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ABSTRACT
In the strategyproof classification setting, a set of labeled
examples is partitioned among multiple agents. Given the
reported labels, an optimal classification mechanism returns
a classifier that minimizes the number of mislabeled exam-
ples. However, each agent is interested in the accuracy of
the returned classifier on its own examples, and may mis-
report its labels in order to achieve a better classifier, thus
contaminating the dataset. The goal is to design strate-
gyproof mechanisms that correctly label as many examples
as possible.

Previous work has investigated the foregoing setting un-
der limiting assumptions, or with respect to very restricted
classes of classifiers. In this paper, we study the strate-
gyproof classification setting with respect to prominent classes
of classifiers—boolean conjunctions and linear separators—
and without any assumptions on the input. On the negative
side, we show that strategyproof mechanisms cannot achieve
a constant approximation ratio, by showing that such mech-
anisms must be dictatorial on a subdomain, in the sense
that the outcome is selected according to the preferences of
a single agent. On the positive side, we present a randomized
mechanism—Iterative Random Dictator—and demonstrate
both that it is strategyproof and that its approximation ratio
does not increase with the number of agents. Interestingly,
the notion of dictatorship is prominently featured in all our
results, helping to establish both upper and lower bounds.
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1. INTRODUCTION
A classification setting consists of an input space and a

class of classifiers (known as the concept class), that is, func-
tions from the input space to the set of labels {+,−}. A
classification mechanism receives as input a dataset—a set
of input points and their labels, where each such labeled in-
put point is known as an example—and must return a clas-
sifier from the given class that classifies the given examples
as well as possible. For instance, the input space might be
images (represented as matrices of pixels), and the dataset
might label different images as showing a human face (pos-
itive label) or not showing a face (negative label).

In our setting the labels are reported by strategic agents.
Each agent controls a subset of the dataset, i.e., its own
subset of (labeled) examples. The input points controlled
by each agent are known, but their labels are private infor-
mation. Given the reported labels, the classification mech-
anism selects a classifier. However, by lying the agents may
achieve a classifier that better reflects their own labels, at
the expense of overall accuracy.

The cost of an agent, known as its risk, is the portion of
its dataset that is misclassified by the classifier. The social
cost, or the global risk, is the portion of misclassified exam-
ples with respect to the complete dataset. The performance
of a classifier is measured by its approximation ratio: the
ratio between the number of examples it misclassifies, and
the number of examples misclassified by the optimal classi-
fier from the concept class. A mechanism is said to be an
α-approximation mechanism if it yields an approximation
ratio of α with respect to any dataset. In addition, we say
that a mechanism is strategyproof (SP) if no agent can lower
its own risk by lying. In this paper we study classification
mechanisms that, at the same time, are SP and yield a good
approximation ratio.

A Motivating Example. Consider a company, Nestor,
conducting market research for a new line of products, e.g.,
candies. Nestor’s research department, always eager to ex-
ploit new technologies, decides to use state-of-the-art classi-
fication algorithms to classify a wide variety of existing can-
dies as either Tasty or Nasty. Sweetness, size, crunchiness,
and other features are selected by the company to represent
the input space. Nestor’s customer relations department
holds tasting events nationwide, where people taste and clas-
sify some popular candies. Individuals can only taste sev-
eral candies each, so some candies receive more attention
than others, because they have been served to more people.
Nestor will then apply these answers to generalize over the
entire feature space, creating the “perfect candy”.



Naturally, our tasters have different preferences, so their
answers may vary. Moreover, a person might try to influence
the creation of the new treat; he might classify a candy
that he likes as Nasty (or vice versa), if by doing so he can
bias the final classification to better match his opinion on
most candies. Other tasters may act in the same manner, if
only to “counter the mistakes” of others. Such manipulation
becomes even more powerful if carried out by one of Nestor’s
employees who is in charge, say, of reporting the results of
all tasting events held in Boston.

While our candy example may have an artificial flavor
to it, data collected from customers, retailers, salespeople,
and others is increasingly being mined and analyzed to learn
purchasing patterns, effectiveness of ads, and more. As the
“data providers” are being affected by the outcome of such
analyses, it is important to study the impact of their strate-
gic behavior.

Previous work on SP learning mechanisms. The agenda
of studying incentives in the context of classification was in-
troduced by Meir et al. in [9]. They studied a very restricted
setting, where the concept class contains exactly two classi-
fiers: the constant positive classifier, which labels the entire
input space positively, and the constant negative classifier.
They put forward a deterministic SP 3-approximation mech-
anism, and a randomized SP 2-approximation mechanism,
and proved that no mechanisms can do better.

In more recent work, the same authors studied a much
richer set of concept classes, under the restricting assump-
tion of shared inputs [10]. This means that all agents la-
bel the same set of data points, but may disagree on the
“correct” label of each data point. They show that under
this simplifying assumption, there is a randomized SP 3-
approximation mechanism for any concept class, whereas
the approximation ratio in the deterministic case depends
linearly on the number of agents.

The model described above is the classification analog of
an earlier model introduced by Dekel et al. [4] in the context
of regression learning, i.e., where labels are real numbers.
Dekel et al. devised a deterministic SP mechanism that pro-
vides good results with respect to restricted concept classes.

Approximate mechanism design without money. A
crucial point with respect to all the previous papers on SP
classification and regression [4, 9, 10], and this paper as
well, is that the mechanisms under investigation do not em-
ploy payments. This is important since in the setting that
we study, if payments were allowed and preferences of the
agents are quasi-linear, truthfulness could be obtained while
minimizing the social cost, using the well-known VCG mech-
anism (see, e.g., [11]).

However, there are many domains where payments can-
not be made due to ethical or legal considerations (see,
e.g., [16]). Moreover, in internet settings payments are par-
ticularly hard to implement, mainly due to security issues.
The goal is then to obtain truthfulness by sacrificing op-
timality without resorting to money, that is, to design SP
approximation mechanisms without payments. This agenda
of approximate mechanism design without money was im-
plicitly introduced in [4], and was recently made explicit by
Procaccia and Tennenholtz [14].

Our results. The question repeated throughout this paper
regards the minimal classification error that can be guaran-
teed using SP mechanisms in an unrestricted environment.

More precisely, we are interested in the worst-case approxi-
mation ratio, when the output of the mechanism is compared
to the optimal classifier.

Our main results are negative. We show that when the
shared inputs assumption is dropped, deterministic mecha-
nisms become utterly useless. Indeed, we present a concept
class for which no deterministic SP mechanism can guar-
antee a nontrivial approximation: the approximation ratio
must linearly increase with the size of the complete dataset.
We consequently show that this negative result holds also
for the widely used concept classes of Linear Separators and
Boolean Conjunctions. We supply another negative result,
albeit weaker, regarding randomized mechanisms, suggest-
ing that their approximation ratio cannot be smaller than
the size of the largest dataset controlled by a single agent.

To establish a clear distinction between the deterministic
and the randomized cases, we put forward a randomized SP
mechanism, namely the Iterative Random Dictator mecha-
nism, which is capable of achieving an error that is close to
the randomized lower bound on many concept classes.

Other related work. SP regression mechanisms have been
studied by Perote-Peña and Perote [13]. Using simulations,
they compared such mechanisms to simple empirical risk
minimization under some complex assumptions on agent be-
havior. They were able to show that their SP mechanisms do
perform better, albeit without supplying analytical bounds
on the approximation ratio.

The clustering problem is closely related to classification.
Perote and Perote-Peña [12] study the case of SP clustering.
In their setting, each agent controls a point in R2. Given
the reported locations, the clustering algorithm outputs a
set of centroids. The utility of an agent is its distance from
the closest centroid. The authors establish a strong impos-
sibility result: they show that there are no reasonable deter-
ministic clustering mechanisms that are SP. We essentially
establish a result along the same lines in our model, but also
complement it with positive and negative results regarding
randomized mechanisms.

In learning theory there is some work on learning in noisy
settings (see, e.g., [7, 2, 3]). These papers investigate sit-
uations where the noise is random or adversarial. While
this line of work is related to the learning-theoretic inter-
pretation of the current paper, our assumption is that false
labels are reported so as to increase the utility of the liar,
and not in an adversarial way. This assumption allows us to
use game-theoretic tools to study how such “noise” can be
discouraged in the first place.

For additional references, we refer the reader to earlier
papers on SP regression and classification [4, 9, 10].

Structure of the paper. In Section 2 we formally de-
scribe the SP classification model. In Section 3 we prove
lower bounds on the approximation ratio of deterministic
and randomized SP mechanisms with respect to a toy prob-
lem. In Section 4 we show how to match these bounds by
presenting the Iterative Random Dictator mechanism, and
in Section 5 we consider the implications of our results with
respect to prominent concept classes. Some proofs are omit-
ted due to their length, but can be found online in [8].

2. MODEL
A classifier or concept c is a function from some input

space X (either a finite set or some subset of Rd) to labels



{+,−}. A concept class C is a set of concepts.
Let I = {1, . . . , n} be the set of agents, where n ≥ 2. For

each agent i ∈ I, let Xi = {xi,1, . . . , xi,mi} ∈ Xmi be the
set of input points that agent i controls, and let Yi : Xi →
{−,+} be a function from input points to labels. Informally,
the label yi,j = Yi(xi,j) reflects whether agent i believes
that the input point xi,j should be labeled as positive or
negative. We assume that the input points in Xi are public
information, whereas their labels Yi are private. In game-
theoretic terms, the labels Yi are the type of agent i.

We refer to the pair si,j = 〈xi,j , yi,j〉 as an example. We
denote all examples that are controlled by agent i by Si =
{si,j}mi

j=1, or alternatively (and slightly abusing notation),
Si = 〈Xi, Yi〉. We emphasize that each example is controlled
by exactly one agent, but there may be several examples
in the same place, possibly with different labels (i.e., with
xi,j = xi′,j′ but yi,j 6= yi′,j′).

1

A Classification Problem is defined by the pair 〈X , C〉.
An instance of the problem is given by a complete dataset
S = 〈S1, . . . , Sn〉, specifying the number of agents n, as well
as the exact examples of each agent. We sometimes also
use the notation S to refer to the multiset containing all
examples, i.e., S =

⋃
i∈I Si. For a specific instance we also

denote m = |S| =
∑

i mi, and k = maxi mi. It clearly holds
that max{n, k} ≤ m ≤ n · k.

We use the prominent 0–1 loss function (also employed
by Meir et al. [9, 10]) to measure the error of a classifier.
The risk, or cost, of agent i with respect to concept c is the
relative number of errors that c makes on Si.

2 Formally

Ri(c, S) =
1

mi

∑
〈x,y〉∈Si

Jc(x) 6= yK ,

where JAK denotes the indicator function of the expression
A. The global risk is defined as

RI(c, S) =
∑
i∈I

mi

m
· Ri(c, S) =

1

m

∑
〈x,y〉∈S

Jc(x) 6= yK .

In other words, the global risk is proportional to the social
cost, that is, the weighted sum of the costs of the agents,
where the weights are wi = mi. The goal is to find a classifier
that is good on average, namely, to minimize the global risk.

A deterministic mechanism M is a function from input
datasets S to classifiers c ∈ C; recall that we do not allow
a mechanism to make payments. Furthermore, we remark
that Ri(M(S), S) for all i ∈ I and RI(M(S), S) are well-
defined. A randomized mechanism, given a dataset, returns
a distribution over concepts, i.e., the output of a randomized
mechanism is a random variable ĉ taken from C, and we
would like to minimize the expected risk. Formally, for a
randomized mechanism M, define

Ri(M(S), S) = E [Ri(ĉ, S)|S] ,

and RI(M(S), S) = E [RI(ĉ, S)|S] .

We denote by OPT(S) (or simply by OPT if S is clear from
the context) the optimal risk that can be attained on the

1This multiplicity occurs not due to lack of decisiveness on
the part of the agent, but since the coordinates of the space
X may not be able to separate different data points. For
example, two different candies may have the same sweetness,
size, crunchiness, etc.
2Risk, rather than cost, is the term usually employed in the
classification literature.

dataset S, i.e.,

OPT(S) = min
c∈C

RI(c, S) .

If OPT(S) = 0, we say that S is separable. The quality of
the outcome of a mechanism is measured using the common
notion of approximation. Formally, a mechanism M is said
to be an α-approximation mechanism if for every dataset S,

RI(M(S), S) ≤ α ·OPT(S) .

A classifier c with the lowest risk in C with respect to S is
known as an Empirical Risk Minimizer (ERM), that is,

ERM(S) = argminc∈CRI(c, S) .

Note that even if C contains an infinite number of concepts,
S is finite and therefore can only be classified in a finite
number of ways. Thus there is always at least one ERM,
although it may not be unique.

In our game-theoretic model, the agents may lie by re-
porting labels that are different than the ones given by Yi.
We denote by Y i : Xi → {+,−} the reported labels of agent
i. We also denote by

Si = {〈x, Y i(x)〉 : x ∈ Xi}

the reported partial dataset of agent i, and the reported
dataset is denoted by S = 〈S1, . . . , Sn〉.

A strategyproof mechanism has the property that agents
can never benefit by lying, regardless of the behavior of the
other agents. Formally, for a dataset S and i ∈ I, let S−i

be the complete dataset without the partial dataset of agent
i. A (deterministic or randomized) mechanism M is strate-
gyproof (SP) if for every dataset S, for every i ∈ I, and for
every Si,

Ri(M(S), S) ≤ Ri(M(Si, S−i), S) .

We would like to find good truthful approximation mech-
anisms, i.e., mechanisms that are SP and also yield an α-
approximation ratio for a small α.

3. LOWER BOUNDS FOR A TOY PROBLEM
In this section we study the limitations of deterministic SP

mechanisms with respect to a toy classification problem. We
find that well-known impossibility results from social choice
theory can be leveraged to obtain a powerful lower bound.
The purpose of the toy problem is twofold:

1. It allows a clear presentation of our technique.

2. In Section 5, lower bounds for other prominent classi-
fication problems are obtained using the toy problem.

Our toy problem is defined as follows. The input space is
Xab = {a, b}, i.e., there are only two possible input points.
There are three possible classifiers: Cab = {ca, cb, cab}. These
classifiers are defined as follows:

ca cb cab

a + − +
b − + +

We denote the toy problem by TP = 〈Xab, Cab〉.
We will demonstrate that every deterministic SP mecha-

nism cannot guarantee any approximation ratio other than
the most trivial one. Indeed, notice that the maximum num-
ber of errors a mechanism can make on a given dataset is m



(since any classifier makes at most |S| = m errors); there-
fore, it is not hard to obtain an SP m-approximation mecha-
nism (we discuss some subtleties in Section 4). Our negative
result states that with respect to the toy problem above, no
deterministic mechanism can do better, up to a constant.

Theorem 3.1. There is no deterministic SP o(m)-approx-
imation mechanism for TP.

Crucially, even when k (the maximum number of points con-
trolled by an agent) is bounded, the approximation ratio still
grows linearly with the number of agents n.

The remainder of this section is devoted to proving The-
orem 3.1. To this end, we first put forward some key no-
tions from social choice theory, and present the Gibbard-
Satterthwaite impossibility result [5, 15] regarding voting
rules. We then show how every voting setting can be embed-
ded into a classification setting, where concepts and private
labels replace the candidates and voters’ preferences. The
main steps of the reduction show (roughly) that: first, ev-
ery SP classification mechanism induces an SP voting rule,
which must be dictatorial (due to Gibbard-Satterthwaite);
second, the proposed mechanism must also be dictatorial;
finally, any dictatorial mechanism cannot have a good ap-
proximation ratio.

Voting rules and manipulation. Let C be a finite set
of candidates, and, as before, let I = {1, . . . , n} be a set of
agents. Each agent i ∈ I holds a (private) strict linear order
�i over C, that is, a strict ranking of the candidates. We
denote the set of all linear orders over C by L = L(C). The
preferences of agent i are denoted by �i∈ L, i.e., c1 �i c2
means that agent i prefers c1 to c2.

The collection of the preferences of all agents is called a
preference profile, and denoted by �= 〈�1, . . . ,�n〉. We
denote by �−i the preference profile of all agents except i.

A voting rule is a function f : Ln → C from preference
profiles to candidates, which designates the winning candi-
date given the preferences of the voters. A voting rule f is
manipulable if there is a profile �∈ L and some preference
�′i of agent i, such that i strictly gains (according to �i) by
voting �′i instead of �i, i.e.,

f(�−i,�′i) �i f(�) .

If f is not manipulable, it is said to be strategyproof. Lastly,
a voting rule f is dictatorial if there is some agent i such that
for every preference profile �∈ L, the top-ranked candidate
in �i is the winner f(�). The Gibbard-Satterthwaite The-
orem [5, 15] essentially implies that strategyproofness can
only be obtained via dictatorship.

Theorem 3.2 (Gibbard-Satterthwaite). Let |C| ≥
3. If f is onto C and SP, then f is dictatorial.

Reducing classification to voting. The crux of the proof
of Theorem 3.1 is the fact that the Gibbard-Satterthwaite
Theorem basically holds in our toy classification problem.
This is not obvious, since the latter theorem implicitly as-
sumes that the agents can hold any ranking of the alter-
natives. In contrast, in our setting the preferences of an
agent over the classifiers are determined by its private la-
bels, but a priori the labels cannot induce every ranking.
Let us presently turn to the theorem’s proof.
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Figure 1: The fixed dataset X of TP, for n = 4 and
k′ = 3. Private labels are not shown, as they are
determined as part of the reduction.

Proof of Theorem 3.1. In our scenario, the collection
of input points X = 〈X1, . . . , Xn〉 is fixed, and defined as
follows. Assume for ease of exposition that the number of
agents n is even, and that there exists k′ ∈ N such that
k = 2k′ + 3. There are two blocks of agents in I, each of
size n/2. Agents from the first block hold 2k′ + 1 = k − 2
input points on a and two more input points on b; we denote
these agents by Ia. Agents from the second block, denoted
Ib, are symmetric with respect to a and b. The structure of
the dataset is illustrated in Figure 1.

As the input points X are common knowledge, the be-
havior of the mechanism is fully determined by the reported
labels Y . Note that any deterministic classification mecha-
nism in our scenario is a functionM from datasets into the
set of classifiers Cab = {ca, cb, cab}.

We define our set of candidates to be C = {ca, cb, cab} =
Cab (thus it is of size 3). When agent i labels its set of input
points Xi with the labeling Yi, it induces a preference rank-
ing over all possible classifiers (possibly with ties). Given Yi

and �i∈ L, we say that �i fits Yi if for all c1, c2 ∈ C,

Ri(c1, S) < Ri(c2, S) ⇐⇒ c1 �i c2 . (1)

That is, the order of preference over the three possible clas-
sifiers that is naturally induced by the labeling Yi is exactly
�i. Note that at most one order fits a given labeling. Hence,
it is clear that there is a natural mapping from Y to �. This
is not enough though, as our reduction requires a (one-to-one
but not onto) mapping in the other direction as well.

With respect to the first block of agents, Ia, we define a
mapping ga from preferences over C to labelings by explicitly
setting the private labels of the input points of Xi for each
of the six possible orders on C. This mapping is shown in
Table 1.

The reader is encouraged to verify, using the leftmost three
columns of the table, that each order �i indeed fits the la-
beling Yi = ga(�i). Since there are only 6 possible orders
on C, ga is well-defined. For agents in Ib, gb is defined in
a symmetric way, with the roles of a and b switched. To
conclude the point, the full mapping is naturally defined
by taking g(�) = 〈(ga(�i))i∈Ia , (gb(�i))i∈Ib〉. Hence, ev-
ery classification mechanism M induces a valid voting rule
(M◦ g) : L → C.

Lemma 3.3. Denote f =M◦ g. If M is SP and guaran-
tees a bounded approximation ratio, then f is dictatorial.

Proof. By the Gibbard-Satterthwaite Theorem (Theo-
rem 3.2), in order to show that f is dictatorial it suffices to
demonstrate that f is SP and onto.



Value of mapping ga(�i) Number of errors on Si

�i Yi(A1) Yi(A2) Yi(B) ca cb cab

ca �i cab �i cb + + − 0 2k′ + 3 2
ca �i cb �i cab + − − k′ + 1 k′ + 2 k′ + 3
cab �i ca �i cb + + + 2 2k′ + 1 0
cab �i cb �i ca − + + k′ + 2 k′ + 1 k′

cb �i ca �i cab − − − 2k′ + 1 2 2k′ + 3
cb �i cab �i ca − − + 2k′ + 3 0 2k′ + 1

Table 1: The leftmost column enumerates all six possible orders over classifiers. The next three columns
define the label of each input point according to Yi = ga(�i), as follows: B denotes the 2 input points on b;
the input points on a are divided into two sets, where A1 denotes the first (arbitrary) k′ input points, and A2

denotes the other k′+ 1. The last three columns show the risk of each classifier with respect to the labels Yi.

We first argue that the onto property of f follows from the
fact that M has a bounded approximation ratio. Indeed,
let c ∈ Cab. By Table 1, for each agent i ∈ I there is some
preference order �c such that the risk of i with respect to
c, when the labels of i are set according to g, is zero. Now,
assume that all agents have the labels that induce �c (i.e.,
∀i ∈ Ia, Yi = ga(�c), and likewise for Ib); then we must
have that for the labels Yc = 〈Y1, . . . , Yn〉 the output of M
is c, since this concept has zero risk and the others have
nonzero risk. Indeed, otherwise the approximation ratio is
unbounded. Therefore,

f(�c, . . . ,�c) =M(X, g(�c, . . . ,�c)) =M(X,Yc) = c .

We now prove that f is SP. Indeed, assume for the purpose
of contradiction that f is manipulable. Then there are �∈
Ln, i ∈ I, and �′i∈ L such that

f(�−i,�′i) �i f(�) .

Assume without loss of generality that i ∈ Ia. From the
definition of f ,

M(X, g(�−i,�′i)) �i M(X, g(�)) .

Let Y = g(�), Y ′i = ga(�′i). Thus

M(X, 〈Y−i, Y
′

i 〉) �i M(X,Y ) .

From the definition of g, Yi fits �i; thus, by using Equa-
tion (1) we get that

Ri(M(X, 〈Y−i, Y
′

i 〉), S) < Ri(M(X,Y ), S) .

Therefore agent i strictly gains by misreporting its true la-
bels, in contradiction to the assumption that M is SP.

We are now in a position to bound the approximation
ratio of M. Define f as in Lemma 3.3; by the lemma, f
is dictatorial. Without loss of generality let agent 1 be the
dictator, with 1 ∈ Ia; that is, agent 1 holds 2 input points
on b, and k−2 input points on a. We construct a dataset S,
defining a labeling for the input points in X, as follows. We
label the input points of agent 1 that are on b as negative,
and label all the other input points of all agents as positive.
It holds that

OPT(S) = RI(cab, S) =
2

|S| .

On the other hand, the labeling that we constructed for
agent 1 is the image under g of the order �ca where agent
1 favors ca. Since f is dictatorial, f(�ca ,�−1) must be ca,
hence the image under M is ca as well, since

M(S1, S−1) =M(X, g(�ca ,�−1)) = f(�ca ,�−1) = ca .

We have that RI(M(S), S) = RI(ca, S) = 1
2
− 2
|S| . There-

fore, the approximation ratio is bounded from below by

RI(M(S), S)

OPT(S)
=

1
2
− 2
|S|

2
|S|

=
m

4
− 1 ,

as required.

3.1 Lower bounds of randomized mechanisms
A natural question concerns the lower approximation bound

when randomization is allowed. Ideally, we would take our
toy problem TP (or a similar one), and prove that the ex-
pected risk of any randomized SP mechanism is also bounded
from below by some function of the size of the dataset.

We prove a somewhat weaker result by adding private
weights to the dataset of each agent, in addition to the
private labels. These weights affect the risk, but cannot
be taken into account by the mechanism. We define the
weighted risk as follows:

R̃i(c, S) =

mi∑
j=1

wi,jJc(xi,j) 6= yi,jK , (2)

where
∑mi

j=1 wi,j = 1. A mechanism is said to be SP in this
setting if for any set of weights no agent has an incentive
to submit false labels. We construct a new randomized toy
problem, RTP, with two agents and three classifiers, and
show the following.

Theorem 3.4. Assume that the risk is computed accord-
ing to Equation (2). Then there is no randomized SP o(k)-
approximation mechanism.

The proof idea is in principle similar to the proof of The-
orem 3.1, but instead of using the Gibbard-Satterthwaite
Theorem (which is limited to deterministic voting rules) we
use a later, more general result by Gibbard [6].

4. THE ITERATIVE RANDOM DICTATOR
MECHANISM

In this section we present a randomized mechanism that
beats the deterministic lower bound given by Theorem 3.1,
by guaranteeing an approximation ratio that does not grow
with the number of agents n. Rather, it depends only on
k—the size of the largest partial dataset. This result holds
with respect to a number of prominent concept classes. Our
mechanism is based on the simple idea of sequential, or it-
erative, dictatorship.

Let us first describe this idea in its deterministic interpre-
tation. A näıve dictatorship would simply return a clas-
sifier in ERM(Si), where i ∈ I is the dictator, for any
given dataset S. However, a dictatorship does not provide



a bounded approximation ratio. Indeed, consider a situa-
tion where agent 1 controls one positive example, and agent
2 controls one negative example. Agent 1 might choose a
classifier that labels the input point of agent 2 as positive,
even if the concept class contains a perfect classifier with
zero global risk.

This is remedied by considering an iterative (or sequen-
tial) dictatorship. The deterministic mechanism considers
the classifiers that are optimal with respect to agent 1, that
is, the set ERM(S1). Next, the mechanism restricts its at-
tention to the subset of classifiers, among ERM(S1), that
are optimal with respect to agent 2. We iteratively pro-
ceed in this way, until we have enumerated all the agents.
If there are several classifiers left at the end of the process,
we choose one of them arbitrarily. In other words, agent
1 is a dictator, but since ties between classifiers may occur,
they are sequentially broken according to the labels of agents
2, . . . , n, in this order. Similar sequential dictatorships have
been proposed in the literature for other domains, such as
voting [6] and resource matching [1].

Now, it is straightforward that this mechanism is SP. Fur-
thermore, the mechanism trivially yields an approximation
ratio of |S| = m. Indeed, if there is a classifier with global
risk zero, this classifier is chosen by the mechanism. Other-
wise, the optimal classifier has a global risk of at least 1

|S| ,

whereas the maximum global risk is 1. Thus, this simple
mechanism yields an SP upper bound that matches, up to a
constant, the one given in Theorem 3.1.

The randomized version of the iterative dictator notion is
quite natural as well. The mechanism first chooses a random
permutation of the agents. Then, the mechanism restricts
its attention to the optimal classifiers according to the first
agent, and iteratively breaks ties according to the next agent
in the permutation. We refer to this mechanism as Iterative
Random Dictator (IRD), and denote it by MIRD.

Since there are some technical nuances with the imple-
mentation of the mechanism, we give a more formal descrip-
tion in Algorithm 1. Assume each input point x∈X has a
boolean field, x.marked. Intuitively, the field is set to T (for
true) when our mechanism determines the final label of x.

We wish to quickly verify that our mechanism is indeed
SP, regardless of the classification problem. Indeed, first
note that the order in which agents are selected as dictators
is independent of the labeling and thus cannot be affected by
it. Consider any agent j that is selected in iteration t. The
input points of j that are not in St,j are already classified
(i.e., marked). Furthermore, the mechanism minimizes the
risk of agent j with respect to St,j , hence agent j cannot
benefit by lying. We next establish that the IRD mechanism
can be implemented efficiently.

Theorem 4.1. Let |S| = m. Suppose that the time re-
quired to find an ERM on S with respect to the concept class
C, is polynomial in m. Then it is possible to implement the
IRD mechanism such that the runtime of the algorithm is
also polynomial in m.

The key idea of this efficient implementation is to never ex-
plicitly represent the current set of concepts Ct. Instead,
we employ the marked examples as support vectors, using
them to determine the status of each unmarked example in
the next stage of the algorithm. The exact details of the
implementation are omitted.

The following result establishes an upper bound on the

Algorithm 1 Iterative Random Dictator (MIRD)

1: Initialize the given concept class as C0 = C
2: Initialize x.marked← F for each x ∈ X
3: Generate a random permutation that maps iterations to

agents π : {1, . . . , n} → {1, . . . , n}
4: for iteration t = 1, . . . , n do
5: Select agent j = π(t)
6: St,j ← {〈x, Yj(x)〉 : x ∈ Xj ∧ ¬x.marked}
7: // Consider all the examples of agent j
8: // that are not marked at time t
9: Let c̃ ∈ argminc∈Ct−1

Rj(c, St,j)

10: // c̃ is an ERM with respect to Ct−1 and St,j

11: Ct ← {c ∈ Ct−1 : ∀〈x, y〉 ∈ St,j (c(x) = c̃(x))}
12: // Remove concepts that disagree with c̃ on
13: // some example in St,j

14: for each input point x ∈ X do
15: if ∀c, c′ ∈ Ct (c(x) = c′(x)) then
16: x.marked← T
17: end if
18: end for
19: end for
20: Return an arbitrary concept from Cn

approximation ratio provided by the IRD mechanism. This
bound holds for any finite input space, regardless of the
concept class.

Theorem 4.2. Let X be a finite space of size s. For any
class C, the IRD mechanism is an SP (s·k+1)-approximation
mechanism for the classification problem 〈X , C〉.

Proof sketch. Let X = {a1, . . . , as} be a finite input
space, and let c∗ ∈ ERM(S). Denote the set of“good”agents
by IG; these are the agents that completely agree with c∗

(i.e., Ri(c
∗, S) = 0). Furthermore, let G =

⋃
i∈IG

Si be the
set of all “good” examples. Denote by B all the examples
that are inconsistent with c∗. Let IB be the set of “bad”
agents that control examples in B, i.e., IB = I \ IG. Clearly
it holds that OPT = |B|/m. For each j ≤ s, we denote by
Gj the set of all good examples that are located in aj , that
is, Gj = {〈x, y〉 ∈ G : x = aj} .

Let Zj be a random variable that reflects the number of
examples in Gj that are labeled correctly. Furthermore, de-
note by Z =

∑s
j=1 Zj the total number of good examples

that are labeled correctly.

Lemma 4.3. E [Z] ≥ |G| − k|B| · s.
The proof of the lemma relies on the fact that if a good agent
is selected prior to all bad agents, then all the examples
controlled by this agent will be classified correctly (as well
as all other examples in the same location).

The total risk is composed of the misclassified bad ex-
amples (at most |B|), and the misclassified good examples
(|G| − Z). Thus

RI(MIRD(S), S) ≤ E
[
|B|+ (|G|−Z)

|S|

]
=
|B|
|S| +

|G|−E [Z]

|S|

≤ |B||S| +
k|B| · s
|S| = (1 + k · s) |B||S| = (s · k + 1) ·OPT ,

as announced.

Theorem 4.2 implies that the IRD mechanism breaks the
deterministic lower bound given for our toy problem TP.
Indeed, recall that in TP we have that s=2, thus the mech-
anism provides an approximation ratio of 2k + 1 = o(m).
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Figure 2: Conjunctions over the input space X =
{T, F}3, which contains 8 different input points. Fig-
ure (a) shows the axes of the space. Figures (b)–(d)
are examples of different classifiers. The grayed area
is the positive part of space.

5. SPECIFIC CONCEPT CLASSES
At this point it remains unclear to what degree the lower

bound of Theorem 3.1 also applies to common concept classes
that are in wide use, and whether the IRD mechanism pro-
vides any guarantees with respect to such concept classes.
In this section we show how our results apply to two highly
useful concept classes: boolean conjunction formulas, and
linear separators.

5.1 Boolean Conjunctions
A common concept class used over X = {T, F}d is the set
Cd of all literal conjunctions over d boolean variables.

We denote the events xi = T and xi = F by xi, xi, respec-
tively. A literal conjunction c : {T, F}d → {+,−} is defined
by two sets posc, negc ⊆ {1, . . . , d}. For any input vector
x ∈ {T, F}d, c(x) = − if x contradicts some literal in c, i.e.,
if there is i ∈ {1, . . . , d} such that either xi and i ∈ negc,
or xi and i ∈ posc. Otherwise, c(x) = +. Each classifier
c classifies a hypercube in {T, F}d as positive. Figure 2
demonstrates some conjunctions and their spatial interpre-
tation. We refer to the problem of learning a conjunction in
{T, F}d as CONJd.

Remark 5.1. Although all our results in this section deal
with conjunctions, similar results hold for disjunctions.

We have the following dichotomy, according to the dimen-
sion of the problem.

Theorem 5.2. For CONJ1, there is a 3-approximation
deterministic SP mechanism, and this bound is tight. For
any d ≥ 2, there is no deterministic SP o(

√
m)-approximation

mechanism for CONJd.

The 1-dimensional case can be shown to be equivalent to the
classification problem presented in [9], which employs only
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Figure 3: Illustration of the proof of Theorem 5.3,
with n = 2. Agents 1 and 2 are obtained from agents
with more examples on a, and more examples on b,
respectively. The arrows indicate the positive half-
space of each class of classifiers.

two constant functions (it can be shown in the same way
that there is a randomized 2-approximation mechanism for
CONJ1, and that this bound is also tight).

As for the higher dimensional case, the proof uses a re-
duction to the toy problem TP that was presented in Sec-
tion 3. We omit the full proof due to space constraints, but
the reader can grasp its key ideas from the proof sketch of
Theorem 5.3 in the next section.

We now recall that for a fixed dimension d, it holds that
s = |X | = 2d is also fixed, and the IRD mechanism is an
SP 2d · O(k)-approximation mechanism for CONJd (Theo-
rem 4.2). This result breaks the deterministic bound of

√
m,

which depends also on the number of agents.3

5.2 Linear Separators
The class of linear separators over Rd is the set of classi-

fiers that are defined by the parameters a ∈ Rd and b ∈ R,
and map a point x ∈ Rd to + if and only if a · x + b ≥ 0.
We refer to the problem of learning a linear separator over
Rd as LINEARd.

As in the previous settings, a deterministic SP mechanism
cannot guarantee a good approximation ratio.

Theorem 5.3. For any d ≥ 1, there is no deterministic
SP o(

√
m)-approximation mechanism for LINEARd.

Proof sketch. As in the proof of Theorem 5.2, we re-
duce the problem to TP. We sketch the reduction for d = 1.

Both scenarios contain n agents. Originally each agent
controls 2k+ 3 input points in TP, whereas it controls k′ =
n(2k + 3)2 input points in the new instance of LINEAR1.

The total number of examples in the original instance is
m = n(2k+3) = Θ(nk). The total number of new examples
is thus m′ = nk′ = (n(2k + 3))2 = Θ((nk)2) = Θ(m2). We
translate any example originally on a to the location −1,
and each example on b to the location 1 on the real line.
The remainder of examples (k′ − (2k + 3) for each agent)
are all placed on 0 with a positive label. Figure 3 shows the
spatial arrangement of the input points in the new instance.

The remainder of the proof is straightforward, with one
subtlety. Since the class of linear separators (even in R1) is
continuous, we cannot create a case where only 3 classifiers

3It is possible to slightly alter the reduction so that the lower
bound becomes Ω(max{

√
m, k}).



are admissible. Hence we partition the class C1 of linear
separators over R into the following four sets: C+− = {c ∈
C1 : c(−1) = +, c(1) = −}, and we define C−−, C−+ and
C++ in the same way. These classes also appear in Figure 3.

Note that every concept in C−− classifies 0 as negative,
and hence cannot give an approximation ratio of o(m′) =
o(
√
m). The three other sets can be mapped to ca, cb and

cab. This observation allows us to show that any determin-
istic SP o(

√
m)-approximation mechanism for LINEAR1 in-

duces an o(m)-approximation mechanism for TP.

We next show, once again, that the IRD mechanism beats
the deterministic lower bound, this time with respect to the
problem LINEAR1.

Theorem 5.4. The IRD mechanism is an SP O(k2)
-approximation mechanism for LINEAR1.

This result is somewhat weaker than the one for literal
conjunctions, since our bound is quadratic in k (instead of
linear), and for higher dimensions we have no bound at all.
Nevertheless, the proof is significantly more involved, due to
the continuous nature of the problem.

The proof outline is as follows. Let c∗ be an optimal clas-
sifier. As in the proof of Theorem 4.2, we divide the agents
into “good” and “bad”. In every iteration a single agent sets
the final labels for its examples, but also enforces a label on
other examples in the process. If the agent is good, then all
the labels set in this iteration must agree with c∗ as well, but
if this agent is bad then some examples might be “ruined” in
this iteration, that is, labeled in a way that disagrees with
c∗. The heart of the proof is in bounding the expected num-
ber of examples that are ruined in each iteration; indeed, we
show that this number decreases exponentially fast.

We conjecture that the bound for LINEAR1 can be tight-
ened, making it linear in k. More importantly, we believe
that a similar bound can be obtained for linear separators in
higher dimension; we leave this issue as a very challenging
open question for future research.

6. DISCUSSION
We have studied a broad framework for strategyproof clas-

sification. We have shown that the design of useful de-
terministic strategyproof mechanisms is impossible without
further assumptions (such as shared inputs). Our results
further suggest that the classification quality of randomized
SP mechanisms strongly depends on the size of the largest
dataset (rather than on the number of agents). While the
results of Section 3.1 use some additional assumptions, they
still serve as an indirect demonstration of this principle; we
further conjecture that Theorem 3.4 holds even if we drop
the assumption of private weights.

An important observation is called for regarding the issue
of generalization, as discussed in previous research on strat-
egyproof classification and regression: is there an algorithm
capable of learning an approximately optimal concept with
respect to some distribution over the input space, by gen-
eralizing from a bounded number of examples? To improve
generalization, more samples have to be taken. However,
this means that we increase the size of the dataset, thereby
worsening the approximation ratio. Our negative results in
the decision making setting thus become acute in a machine-
learning setting that involves generalization from samples.

Future research may follow several directions. It may be
interesting to address our technical open questions by im-
proving some of the bounds or relaxing underlying assump-
tions. Our results can also be extended to more concept
classes. Alternatively, different assumptions and restrictions
may be applied to the input to guarantee a constant upper
bound. It may also be interesting to explore other loss func-
tions (instead of 0–1 loss), or investigate altogether different
formulations of the strategyproof classification setting.
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