach. Theorem 12 supplies us with
an approximation ratio of3−2wmin for the WRD mechanism. Sup-
pose we have some SPdn−1-approximation mechanismMn−1 for
n − 1 agents, wheredn−1 < 3. We can derive an SP mecha-
nismMn for n agents as follows: set a thresholdTn ∈ (0, 1). If
all agents weigh more thanTn, use WRD. Otherwise, remove the
lightest agent and runMn on the remaining data.

THEOREM 18. MechanismMn is SP, and has an approxima-

tion ratio ofmax
{

3− 2Tn,
1+Tn

1−Tn
dn−1

}

.

The proof follows directly from Lemma 13 and Theorem 12.
We can bound the worst-case approximation then, by settingTn

such that3 − 2Tn = 1+Tn

1−Tn
dn−1. As a special case forn = 2,

we get the TD mechanism with
√
5 approximation (Theorem 15).

Also, we know thatd2 = 2 (from Theorem 16), and thus by setting
the threshold for three agents toT3

∼= 3
20

, we get a (roughly)3 −
6
20

= 2 7
10

approximation mechanism for three weighted agents.
Similar threshold mechanisms can be iteratively derived for any
number of agents. While this mechanism already beats the upper
bound of3, it does not match the lower bound of3− 2

n
.

We finally turn to describing our final mechanism, which either
generalizes or beats all previous mechanisms for SP classification
with shared inputs. Letp′i =

wi

2(1−wi)
, andαw = 1∑

i∈I p′
i

.

6The mechanism, applied to our scenario, would select the lighter
and heavier agents w.p. ofw

2−2w
and 2−3w

2−2w
, respectively.



• The convex-weight random dictator(CRD) mechanism, re-
turnsci w.p.pi = αwp′i.

THEOREM 19. The CRD mechanism has an approximation ra-
tio ofαw + 1, which is at most3− 2

n
.

We omit the proof due to space constraints. However, we note that
it is based on the convexity of the weight function, giving rise to
the name of the mechanism. When applied to two agents, the CRD
mechanism is similar (but not identical) to the MPR8 mechanism,
and can therefore be seen as a generalization of it. Moreover, all the
upper bounds in [12, 13], as well as the ones in this paper, follow
as special cases from Theorem 19.

4. DISCUSSION
Our results have two primary implications on strategyproof clas-

sification. On the negative side, we have shown that the use of dic-
tators is necessary if one wants to maintain truthfulness in learning
algorithms, even when randomization is allowed. This means in
particular that the previously known bounds for SP classification
with uniform weights are tight.

On the positive side, we show that while dictators play a key role
in SP classification, non-trivial selection of the dictator can lead to
improvements in the approximation ratio of the mechanism. We
demonstrated how simple threshold heuristics can be used to safely
discard low-weight agents, thus improving the worst-case approx-
imation ratio (although it is still suboptimal). Our main positive
result is the CRD mechanism, which matches the lower bound for
SP classification and therefore cannot be further improved. In ad-
dition to generalizing all previously known upper bounds for the
shared input setting (from [12, 13]), our result shows that the uni-
form weight case is also the most difficult, and a better approxima-
tion ratio can be achieved as weights become more biased in favor
of some agents.

The learning-theoretic setting.
An important issue is the possibility to generalize from sampled

data, and apply the result classifier on unseen data from the same
distribution (a task known assupervised learning). It is shown in
Section 3 in [13] how the WRD mechanism can be extended in
such a way to a learning-theoretic setting. We note that all of our
mechanisms can be applied directly to the learning-theoretic set-
ting, making the same strategic assumptions described in [13].

Future research.
Perhaps more important than the specific bounds we proved, our

results and techniques may aid in improving the understanding of
randomized approximation mechanisms in other domains. Some
mechanisms for facility location [1] are based on ideas similar to
the WRD mechanism; our insights can be used to improve their
weighted versions. Also, our impossibility proof tackles rather gen-
eral issues, such as continuity and private information.7 This may
also help in the study of lower bounds in other domains.

Other future directions may include the study of new types of
strategic behaviors in learning problems, and providing a more for-
mal picture of the relations between seemingly unrelated AMDw/oM
problems.

7This is in contrast to [14], for example, where the lower-bound
proof relies on the intricate details of the reduction.
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APPENDIX

Proof of Theorem 12, forn = 2. For ease of exposition, we assume
thatw = 1

m
for some integerm ≥ 2. LetS = (S1, S2) be a two-

agent dataset. We now define a similar datasetS′ for n = m agents
with uniform weights:S′

1 = S1, and for alli > 1, S′
i = S2. Now

suppose we use the (n-agent) WRD mechanism onS′. Clearly,
WRD returnsc1 w.p. of 1

n
= w, andc2 w.p. n−1

n
= 1 − w, thus

WRD(S′) = WRD(S).
From Theorem 2.4 in [13],RI(WRD(S′), S′) ≤ 3 − 2

n
= 3 −

2w, and this bound is tight. For generalw, the proof is a minor
variation of the proof in [13]. �

Proof of Lemma 13.We denote byc∗ = c∗(S) the optimal clas-
sifier forS. If c∗ = c′ we are done, therefore assume they differ.
Let B ⊆ X the points on whichc∗, c′ disagree. The worst case is
when agent 1 completely agrees withc∗, i.e., whenR1(c

∗, S) = 0

(and in particularc1 = c∗). Otherwise we can increaseRI (c
′,S)

RI (c
∗,S)

by
removing all data points on which they do not agree. We can sim-
ilarly assume that both classifiers make no errors onX \ B (since
this will only improve the approximation).

Denote byr(c, A), r′(c, A) the fraction of errors on points from
A ⊂ X according tow,w′ (in particularr(c,X) = RI(c, S) and
r′(c,X) = RI′(c, S

′). Note thatc′ must also agree withc1 on all
points outsideB, thus

r(c′, X) ≤ (1− w1)r
′(c′, X) + w1

|B|
|X| . (12)

Also, sincec∗, c′ disagree on allB, we have that

|B|
|X|r

′(c′, B) = r′(c′, X) ≤ r′(c∗, X) =
|B|
|X|r

′(c∗, B) (13)

r′(c∗, B) ≥ 1

2
≥ r′(c′, B) (14)

r(c∗, X) = (1− w1)r
′(c∗, X) (15)

Therefore,

r(c∗, X) = (1− w1)
|B|
|X|r

′(c∗, B) (from (13),(15))

≥ (1− w1)
|B|
|X|

1

2
(from (14))

r(c′, X) ≤ (1− w1)r
′(c∗, X) + w1

|B|
|X| (from (12),(13))

≤ (1− w1)r
′(c∗, X) + w1

2r(c∗, X)

1− w1

= r(c∗, X) +
2w1r(c

∗, X)

1− w1
(from (15))

= r(c∗, X)

(

1− w1 + 2w1

1− w1

)

=
1 + w1

1− w1
r(c∗(X)),

as required. �

Proof of Lemma 17.Suppose at first thatc∗ ∈ {c1, c2}. In this case
we can effectively narrow our concept class toC′ = {c1, c2}, i.e.,
it is of size two. Now remove fromX all data points on which the
two selected concepts agree, i.e.,X ′ = {x ∈ X : c1(x) 6= c2(x)}.
Clearly this can only increase the approximation ratio, as it accen-
tuates the errors caused by selecting the wrong classifier. Note that
now both classifiers disagree on all data points; thus, we can take
another step in simplifying our scenario, by renaming labels and
classifiers so thatc1(x) = c+(x) =“+”; c2(x) = c−(x) =“-” for
all data pointsx ∈ X, and we are done.

We now turn to the case wherec∗ /∈ {c1, c2}. We will show
how to alterS so it would fit into the restricted setting, while the
approximation ratio can only increase.

Let B ⊆ X be all data points on whichY2(x) 6= c∗(x) (re-
call thatw2 ≥ w1). We now create a new datasetŜ, in which
the labels of agent 2 forB are flipped, i.e.,Ŷ2(x) = c∗(x) for
all x. In the new dataset̂S, c∗ is the best concept for agent 2,
and thusc∗(Ŝ) = c2(Ŝ). From the previous case we have that
RI(M(Ŝ), Ŝ) ≤ LRI(c

∗, Ŝ). Denote byr(c), r̂(c) the risk ofc
onS, Ŝ, respectively. SinceY1 remains unchanged,r̂1(c) = r1(c).

Suppose thatM(S) returnsc1, c2 w.p. p1, p2. Then onM(Ŝ)
has the same probabilities (weights are unchanged), exceptc∗ is
returned instead ofc2, as this is the best classifier for agent 2 in the
new dataset.

Note thatY2, c
∗ disagree on at most|B| points, as otherwise

agent 2 would have originally preferredc∗ overc2. Thusr2(c2) ≤
|B|. Also, in the new dataset we remove these|B| errors, thus
r̂2(c

∗) = 0, r2(c
∗) = |B|.

r̂(c∗) = w1r̂1(c
∗) + w20 (16)

= w1r1(c
∗) + w2 (r2(c

∗)− |B|) = r(c∗)− w2|B|
r(c2) ≤ w1r1(c2) + w2r2(c2) (17)

≤ w1 (r1(c
∗) + |B|) + w2|B| = |B|+ w1r1(c

∗)

= |B|+ w1r̂1(c
∗) + w2r̂2(c

∗) = r̂(c∗) + |B|
r̂(c1) = w1r̂1(c1) + w2r̂2(c1) (18)

≥ w1r1(c1) + w2 (r2(c1)− |B|) = r(c1)− w2|B|

Finally:

r(M(S)) = p1r(c1) + p2r(c2) (from (17),(18):)

≤ p1 (r̂(c1) + w2|B|) + p2 (r̂(c
∗) + |B|)

= p1r̂(c1) + p2r̂(c
∗) + |B|(p1w2 + p2)

= r̂(M(Ŝ)) + |B|(p1w2 + p2(w1 + w2))

≤ Lr̂(c∗) + 2w2|B| ≤ L(r̂(c∗) + w2|B|) (w2≥w1)

= L · r(c∗), (from (16))

which meansRI(M(S), S) ≤ L · RI(c
∗, S), as required. �

Proof of Theorem 19.

LEMMA 20. αw ≤ 2− 2
n

.

Proof. Let g(x) = 1
2−2x

. Note thatg is convex. Also, since
∑

i∈I wi = 1, we have that

1

n
≤
∑

i∈I

w2
i ≤ 1. (19)

(αw)−1 =
∑

i∈I

p′i =
∑

i∈I

wi
1

2− 2wi

=
∑

i∈I

wig(wi)

≥ g

(

∑

i∈I

wi · wi

)

=
1

2− 2
∑

i∈I w
2
i

(from Jensen’s inequality)

≥ 1

2− 2(1/n)
, (from (19))

thusαw ≤ 2− 2
n

. �



Let F be the set of all labeling functionsf : X → {−,+}. In
particularC ⊆ F . We denote byd(f, f ′) the number of disagree-
ments betweenf andf ′. d is a pseudo-metric, and thus symmetric
and satisfies the triangle inequality (T.I.) (see [13] for more details).
fi, ci denote the labels of agenti (i.e.,fi ≡ Yi), and the classifier

in C that is the closest to them (i.e.,c ∈ C that minimizesd(c, fi)).
For anyc, it holds that

RI(c, S) =
∑

i∈I

wiRi(c, S) =
∑

i∈I

wid(c, fi)

.
Note that for alli, d(ci, c∗) ≤ 2d(fi, c

∗), since otherwisec∗ is
closer tofi thanci.

RI(CRD(S), S) =
∑

i∈I

piRI(ci, S) =
∑

i∈I

pi
∑

j∈I

wjd(ci, fj)

=
∑

i∈I





∑

j 6=i

piwjd(ci, fj) + piwid(ci, fi)





≤
∑

i∈I





∑

j 6=i

piwj(d(ci, c
∗) + d(c∗, fj)) + piwid(c

∗, fi)





(T.I.)

=
∑

i∈I

piwjd(ci, c
∗)
∑

j 6=i

wj +
∑

i∈I

∑

j∈I

piwjd(c
∗, fj)

= αw

∑

i∈I

wi

2(1− wi)
d(ci, c

∗)(1− wi)

+
∑

j∈I

wjd(c
∗, fj)

∑

i∈I

pi

≤ αw

∑

i∈I

wi

2
2d(fi, c

∗) +
∑

j∈I

wjd(c
∗, fj)

= (αw + 1)
∑

j∈I

wjd(c
∗, fj) = (αw + 1)RI(c

∗, S)

≤
(

3− 2

n

)

r∗(S)

�
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