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ABSTRACT
Multiagent environments are often not cooperative nor col-
laborative; in many cases, agents have conflicting interests,
leading to adversarial interactions. This paper presents a
formal Adversarial Environment model for bounded ratio-
nal agents operating in a zero-sum environment. In such
environments, attempts to use classical utility-based search
methods can raise a variety of difficulties (e.g., implicitly
modeling the opponent as an omniscient utility maximizer,
rather than leveraging a more nuanced, explicit opponent
model).

We define an Adversarial Environment by describing the
mental states of an agent in such an environment. We then
present behavioral axioms that are intended to serve as de-
sign principles for building such adversarial agents. We ex-
plore the application of our approach by analyzing log files
of completed Connect-Four games, and present an empirical
analysis of the axioms’ appropriateness.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Intelligent agents,Multiagent Systems;
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods —Modal logic

General Terms
Design, Theory

Keywords
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1. INTRODUCTION
Early research in multiagent systems (MAS) considered

cooperative groups of agents; because individual agents had
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limited resources, or limited access to information (e.g., lim-
ited processing power, limited sensor coverage), they worked
together by design to solve problems that individually they
could not solve, or at least could not solve as efficiently.

MAS research, however, soon began to consider interact-
ing agents with individuated interests, as representatives of
different humans or organizations with non-identical inter-
ests. When interactions are guided by diverse interests, par-
ticipants may have to overcome disagreements, uncoopera-
tive interactions, and even intentional attempts to damage
one another. When these types of interactions occur, en-
vironments require appropriate behavior from the agents
situated in them. We call these environments Adversarial
Environments, and call the clashing agents Adversaries.

Models of cooperation and teamwork have been exten-
sively explored in MAS through the axiomatization of men-
tal states (e.g., [8, 4, 5]). However, none of this research
dealt with adversarial domains and their implications for
agent behavior. Our paper addresses this issue by provid-
ing a formal, axiomatized mental state model for a subset
of adversarial domains, namely simple zero-sum adversarial
environments.

Simple zero-sum encounters exist of course in various two-
player games (e.g., Chess, Checkers), but they also exist in
n-player games (e.g., Risk, Diplomacy), auctions for a sin-
gle good, and elsewhere. In these latter environments espe-
cially, using a utility-based adversarial search (such as the
Min-Max algorithm) does not always provide an adequate
solution; the payoff function might be quite complex or dif-
ficult to quantify, and there are natural computational limi-
tations on bounded rational agents. In addition, traditional
search methods (like Min-Max) do not make use of a model
of the opponent, which has proven to be a valuable addition
to adversarial planning [9, 3, 11].

In this paper, we develop a formal, axiomatized model
for bounded rational agents that are situated in a zero-sum
adversarial environment. The model uses different modality
operators, and its main foundations are the SharedPlans [4]
model for collaborative behavior. We explore environment
properties and the mental states of agents to derive behav-
ioral axioms; these behavioral axioms constitute a formal
model that serves as a specification and design guideline for
agent design in such settings.

We then investigate the behavior of our model empirically
using the Connect-Four board game. We show that this
game conforms to our environment definition, and analyze
players’ behavior using a large set of completed match log



files. In addition, we use the results presented in [9] to dis-
cuss the importance of opponent modeling in our Connect-
Four adversarial domain.

The paper proceeds as follows. Section 2 presents the
model’s formalization. Section 3 presents the empirical anal-
ysis and its results. We discuss related work in Section 4,
and conclude and present future directions in Section 5.

2. ADVERSARIAL ENVIRONMENTS
The adversarial environment model (denoted as AE) is in-

tended to guide the design of agents by providing a specifi-
cation of the capabilities and mental attitudes of an agent in
an adversarial environment. We focus here on specific types
of adversarial environments, specified as follows:
1. Zero-Sum Interactions: positive and negative utilities
of all agents sum to zero;
2. Simple AEs: all agents in the environment are adver-
sarial agents;
3. Bilateral AEs: AE’s with exactly two agents;
4. Multilateral AEs’: AE’s of three or more agents.

We will work on both bilateral and multilateral instanti-
ations of zero-sum and simple environments. In particular,
our adversarial environment model will deal with interac-
tions that consist of N agents (N ≥ 2), where all agents
are adversaries, and only one agent can succeed. Examples
of such environments range from board games (e.g., Chess,
Connect-Four, and Diplomacy) to certain economic environ-
ments (e.g., N -bidder auctions over a single good).

2.1 Model Overview
Our approach is to formalize the mental attitudes and

behaviors of a single adversarial agent; we consider how a
single agent perceives the AE. The following list specifies
the conditions and mental states of an agent in a simple,
zero-sum AE:
1. The agent has an individual intention that its own goal
will be completed;
2. The agent has an individual belief that it and its adver-
saries are pursuing full conflicting goals (defined below) —
there can be only one winner;
3. The agent has an individual belief that each adversary
has an intention to complete its own full conflicting goal ;
4. The agent has an individual belief in the (partial) profile
of its adversaries.

Item 3 is required, since it might be the case that some
agent has a full conflicting goal, and is currently considering
adopting the intention to complete it, but is, as of yet, not
committed to achieving it. This might occur because the
agent has not yet deliberated about the effects that adopt-
ing that intention might have on the other intentions it is
currently holding. In such cases, it might not consider itself
to even be in an adversarial environment.

Item 4 states that the agent should hold some belief about
the profiles of its adversaries. The profile represents all the
knowledge the agent has about its adversary: its weaknesses,
strategic capabilities, goals, intentions, trustworthiness, and
more. It can be given explicitly or can be learned from
observations of past encounters.

2.2 Model Definitions for Mental States
We use Grosz and Kraus’s definitions of the modal oper-

ators, predicates, and meta-predicates, as defined in their
SharedPlan formalization [4]. We recall here some of the

predicates and operators that are used in that formaliza-
tion: Int.To(Ai, α, Tn, Tα, C) represents Ai’s intentions at
time Tn to do an action α at time Tα in the context of
C. Int.Th(Ai, prop, Tn, Tprop, C) represents Ai’s intentions
at time Tn that a certain proposition prop holds at time
Tprop in the context of C. The potential intention opera-
tors, Pot.Int.To(...) and Pot.Int.Th(...), are used to repre-
sent the mental state when an agent considers adopting an
intention, but has not deliberated about the interaction of
the other intentions it holds. The operator Bel(Ai, f, Tf )
represents agent Ai believing in the statement expressed in
formula f , at time Tf . MB(A, f, Tf ) represents mutual be-
lief for a group of agents A.

A snapshot of the system finds our environment to be in
some state e ∈ E of environmental variable states, and each
adversary in any LAi ∈ L of possible local states. At any
given time step, the system will be in some world w of the
set of all possible worlds w ∈ W , where w = E×LA1

×LA2
×

...LAn , and n is the number of adversaries. For example, in
a Texas Hold’em poker game, an agent’s local state might
be its own set of cards (which is unknown to its adversary)
while the environment will consist of the betting pot and
the community cards (which are visible to both players).

A utility function under this formalization is defined as a
mapping from a possible world w ∈ W to an element in <,
which expresses the desirability of the world, from a single
agent perspective. We usually normalize the range to [0,1],
where 0 represents the least desirable possible world, and
1 is the most desirable world. The implementation of the
utility function is dependent on the domain in question.

The following list specifies new predicates, functions, vari-
ables, and constants used in conjunction with the original
definitions for the adversarial environment formalization:
1. φ is a null action (the agent does not do anything).
2. GAi is the set of agent Ai’s goals. Each goal is a set of
predicates whose satisfaction makes the goal complete (we
use G∗

Ai
∈ GAi to represent an arbitrary goal of agent Ai).

3. gAi is the set of agent Ai’s subgoals. Subgoals are pred-
icates whose satisfaction represents an important milestone
toward achievement of the full goal. gG∗

Ai
⊆ gAi is the set of

subgoals that are important to the completion of goal G∗

Ai

(we will use g∗

G∗

Ai

∈ gG∗

Ai
to represent an arbitrary subgoal).

4. P
Aj

Ai
is the profile object agent Ai holds about agent Aj .

5. CA is a general set of actions for all agents in A which
are derived from the environment’s constraints. CAi ⊆ CA

is the set of agent Ai’s possible actions.
6. Do(Ai, α, Tα, w) holds when Ai performs action α over
time interval Tα in world w.
7. Achieve(G∗

Ai
, α, w) is true when goal G∗

Ai
is achieved fol-

lowing the completion of action α in world w ∈ W , where
α ∈ CAi .

8. Profile(Ai, P
Ai
Ai

) is true when agent Ai holds an object
profile for agent Aj .

Definition 1. Full conflict (FulConf ) describes a zero-
sum interaction where only a single goal of the goals in con-
flict can be completed.
FulConf(G∗

Ai
, G∗

Aj
) ⇒ (∃α ∈ CAi , ∀w, β ∈ CAj )

(Achieve(G∗

Ai
, α, w) ⇒ ¬Achieve(G∗

Aj
, β, w)) ∨

(∃β ∈ CAj , ∀w, α ∈ CAi)(Achieve(G∗

Aj
, β, w) ⇒

¬Achieve(G∗

Ai
, α, w))

Definition 2. Adversarial Knowledge (AdvKnow) is a
function returning a value which represents the amount of



knowledge agent Ai has on the profile of agent Aj , at time
Tn. The higher the value, the more knowledge agent Ai has.

AdvKnow : P
Aj

Ai
× Tn → <

Definition 3. Eval — This evaluation function returns an
estimated expected utility value for an agent in A, after
completing an action from CA in some world state w.
Eval : A × CA × w → <

Definition 4. TrH — (Threshold) is a numerical constant
in the [0,1] range that represents an evaluation function
(Eval) threshold value. An action that yields an estimated
utility evaluation above the TrH is regarded as a highly ben-
eficial action.

The Eval value is an estimation and not the real utility
function, which is usually unknown. Using the real utility
value for a rational agent would easily yield the best outcome
for that agent. However, agents usually do not have the real
utility functions, but rather a heuristic estimate of it.

There are two important properties that should hold for
the evaluation function:

Property 1. The evaluation function should state that the
most desirable world state is one in which the goal is achieved.
Therefore, after the goal has been satisfied, there can be no
future action that can put the agent in a world state with
higher Eval value.
(∀Ai, G

∗

Ai
, α, β ∈ CAi , w ∈ W )

Achieve(G∗

Ai
, α, w) ⇒ Eval(Ai, α, w) ≥ Eval(Ai, β, w)

Property 2. The evaluation function should project an ac-
tion that causes a completion of a goal or a subgoal to a value
which is greater than TrH (a highly beneficial action).
(∀Ai, G

∗

Ai
∈ GAi , α ∈ CAi , w ∈ W, g∗

GAi
∈ gGAi

)

Achieve(G∗

Ai
, α, w) ∨ Achieve(g∗

GAi
, α, w) ⇒

Eval(Ai, α, w) ≥ TrH.

Definition 5. SetAction We define a set action (SetAc-
tion) as a set of action operations (either complex or basic
actions) from some action sets CAi and CAj which, accord-
ing to agent Ai’s belief, are attached together by a temporal
and consequential relationship, forming a chain of events
(action, and its following consequent action).
(∀α1, . . . , αu ∈ CAi , β

1, . . . , βv ∈ CAj , w ∈ W )

SetAction(α1, . . . , αu, β1, . . . , βv, w) ⇒
((Do(Ai, α

1, Tα1 , w) ⇒ Do(Aj , β
1, Tβ1 , w)) ⇒

Do(Ai, α
2, Tα2 , w) ⇒ . . . ⇒ Do(Ai, α

u, Tαu , w))

The consequential relation might exist due to various en-
vironmental constraints (when one action forces the adver-
sary to respond with a specific action) or due to the agent’s
knowledge about the profile of its adversary.

Property 3. As the knowledge we have about our adver-
sary increases we will have additional beliefs about its be-
havior in different situations which in turn creates new set
actions. Formally, if our AdvKnow at time Tn+1 is greater
than AdvKnow at time Tn, then every SetAction known at
time Tn is also known at time Tn+1.

AdvKnow(P
Aj

Ai
, Tn+1) > AdvKnow(P

Aj

Ai
, Tn) ⇒

(∀α1, . . . , αu ∈ CAi , β
1, . . . , βv ∈ CAj )

Bel(Aag, SetAction(α1, . . . , αu, β1, . . . , βv), Tn) ⇒
Bel(Aag, SetAction(α1, . . . , αu, β1, . . . , βv), Tn+1)

2.3 The Environment Formulation
The following axioms provide the formal definition for a

simple, zero-sum Adversarial Environment (AE). Satisfac-
tion of these axioms means that the agent is situated in

such an environment. It provides specifications for agent
Aag to interact with its set of adversaries A with respect to
goals G∗

Aag
and G∗

A at time TCo at some world state w.

AE(Aag, A, G∗

Aag
, A1, . . . , Ak, G∗

A1
, . . . , G∗

Ak
, Tn, w)

1. Aag has an Int.Th his goal would be completed:
(∃α ∈ CAag , Tα)
Int.Th(Aag, Achieve(G∗

Aag
, α), Tn, Tα, AE)

2. Aag believes that it and each of its adversaries Ao are
pursuing full conflicting goals:
(∀Ao ∈ {A1, . . . , Ak})
Bel(Aag, FulConf(G∗

Aag
, G∗

Ao
), Tn)

3. Aag believes that each of his adversaries in Ao has the
Int.Th his conflicting goal G∗

Aoi
will be completed:

(∀Ao ∈ {A1, . . . , Ak})(∃β ∈ CAo , Tβ)
Bel(Aag, Int.Th(Ao, Achieve(G∗

Ao
, β), TCo, Tβ , AE), Tn)

4. Aag has beliefs about the (partial) profiles of its adver-
saries
(∀Ao ∈ {A1, . . . , Ak})
(∃P Ao

Aag
∈ PAag )Bel(Aag, P rofile(Ao, P

Ao
Aag

), Tn)

To build an agent that will be able to operate successfully
within such an AE, we must specify behavioral guidelines for
its interactions. Using a naive Eval maximization strategy
to a certain search depth will not always yield satisfactory
results for several reasons: (1) the search horizon problem
when searching for a fixed depth; (2) the strong assumption
of an optimally rational, unbounded resources adversary; (3)
using an estimated evaluation function which will not give
optimal results in all world states, and can be exploited [9].

The following axioms specify the behavioral principles
that can be used to differentiate between successful and
less successful agents in the above Adversarial Environment.
Those axioms should be used as specification principles when
designing and implementing agents that should be able to
perform well in such Adversarial Environments. The be-
havioral axioms represent situations in which the agent will
adopt potential intentions to (Pot.Int.To(...)) perform an
action, which will typically require some means-end reason-
ing to select a possible course of action. This reasoning will
lead to the adoption of an Int.To(...) (see [4]).

A1. Goal Achieving Axiom. The first axiom is the sim-
plest case; when the agent Aag believes that it is one action
(α) away from achieving his conflicting goal G∗

Aag
, it should

adopt the potential intention to do α and complete its goal.
(∀Aag, α ∈ CAag , Tn, Tα, w ∈ W )
(Bel(Aag, Do(Aag, α, Tα, w) ⇒ Achieve(G∗

Aag
, α, w))

⇒ Pot.Int.To(Aag, α, Tn, Tα, w)

This somewhat trivial behavior is the first and strongest
axiom. In any situation, when the agent is an action away
from completing the goal, it should complete the action.
Any fair Eval function would naturally classify α as the
maximal value action (property 1). However, without ex-
plicit axiomatization of such behavior there might be situa-
tions where the agent will decide on taking another action
for various reasons, due to its bounded decision resources.

A2. Preventive Act Axiom. Being in an adversarial sit-
uation, agent Aag might decide to take actions that will
damage one of its adversary’s plans to complete its goal,
even if those actions do not explicitly advance Aag towards
its conflicting goal G∗

Aag
. Such preventive action will take

place when agent Aag has a belief about the possibility of
its adversary Ao doing an action β that will give it a high



utility evaluation value (> TrH). Believing that taking ac-
tion α will prevent the opponent from doing its β, it will
adopt a potential intention to do α.
(∀Aag, Ao ∈ A, α ∈ CAag , β ∈ CAo , Tn, Tβ , w ∈ W )
(Bel(Aag, Do(Ao, β, Tβ , w) ∧ Eval(Ao, β, w) > TrH, Tn) ∧
Bel(Aag, Do(Aag, α, Tα, w) ⇒ ¬Do(Ao, β, Tβ , w), Tn)
⇒ Pot.Int.To(Aag, α, Tn, Tα, w)

This axiom is a basic component of any adversarial en-
vironment. For example, looking at a Chess board game,
a player could realize that it is about to be checkmated by
its opponent, thus making a preventive move. Another ex-
ample is a Connect Four game: when a player has a row of
three chips, its opponent must block it, or lose.

A specific instance of A1 occurs when the adversary is one
action away from achieving its goal, and immediate preven-
tive action needs to be taken by the agent. Formally, we
have the same beliefs as stated above, with a changed belief
that doing action β will cause agent Ao to achieve its goal.

Proposition 1: Prevent or lose case.

(∀Aag, Ao ∈ A, α ∈ CAag , β ∈ CAo , G∗

Ao
, Tn, Tα, Tβ , w ∈

W )
Bel(Aag, Do(Ao, β, Tβ , w) ⇒ Achieve(G∗

Ao
, β, w), Tn) ∧

Bel(Aag, Do(Aag, α, Tα, w) ⇒ ¬Do(Ao, β, Tβ , w))
⇒ Pot.Int.To(Aag, α, Tn, Tα, w)

Sketch of proof : Proposition 1 can be easily derived
from axiom A1 and the property 2 of the Eval function,
which states that any action that causes a completion of a
goal is a highly beneficial action.

The preventive act behavior will occur implicitly when
the Eval function is equal to the real world utility function.
However, being bounded rational agents and dealing with an
estimated evaluation function we need to explicitly axiom-
atize such behavior, for it will not always occur implicitly
from the evaluation function.

A3. Suboptimal Tactical Move Axiom. In many sce-
narios a situation may occur where an agent will decide not
to take the current most beneficial action it can take (the
action with the maximal utility evaluation value), because it
believes that taking another action (with lower utility eval-
uation value) might yield (depending on the adversary’s re-
sponse) a future possibility for a highly beneficial action.
This will occur most often when the Eval function is inac-
curate and differs by a large extent from the Utility function.
Put formally, agent Aag believes in a certain SetAction that
will evolve according to its initial action and will yield a high
beneficial value (> TrH) solely for it.
(∀Aag, Ao ∈ A, Tn, w ∈ W )
(∃α1, . . . , αu ∈ CAi , β

1, . . . , βv ∈ CAj , Tα1)

Bel(Aag, SetAction(α1, . . . , αu, β1, . . . , βv), Tn) ∧
Bel(Aag, Eval(Ao, β

v, w) < TrH < Eval(Aag, αu, w), Tn)
⇒ Pot.Int.To(Aag, α1, Tn, Tα1 , w)

An agent might believe that a chain of events will oc-
cur for various reasons due to the inevitable nature of the
domain. For example, in Chess, we often observe the follow-
ing: a move causes a check position, which in turn limits the
opponent’s moves to avoiding the check, to which the first
player might react with another check, and so on. The agent
might also believe in a chain of events based on its knowl-
edge of its adversary’s profile, which allows it to foresee the
adversary’s movements with high accuracy.

A4. Profile Detection Axiom. The agent can adjust
its adversary’s profiles by observations and pattern study
(specifically, if there are repeated encounters with the same
adversary). However, instead of waiting for profile informa-
tion to be revealed, an agent can also initiate actions that
will force its adversary to react in a way that will reveal
profile knowledge about it. Formally, the axiom states that
if all actions (γ) are not highly beneficial actions (< TrH),
the agent can do action α in time Tα if it believes that it will
result in a non-highly beneficial action β from its adversary,
which in turn teaches it about the adversary’s profile, i.e.,

gives a higher AdvKnow(P
Aj

Ai
, Tβ).

(∀Aag, Ao ∈ A, α ∈ CAag , β ∈ CAo , Tn, Tα, Tβ , w ∈ W )
Bel(Aag, (∀γ ∈ CAag )Eval(Aag, γ, w) < TrH, Tn) ∧
Bel(Aag, Do(Aag, α, Tα, w) ⇒ Do(Ao, β, Tβ , w), Tn) ∧
Bel(Aag, Eval(Ao, β, w) < TrH) ∧

Bel(Aag, AdvKnow(P
Aj

Ai
, Tβ) > AdvKnow(P

Aj

Ai
, Tn), Tn) ⇒

Pot.Int.To(Aag, α, Tn, Tα, w)

For example, going back to the Chess board game sce-
nario, consider starting a game versus an opponent about
whom we know nothing, not even if it is a human or a com-
puterized opponent. We might start playing a strategy that
will be suitable versus an average opponent, and adjust our
game according to its level of play.

A5. Alliance Formation Axiom The following behav-
ioral axiom is relevant only in a multilateral instantiation
of the adversarial environment (obviously, an alliance can-
not be formed in a bilateral, zero-sum encounter). In dif-
ferent situations during a multilateral interaction, a group
of agents might believe that it is in their best interests to
form a temporary alliance. Such an alliance is an agreement
that constrains its members’ behavior, but is believed by its
members to enable them to achieve a higher utility value
than the one achievable outside of the alliance.

As an example, we can look at the classical Risk board
game, where each player has an individual goal of being the
sole conquerer of the world, a zero-sum game. However, in
order to achieve this goal, it might be strategically wise to
make short-term ceasefire agreements with other players, or
to join forces and attack an opponent who is stronger than
the rest.

An alliance’s terms defines the way its members should
act. It is a set of predicates, denoted as Terms, that is agreed
upon by the alliance members, and should remain true for
the duration of the alliance. For example, the set Terms in
the Risk scenario, could contain the following predicates:
1. Alliance members will not attack each other on territories
X, Y and Z;
2. Alliance members will contribute C units per turn for
attacking adversary Ao;
3. Members are obligated to stay as part of the alliance until
time Tk or until adversary’s Ao army is smaller than Q.

The set Terms specifies inter-group constraints on each
of the alliance member’s (∀Aal

i ∈ Aal ⊆ A) set of actions
Cal

i ⊆ C.

Definition 6. Al val — the total evaluation value that
agent Ai will achieve while being part of Aal is the sum of
Evali (Eval for Ai) of each of Aal

j Eval values after taking
their own α actions (via the agent(α) predicate):
Al val(Ai, C

al, Aal, w) =
∑

α∈Cal Evali(A
al
j , agent(α), w)

Definition 7. Al TrH — is a number representing an Al val



threshold; above it, the alliance can be said to be a highly
beneficial alliance.

The value of Al TrH will be calculated dynamically accord-
ing to the progress of the interaction, as can be seen in [7].
After an alliance is formed, its members are now working in
their normal adversarial environment, as well as according
to the mental states and axioms required for their interac-
tions as part of the alliance. The following Alliance model
(AL) specifies the conditions under which the group Aal can
be said to be in an alliance and working with a new and con-
strained set of actions Cal, at time Tn.
AL(Aal, Cal, w, Tn)
1. Aal has a MB that all members are part of Aal:
MB(Aal, (∀Aal

i ∈ Aal)member(Aal
i , Aal), Tn)

2. Aal has a MB that the group be maintained:
MB(Aal, (∀Aal

i ∈ Aal)Int.Th

(Ai, member(Ai, A
al), Tn, Tn+1, Co), Tn)

3. Aal has a MB that being members gives them high utility
value:
MB(Aal, (∀Aal

i ∈ Aal)Al val(Aal
i , Cal, Aal, w) ≥ Al TrH, Tn)

Members’ profiles are a crucial part of successful alliances.
We assume that agents that have more accurate profiles of
their adversaries will be more successful in such environ-
ments. Such agents will be able to predict when a mem-
ber is about to breach the alliance’s contract (item 2 in the
above model), and take counter measures (when item 3 will
falsify). The robustness of the alliance is in part a function
of its members’ trustfulness measure, objective position esti-
mation, and other profile properties. We should note that an
agent can simultaneously be part of more than one alliance.

Such a temporary alliance, where the group members do
not have a joint goal but act collaboratively for the interest
of their own individual goals, is classified as a Treatment
Group by modern psychologists [12] (in contrast to a Task
Group, where its members have a joint goal). The Shared
Activity model as presented in [5] modeled Treatment Group
behavior using the same SharedPlans formalization.

When comparing both definitions of an alliance and a
Treatment Group we found an unsurprising resemblance be-
tween both models: the environment model’s definitions
are almost identical (see SA’s definitions in [5]), and their
Selfish-Act and Cooperative Act axioms conform to our ad-
versarial agent’s behavior. The main distinction between
both models is the integration of a Helpful-behavior act ax-
iom, in the Shared Activity which cannot be part of ours.
This axiom states that an agent will consider taking action
that will lower its Eval value (to a certain lower bound), if it
believes that a group partner will gain a significant benefit.
Such behavior cannot occur in a pure adversarial environ-
ment (as a zero-sum game is), where the alliance members
are constantly on watch to manipulate their alliance to their
own advantage.

A6. Evaluation Maximization Axiom. In a case when
all other axioms are inapplicable, we will proceed with the
action that maximizes the heuristic value as computed in
the Eval function.
(∀Aag, Ao ∈ A, α ∈ Cag, Tn, w ∈ W )
Bel(Aag, (∀γ ∈ Cag)Eval(Aag, α, w) ≥ Eval(Aag, γ, w), Tn)
⇒ Pot.Int.To(Aag, α, Tn, Tα, w)

T1. Optimality on Eval = Utility The above axiomatic
model handles situations where the Utility is unknown and
the agents are bounded rational agents. The following the-

orem shows that in bilateral interactions, where the agents
have the real Utility function (i.e., Eval = Utility) and are
rational agents, the axioms provide the same optimal result
as classic adversarial search (e.g., Min-Max ).

Theorem 1. Let Ae
ag be an unbounded rational AE agent

using the Eval heuristic evaluation function, Au
ag be the same

agent using the true Utility function, and Ao be a sole un-
bounded utility-based rational adversary. Given that Eval =
Utility:
(∀α ∈ CAu

ag
, α8 ∈ CAe

ag
, Tn, w ∈ W )

Pot.Int.To(Au
ag, α, Tn, Tα, w) →

Pot.Int.To(Ae
ag, α8, Tn, Tα, w) ∧

((α = α8) ∨ (Utility(Au
ag, α, w) = Eval(Ae

ag, α8, w)))
Sketch of proof — Given that Au

ag has the real utility
function and unbounded resources, it can generate the full
game tree and run the optimal MinMax algorithm to choose
the highest utility value action, which we denote by, α. The
proof will show that Ae

ag, using the AE axioms, will select
the same or equal utility α8 (when there is more than one
action with the same max utility) when Eval = Utility.
(A1 ) Goal achieving axiom — suppose there is an α such
that its completion will achieve Au

ag’s goal. It will obtain
the highest utility by Min-Max for Au

ag. The Ae
ag agent will

select α or another action with the same utility value via
A1. If such α does not exist, Ae

ag cannot apply this axiom,
and proceeds to A2.
(A2 ) Preventive act axiom — (1) Looking at the basic case
(see Prop1 ), if there is a β which leads Ao to achieve its
goal, then a preventive action α will yield the highest util-
ity for Au

ag. Au
ag will choose it through the utility, while

Ae
ag will choose it through A2. (2) In the general case, β

is a highly beneficial action for Ao, thus yields low utility
for Au

ag, which will guide it to select an α that will prevent
β, while Ae

ag will choose it through A2.1 If such β does not
exist for Ao, then A2 is not applicable, and Ae

ag can proceed
to A3.
(A3 ) Suboptimal tactical move axiom — When using a
heuristic Eval function, Ae

ag has a partial belief in the profile
of its adversary (item 4 in AE model), which may lead it
to believe in SetActions (Prop1 ). In our case, Ae

ag is hold-
ing a full profile on its optimal adversary and knows that
Ao will behave optimally according to the real utility val-
ues on the complete search tree, therefore, any belief about
suboptimal SetAction cannot exist, yielding this axiom in-
applicable. Ae

ag will proceed to A4.
(A4 ) Profile detection axiom — Given that Ae

ag has the full
profile of Ao, none of Ae

ag’s actions can increase its knowl-
edge. That axiom will not be applied, and the agent will
proceed with A6 (A5 will be disregarded because the inter-
action is bilateral).
(A6 ) Evaluation maximization axiom — This axiom will se-
lect the max Eval for Ae

ag. Given that Eval = Utility, the
same α that was selected by Au

ag will be selected.

3. EVALUATION
The main purpose of our experimental analysis is to evalu-

ate the model’s behavior and performance in a real adversar-
ial environment. This section investigates whether bounded

1A case where following the completion of β there exists a γ
which gives high utility for Agent Au

ag, cannot occur because
Ao uses the same utility, and γ’s existence will cause it to
classify β as a low utility action.



rational agents situated in such adversarial environments
will be better off applying our suggested behavioral axioms.

3.1 The Domain
To explore the use of the above model and its behavioral

axioms, we decided to use the Connect-Four game as our
adversarial environment. Connect-Four is a 2-player, zero-
sum game which is played using a 6x7 matrix-like board.
Each turn, a player drops a disc into one of the 7 columns
(the set of 21 discs is usually colored yellow for player 1 and
red for player 2; we will use White and Black respectively to
avoid confusion). The winner is the first player to complete
a horizontal, vertical, or diagonal set of four discs with its
color. On very rare occasions, the game might end in a tie
if all the empty grids are filled, but no player managed to
create a 4-disc set.

The Connect-Four game was solved in [1], where it is
shown that the first player (playing with the white discs)
can force a win by starting in the middle column (column 4)
and playing optimally However, the optimal strategy is very
complex, and difficult to follow even for complex bounded
rational agents, such as human players.

Before we can proceed checking agent behavior, we must
first verify that the domain conforms to the adversarial en-
vironment’s definition as given above (which the behavioral
axioms are based on). First, when playing a Connect-Four
game, the agent has an intention to win the game (item 1).
Second (item 2), our agent believes that in Connect-Four
there can only be one winner (or no winner at all in the rare
occurrence of a tie). In addition, our agent believes that its
opponent to the game will try to win (item 3), and we hope
it has some partial knowledge (item 4) about its adversary
(this knowledge can vary from nothing, through simple facts
such as age, to strategies and weaknesses).

Of course, not all Connect-Four encounters are adversar-
ial. For example, when a parent is playing the game with its
child, the following situation might occur: the child, having
a strong incentive to win, treats the environment as adver-
sarial (it intends to win, understands that there can only
be one winner, and believes that its parent is trying to beat
him). However, the parent’s point of view might see the
environment as an educational one, where its goal is not to
win the game, but to cause enjoyment or practice strategic
reasoning. In such an educational environment, a new set of
behavioral axioms might be more beneficial to the parent’s
goals than our suggested adversarial behavioral axioms.

3.2 Axiom Analysis
After showing that the Connect-Four game is indeed a

zero-sum, bilateral adversarial environment, the next step
is to look at players’ behaviors during the game and check
whether behaving according to our model does improve per-
formance. To do so we have collected log files from com-
pleted Connect-Four games that were played by human play-
ers over the Internet. Our collected log file data came from
Play by eMail (PBeM) sites. These are web sites that host
email games, where each move is taken by an email ex-
change between the server and the players. Many such
sites’ archives contain real competitive interactions, and also
maintain a ranking system for their members. Most of the
data we used can be found in [6].

As can be learned from [1], Connect-Four has an optimal
strategy and a considerable advantage for the player who

starts the game (which we call the White player). We will
concentrate in our analysis on the second player’s moves (to
be called Black). The White player, being the first to act,
has the so-called initiative advantage. Having the advantage
and a good strategy will keep the Black player busy reacting
to its moves, instead of initiating threats. A threat is a
combination of three discs of the same color, with an empty
spot for the fourth winning disk. An open threat is a threat
that can be realized in the opponent’s next move. In order
for the Black player to win, it must somehow turn the tide,
take the advantage and start presenting threats to the White
player. We will explore Black players’ behavior and their
conformance to our axioms.

To do so, we built an application that reads log files and
analyzes the Black player’s moves. The application contains
two main components: (1) a Min-Max algorithm for evalua-
tion of moves; (2) open threats detector for the discovering of
open threats. The Min-Max algorithm will work to a given
depth, d and for each move α will output the heuristic value
for the next action taken by the player as written in the log
file, h(α), alongside the maximum heuristic value, maxh(α),
that could be achieved prior to taking the move (obviously,
if h(α) 6= maxh(α), then the player did not do the optimal
move heuristically). The threat detector’s job is to notify
if some action was taken in order to block an open threat
(not blocking an open threat will probably cause the player
to lose in the opponent’s next move).

The heuristic function used by Min-Max to evaluate the
player’s utility is the following function, which is simple to
compute, yet provides a reasonable challenge to human op-
ponents:

Definition 8. Let Group be an adjacent set of four squares
that are horizontal, vertical, or diagonal. Groupn

b (Groupn
w)

be a Group with n pieces of the black (white) color and 4−n

empty squares.

h =
((Group1

b ∗α)+(Group2
b ∗β)+(Group3

b ∗γ)+(Group4
b ∗∞))

−
((Group1

w∗α)+(Group2
w∗β)+(Group3

w∗γ)+(Group4
w∗∞))

The values of α, β and δ can vary to form any desired
linear combination; however, it is important to value them
with the α < β < δ ordering in mind (we used 1, 4, and 8 as
their respective values). Groups of 4 discs of the same color
means victory, thus discovery of such a group will result in
∞ to ensure an extreme value.

We now use our estimated evaluation function to evaluate
the Black player’s actions during the Connect-Four adver-
sarial interaction. Each game from the log file was input into
the application, which processed and output a reformatted
log file containing the h value of the current move, the maxh

value that could be achieved, and a notification if an open
threat was detected. A total of 123 games were analyzed
(57 with White winning, and 66 with Black winning). A
few additional games were manually ignored in the experi-
ment, due to these problems: a player abandoning the game
while the outcome is not final, or a blunt irrational move in
the early stages of the game (e.g., not blocking an obvious
winning group in the first opening moves). In addition, a
single tie game was also removed. The simulator was run to
a search depth of 3 moves. We now proceed to analyze the
games with respect to each behavioral axiom.



Table 1: Average heuristic difference analysis

Black losses Black Won
Avg’ minh -17.62 -12.02

Avg’ 3 lowest h moves (min3
h) -13.20 -8.70

3.2.1 Affirming the Suboptimal tactical move axiom
The following section presents the heuristic evaluations

of the Min-Max algorithm for each action, and checks the
amount and extent of suboptimal tactical actions and their
implications on performance.

Table 1 shows results and insights from the games’ heuris-
tic analysis, when search depth equals 3 (this search depth
was selected for the results to be comparable to [9], see Sec-
tion 3.2.3). The table’s heuristic data is the difference be-
tween the present maximal heuristic value and the heuristic
value of the action that was eventually taken by the player
(i.e., the closer the number is to 0, the closer the action was
to the maximum heuristic action).

The first row presents the difference values of the ac-
tion that had the maximal difference value among all the
Black player’s actions in a given game, as averaged over all
Black’s winning and losing games (see respective columns).
In games in which the Black player loses, its average differ-
ence value was -17.62, while in games in which the Black
player won, its average was -12.02. The second row expands
the analysis by considering the 3 highest heuristic difference
actions, and averaging them. In that case, we notice an aver-
age heuristic difference of 5 points between games which the
Black player loses and games in which it wins. Nevertheless,
the importance of those numbers is that they allowed us to
take an educated guess on a threshold number of 11.5, as
the value of the TrH constant, which differentiates between
normal actions and highly beneficial ones.

After finding an approximated TrH constant, we can pro-
ceed with an analysis of the importance of suboptimal moves.
To do so we took the subset of games in which the minimum
heuristic difference value for Black’s actions was 11.5. As
presented in Table 2, we can see the different min3

h aver-
age of the 3 largest ranges and the respective percentage of
games won. The first row shows that the Black player won
only 12% of the games in which the average of its 3 highest
heuristically difference actions (min3

h) was smaller than the
suggested threshold, TrH = 11.5.

The second row shows a surprising result: it seems that
when min3

h > −4 the Black player rarely wins. Intuition
would suggest that games in which the action evaluation
values were closer to the maximal values will result in more
winning games for Black. However, it seems that in the
Connect-Four domain, merely responding with somewhat
easily expected actions, without initiating a few surprising
and suboptimal moves, does not yield good results. The last
row sums up the main insights from the analysis; most of
Black’s wins (83%) came when its min3

h was in the range
of -11.5 to -4. A close inspection of those Black winning
games shows the following pattern behind the numbers: af-
ter standard opening moves, Black suddenly drops a disc
into an isolated column, which seems a waste of a move.
White continues to build its threats, while usually disregard-
ing Black’s last move, which in turn uses the isolated disc
as an anchor for a future winning threat.

The results show that it was beneficial for the Black player

Table 2: Black’s winnings percentages

% of games
min3

h < −11.5 12%
min3

h > −4 5%
−11.5 ≤ min3

h ≤ −4 83%

to take suboptimal actions and not give the current high-
est possible heuristic value, but will not be too harmful
for its position (i.e., will not give high beneficial value to
its adversary). As it turned out, learning the threshold is
an important aspect of success: taking wildly risky moves
(min3

h < −11.5) or trying to avoid them (min3
h > −4) re-

duces the Black player’s winning chances by a large margin.

3.2.2 Affirming the Profile Monitoring Axiom
In the task of showing the importance of monitoring one’s

adversaries’ profiles, our log files could not be used because
they did not contain repeated interactions between players,
which are needed to infer the players’ knowledge about their
adversaries. However, the importance of opponent model-
ing and its use in attaining tactical advantages was already
studied in various domains ([3, 9] are good examples).

In a recent paper, Markovitch and Reger [9] explored the
notion of learning and exploitation of opponent weakness in
competitive interactions. They apply simple learning strate-
gies by analyzing examples from past interactions in a spe-
cific domain. They also used the Connect-Four adversarial
domain, which can now be used to understand the impor-
tance of monitoring the adversary’s profile.

Following the presentation of their theoretical model, they
describe an extensive empirical study and check the agent’s
performance after learning the weakness model with past
examples. One of the domains used as a competitive envi-
ronment was the same Connect-Four game (Checkers was
the second domain). Their heuristic function was identical
to ours with three different variations (H1, H2, and H3) that
are distinguished from one another in their linear combina-
tion coefficient values. The search depth for the players was
3 (as in our analysis). Their extensive experiments check
and compare various learning strategies, risk factors, prede-
fined feature sets and usage methods. The bottom line is
that the Connect-Four domain shows an improvement from
a 0.556 winning rate before modeling to a 0.69 after mod-
eling (page 22). Their conclusions, showing improved per-
formance when holding and using the adversary’s model,
justify the effort to monitor the adversary profile for contin-
uous and repeated interactions.

An additional point that came up in their experiments is
the following: after the opponent weakness model has been
learned, the authors describe different methods of integrat-
ing the opponent weakness model into the agent’s decision
strategy. Nevertheless, regardless of the specific method
they chose to work with, all integration methods might cause
the agent to take suboptimal decisions; it might cause the
agent to prefer actions that are suboptimal at the present
decision junction, but which might cause the opponent to
react in accordance with its weakness model (as represented
by our agent) which in turn will be beneficial for us in the
future. The agent’s behavior, as demonstrated in [9] further
confirms and strengthens our Suboptimal Tactical Axiom as
discussed in the previous section.



3.2.3 Additional Insights
The need for the Goal Achieving, Preventive Act, and

Evaluation Maximization axioms are obvious, and need no
further verification. However, even with respect to those ax-
ioms, a few interesting insights came up in the log analysis.
The Goal achieving and Preventive Act axioms, though the-
oretically trivial, seem to provide some challenge to a human
player. In the initial inspection of the logs, we encountered
few games2 where a player, for inexplicable reasons, did not
block the other from winning or failed to execute its own
winning move. We can blame those faults on the human’s
lack of attention, or a typing error in its move reply; never-
theless, those errors might occur in bounded rational agents,
and the appropriate behavior needs to be axiomatized.

A typical Connect-Four game revolves around generating
threats and blocking them. In our analysis we looked for
explicit preventive actions, i.e., moves that block a group of
3 discs, or that remove a future threat (in our limited search
horizon). We found that in 83% of the total games there was
at least one preventive action taken by the Black player. It
was also found that Black averaged 2.8 preventive actions
per game on the games in which it lost, while averaging 1.5
preventive actions per game when winning. It seems that
Black requires 1 or 2 preventive actions to build its initial
taking position, before starting to present threats. If it did
not manage to win, it will usually prevent an extra threat
or two before succumbing to White.

4. RELATED WORK
Much research deals with the axiomatization of teamwork

and mental states of individuals: some models use knowl-
edge and belief [10], others have models of goals and inten-
tions [8, 4]. However, all these formal theories deal with
agent teamwork and cooperation. As far as we know, our
model is the first to provide a formalized model for explicit
adversarial environments and agents’ behavior in it.

The classical Min-Max adversarial search algorithm was
the first attempt to integrate the opponent into the search
space with a weak assumption of an optimally playing op-
ponent. Since then, much effort has gone into integrating
the opponent model into the decision procedure to predict
future behavior. The M∗ algorithm presented by Carmel
and Markovitch [2] showed a method of incorporating op-
ponent models into adversary search, while in [3] they used
learning to provide a more accurate opponent model in a 2-
player repeated game environment, where agents’ strategies
were modeled as finite automata. Additional Adversarial
planning work was done by Willmott et al. [13], which pro-
vided an adversarial planning approach to the game of GO.

The research mentioned above dealt with adversarial search
and the integration of opponent models into classical utility-
based search methods. That work shows the importance of
opponent modeling and the ability to exploit it to an agent’s
advantage. However, the basic limitations of those search
methods still apply; our model tries to overcome those lim-
itations by presenting a formal model for a new, mental
state-based adversarial specification.

5. CONCLUSIONS
We presented an Adversarial Environment model for a

2These were later removed from the final analysis.

bounded rational agent that is situated in an N -player, zero-
sum environment. We used the SharedPlans formalization
to define the model and the axioms that agents can apply
as behavioral guidelines.

The model is meant to be used as a guideline for design-
ing agents that need to operate in such adversarial environ-
ments. We presented empirical results, based on Connect-
Four log file analysis, that exemplify the model and the
axioms for a bilateral instance of the environment.

The results we presented are a first step towards an ex-
panded model that will cover all types of adversarial envi-
ronments, for example, environments that are non-zero-sum,
and environments that contain natural agents that are not
part of the direct conflict. Those challenges and more will
be dealt with in future research.
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