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ABSTRACT
Preference aggregation is used in a variety of multiagent applica-
tions, and as a result, voting theory has become an important topic
in multiagent system research. However, power indices (which
reflect how much “real power” a voter has in a weighted voting
system) have received relatively little attention, although they have
long been studied in political science and economics. The Banzhaf
power index is one of the most popular; it is also well-defined for
any simple coalitional game.

In this paper, we examine the computational complexity of cal-
culating the Banzhaf power index within a particular multiagent do-
main, a network flow game. Agents control the edges of a graph; a
coalition wins if it can send a flow of a given size from a source ver-
tex to a target vertex. The relative power of each edge/agent reflects
its significance in enabling such a flow, and in real-world networks
could be used, for example, to allocate resources for maintaining
parts of the network.

We show that calculating the Banzhaf power index of each agent
in this network flow domain is #P-complete. We also show that
for some restricted network flow domains there exists a polynomial
algorithm to calculate agents’ Banzhaf power indices.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity;
I.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence—
Multiagent Systems;
J.4 [Computer Applications]: Social and Behavioral Sciences—
Economics
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1. INTRODUCTION
Social choice theory can serve as an appropriate foundation upon

which to build multiagent applications. There is a rich literature
on the subject of voting1 from political science, mathematics, and
economics, with important theoretical results, and builders of auto-
mated agents can benefit from this work as they engineer systems
that reach group consensus.

Interest in the theory of economics and social choice has in fact
become widespread throughout computer science, because it is rec-
ognized as having direct implications on the building of systems
comprised of multiple automated agents [16, 4, 22, 17, 14, 8, 15].
What distinguishes computer science work in these areas is its con-
cern for computational issues: how are results arrived at (e.g., equi-
librium points)? What is the complexity of the process? Can com-
plexity be used to guard against unwanted phenomena? Does com-
plexity of computation prevent realistic implementation of a tech-
nique?

The practical applications of voting among automated agents are
already widespread. Ghosh et al. [6] built a movie recommenda-
tion system; a user’s preferences were represented as agents, and
movies to be suggested were selected through agent voting. Can-
didates in virtual elections have also been beliefs, joint plans [5],
and schedules [7]. In fact, to see the generality of the (automated)
voting scenario, consider modern web searching. One of the most
massive preference aggregation schemes in existence is Google’s
PageRank algorithm, which can be viewed as a vote among in-
dexed web pages on candidates determined by a user-input search
string; winners are ranked (Tennenholtz and Altman [21] consider
the axiomatic foundations of ranking systems such as this).

In this paper, we consider a topic that has been less studied in the
context of automated agent voting, namely power indices. A power
index is a measure of the power that a subgroup, or equivalently
a voter in a weighted voting environment, has over decisions of a
larger group. The Banzhaf power index is one of the most popular
measures of voting power, and although it has been used primarily
for measuring power in weighted voting games, it is well-defined
for any simple coalitional game.

We look at some computational aspects of the Banzhaf power
index in a specific environment, namely a network flow game. In
this game, a coalition of agents wins if it can send a flow of sizek

from a source vertexs to a target vertext, with the relative power
of each edge reflecting its significance in allowing such a flow. We
show that calculating the Banzhaf power index of each agent in
this general network flow domain is #P-complete. We also show
that for some restricted network flow domains (specifically, of con-

1We use the term in its intuitive sense here, but in the social choice
literature, “preference aggregation” and “voting” are basically syn-
onymous.



nectivity games on bounded layer graphs), theredoes exista poly-
nomial algorithm to calculate the Banzhaf power index of an agent.
There are implications in this scenario to real-world networks; for
example, the power index might be used to allocate maintenance
resources (a more “powerful” edge being more critical), in order to
maintain a given flow of data between two points.

The paper proceeds as follows. In Section 2 we give some back-
ground concerning coalitional games and the Banzhaf power in-
dex, and in Section 3 we introduce our specific network flow game.
In Section 4 we discuss the Banzhaf power index in network flow
games, presenting our complexity result in the general case. In
Section 5 we consider a restricted case of the network flow game,
and present results. In Section 6 we discuss related work, and we
conclude in Section 7.

2. TECHNICAL BACKGROUND
A coalitional game is composed of a set ofn agents,I, and a

function mapping any subset (coalition) of the agents to a real value
v : 2I → R. In asimplecoalitional game,v only gets values of 0 or
1 (v : 2I → {0, 1}). We say a coalitionC ⊂ I wins if v(C) = 1,
and say itlosesif v(C) = 0. We denote the set of all winning
coalitions asW (v) = {C ⊂ 2I |v(C) = 1}.

An agenti is a swinger (or “pivot”) in a winning coalitionC

if the agent’s removal from that coalition would make it a losing
coalition: v(C) = 1, v(C \ {i}) = 0. A swingis a pair< i, S >

such that agenti is a swinger in coalitionS.
A question that arises in this context is that of measuring the

influence a given agent has on the outcome of a simple game. One
approach to measuring the power of individual agents in simple
coalitional games is the Banzhaf index.

2.1 The Banzhaf Index
A common interpretation of the power an agent possesses is that

of its a priori probability of having a significant role in the game.
Different assumptions about the formation of coalitions, and dif-
ferent definitions of “having a significant role,” have caused re-
searchers to define different power indices, one of the most promi-
nent of which is the Banzhaf index [1]. This index has been widely
used, though primarily for the purpose of measuring individual
power in a weighted voting system. However, it can also easily
be applied to any simple coalitional game.

The Banzhaf index depends on the number of coalitions in which
an agent is a swinger, out of all possible coalitions.2 The Banzhaf
index is given byβ(v) = (β1(v), ..., βn(v)) where

βi(v) =
1

2n−1

∑

S⊂N|i∈S

[v(S)− v(S \ {i})].

Different probabilistic models on the way a coalition is formed
yield different appropriate power indices [20]. The Banzhaf power
index reflects the assumption that the agents are independent in
their choices.

3. NETWORK FLOW GAMES

3.1 Motivation
Consider a communication network, where it is crucial to be able

to send a certain amount of information between two sites. Given
limited resources to maintain network links, which edges should
get those resources?
2Banzhaf actually considered the percentage of such coalitions out
of all winning coalitions. This is called thenormalizedBanzhaf
index.

We model this problem by considering anetwork flow game. The
game consists of agents in a network flow graph, with a certain
source vertexs and target vertext. Each agent controls one of the
graph’s edges, and a coalition of agents controls all the edges its
members control. A coalition of agents wins the game if it manages
to send a flow of at leastk from sources to targett, and loses
otherwise.

To ensure that the network is capable of maintaining the desired
flow betweens andt, we may choose to allocate our limited main-
tenance resources to the edges according to their impact on allow-
ing this flow. In other words, resources could be devoted to the
links whose failure is most likely to cause us to lose the ability to
send the required amount of information between the source and
target.

Under a reasonable probabilistic model, the Banzhaf index pro-
vides us with a measure of the impact each edge has on enabling
this amount of information to be sent between the sites, and thus
provides a reasonable basis for allocation of scarce maintenance
resources.

3.2 Formal Definition
Formally, a network flow game is defined as follows. The game

consists of a network flow graphG =< V, E >, with capacities on
the edgesc : E → R, a source vertexs, a target vertext, and a setI
of agents, where agenti controls the edgeei. Given a coalitionC,
which controls the edgesEC = {ei|i ∈ C}, we can check whether
the coalition allows a flow ofk from s to t. We define thesimple
coalitional game of network flowas the game where the coalition
wins if it allows such a flow, and loses otherwise:

v(C) =

{
1 if EC allows a flow ofk from s to t;

0 otherwise;

A simplified version of the network flow game is theconnectivity
game; in a connectivity game, a coalition wants to have some path
from source to target. More precisely, a connectivity game is a
network flow game where each of the edges has identical capacity,
c(e) = 1, and the target flow value isk = 1. In such a scenario,
the goal of a coalition is to have at least one path froms to t:

v(C) =

{
1 if EC contains a path froms to t;

0 otherwise;

Given a network flow game (or a connectivity game), we can
compute the power indices of the game. When a coalition of edges
is chosen at random, and each coalition is equiprobable, the appro-
priate index is the Banzhaf index.3 We can use the Banzhaf value
of an agenti ∈ I (or the edge it controls,ei), βei(v) = βi(v), to
measure its impact on allowing a given flow betweens andt.

4. THE BANZHAF INDEX IN NETWORK
FLOW GAMES

We now define the problem of calculating the Banzhaf index in
the network flow game.

DEFINITION 1. NETWORK-FLOW-BANZHAF: We are given a
network flow graphG =< V, E > with a source vertexs and a
target vertext, a capacity functionc : E → R, and a target flow
valuek. We consider the network flow game, as defined above in
Section 3. We are given an agenti, controlling the edgeei, and are
asked to calculate the Banzhaf index for that agent. In the network
3When eachorderingof edges is equiprobable, the appropriate in-
dex is the Shapley-Shubik index.



flow game, letCei be the set of all subsets ofE that containei:
Cei = {C ⊂ E|ei ∈ C}. In this game, the Banzhaf index ofei is:

βi(v) =
1

2|E|−1

∑

E′⊂Cei

[v(E′)− v(E′ \ {ei})].

Let W (Cei) be the set of winning subsets of edges inCei , i.e.,
the subsetsE′ ∈ Cei where a flow of at leastk can be sent from
s to t using only the edges inE′. The Banzhaf index ofei is the
proportion of subsets inW (Cei) whereei is crucialto maintaining
the k-flow. All the edge subsets inW (Cei) contain ei and are
winning, but only for some of them,E′ ∈ W (Cei), do we have
that v(E′ \ {ei}) = 0 (i.e.,E′ is no longer winning if we remove
ei). The Banzhaf index ofei is the proportion of such subsets.

4.1 #P-Completeness of Calculating the Banzhaf
Index in the Network Flow Game

We now show that the general case of NETWORK-FLOW-BANZHAF
is #P-complete, by a reduction from #MATCHING.

First, we note that NETWORK-FLOW-BANZHAF is in #P. There
are several polynomial algorithms to calculate the maximal net-
work flow, so it is easy to check if a certain subset of edgesE′ ⊂ E

containsei and allows a flow of at leastk from s to t. It is also
easy to check if a flow of at leastk is no longer possible when
we removeei from E′ (again, by running a polynomial algorithm
for calculating the maximal flow). The Banzhaf index ofei is ex-
actly the number of such subsetsE′ ⊂ E, so NETWORK-FLOW-
BANZHAF is in #P. To show that NETWORK-FLOW-BANZHAF
is #P-complete, we reduce a #MATCHING problem4 to a NETWORK-
FLOW-BANZHAF problem.

DEFINITION 2. #MATCHING: We are given a bipartite graph
G =< U, V, E >, such that|U | = |V | = n, and are asked to
count the number of perfect matchings possible inG.

4.2 The Overall Reduction Approach
The reduction is done as follows. From the #MATCHING in-

put, G =< U, V, E >, we build two inputs for the NETWORK-
FLOW-BANZHAF problem. The difference between the answers
obtained from the NETWORK-FLOW-BANZHAF runs is the an-
swer to the #MATCHING problem. Both runs of the NETWORK-
FLOW-BANZHAF problem are constructed with the same graph
G′ =< V ′, E′ >, with the same source vertexs and target vertex
t, and with the same edgeef for which to compute the Banzhaf in-
dex. They differ only in the target flow value. The first run is with
a target flow ofk, and the second run is with a target flow ofk + ε.

A choice of subsetEc ⊂ E′ reflects a possible matching in the
original graph.G is a subgraph of the constructedG′. We identify
an edge inG′, e ∈ E′, with the same edge inG. This edge indicates
a particular match between some vertexu ∈ U and another vertex
v ∈ V . Thus, ifEc ⊂ E′ is a subset of edges inG′ which contains
only edges in the subgraph ofG, we identify it with a subset of
edges inG, or with some candidate of a matching.

We sayEc ⊂ E′ matchessome vertexv ∈ V , if Ec contains
some edge that connects tov, i.e., for someu ∈ U we have(u, v) ∈
Ec. Ec is a possible matching if it does not match a vertexv ∈ V

with more than one vertex inU , i.e., there are not two vertices
u1 6= u2 in U that both(u1, v) ∈ Ec and(u2, v) ∈ Ec. A perfect
matching matches all the vertices inV .

If Ec fails to match a vertex inV (the right side of the partition),
the maximal possible flow thatEc allows inG′ is less thank. If it
matches all the vertices inV , a flow ofk is possible. If it matches
4This is one of the most well-known #P-complete problems.

all the vertices inV , but matches some vertex inV more than once
(which means this is not a true matching), a flow ofk+ε is possible.
ε is chosen so that if a single vertexv ∈ V is unmatched, the
maximal possible flow would be less than|V |, even if all the other
vertices are matched more than once. In other words,ε is chosen
so that matching several vertices inV more than once can never
compensate for not matching some vertex inV , in terms of the
maximal possible flow.

Thus, when we check the Banzhaf index ofef when the required
flow is at leastk, we get the number of subsetsE′ ⊂ E that match
all the vertices inV at least once. When we check the Banzhaf
index ofef with a required flow of at leastk+ε, we get the number
of subsetsE′ ⊂ E that match all the vertices inV at least once, and
match at least one vertexv ∈ V more than once. The difference
between the two is exactly the number of perfect matchings inG.

Therefore, if there existed a polynomial algorithm for NETWORK-
FLOW-BANZHAF, we could use it to build a polynomial algo-
rithm for #MATCHING, so NETWORK-FLOW-BANZHAF is #P-
complete.

4.3 Reduction Details
The reduction takes the #MATCHING input, the bipartite graph

G =< U, V, E >, where |U | = |V | = k. It then generates
a network flow graphG′ as follows. The graphG is kept as a
subgraph ofG′, and each edge inG is given a capacity of 1. A
new source vertexs is added, along with a new vertext′ and a new
target vertext. Let ε = 1

k+1
so thatε · k < 1. The sources is

connected to each of the vertices inU , the left partition ofG, with
an edge of capacity1+ ε. Each of the vertices inV is connected to
t′ with an edge of capacity1 + ε. t′ is connected tot with an edge
ef of capacity1 + ε.

As mentioned above, we perform two runs of NETWORK-FLOW-
BANZHAF, both checking the Banzhaf index of the edgeef in the
flow networkG′. We denote the network flow game defined onG′

with target flowk asv(G′,k). The first run is performed on the game
with a target flow ofk, v(G′,k), returning the indexβef

(v(G′,k)).
The second run is performed on the game with a target flow of
k + ε, v(G′,k+ε), returning the indexβef

(v(G′,k+ε)). The number
of perfect matchings inG is the difference between the answers
in the two runs,βef

(v(G′,k)) − βef
(v(G′,k+ε)). This is proven in

Theorem 5.
Figure 1 shows an example of constructingG′ from G. On the

left is the original graphG, and on the right is the constructed net-
work flow graphG′.

4.4 Proof of the reduction
We now prove that the reduction above is correct. In all of this

section, we take the input to the #MATCHING problem to be
G =< U, V, E > with |U | = |V | = k, the network flow graph
constructed in the reduction to beG′ =< V ′, E′ > with capacities
c : E′ → R as defined in Section 4.3, the edge for which to cal-
culate the Banzhaf index to beef , and target flow values ofk and
k + ε.

PROPOSITION 1. Let Ec ⊂ E′ be a subset of edges that lacks
one or more edges of the following:

1. The edges connected tos;

2. The edges connected tot′;

3. The edgeef = (t′, t).

We call such a subset amissingsubset. The maximal flow between
s andt using only the edges in the missing subsetEc is less thank.



Figure 1: Reducing #MATCHING to NETWORK-FLOW-BANZHAF

PROOF. The graph is a layer graph, withs being the vertex in
the first layer,U the vertices in the second layer,V the vertices in
the third,t′ the vertex in the fourth, andt in the fifth. Edges inG′

only go between consecutive layers. The maximal flow in a layer
graph is limited by the total capacity of the edges between every
two consecutive layers. If any of the edges betweens andU is
missing, the flow is limited by(|V | − 1)(1 + ε) < k. If any of
the edges betweenV andt′ is missing, the flow is also limited by
(|V | − 1)(1 + ε) < k. If the edgeef is missing, there are no edges
going to the last layer, and the maximal flow is 0.

Since such missing subsets of edges do not affect the Banzhaf
index ofef (they add 0 to the sum), from now on we will consider
only non-missing subsets. As explained in Section 4.2, we identify
the edges inG′ that were copied fromG (the edges betweenU and
V in G′) with their counterparts inG. Each such edge(u, v) ∈ E′

represents a match betweenu andv in G. Ec is a perfect matching
if it matches every vertexu to a single vertexv and vice versa.

PROPOSITION 2. Let Ec ⊂ E′ be a subset of edges that fails
to match some vertexv ∈ V . The maximal flow betweens and t

using only the edges in the missing subsetEc is less thank. We call
such a setsub-matching, and it is not a perfect matching.

PROOF. If Ec fails to match some vertexv ∈ V , the maximal
flow that can reach the vertices in theV layer is(1+ε)(k−1) < k,
so this is also the maximal flow that can reacht.

PROPOSITION 3. Let Ec ⊂ E′ be a subset of edges that is a
perfect matching inG. Then the maximal flow betweens and t

using only the edges inEc is exactlyk.

PROOF. A flow of k is possible. We send a flow of 1 froms
to each of the vertices inU , send a flow of 1 from each vertex
u ∈ U to its matchv ∈ V , and send a flow of 1 from eachv ∈ V

to t′. t′ gets a total flow of exactlyk, and sends it tot. A flow
of more thank is not possible since there are exactlyk edges of
capacity 1 between theU layer and theV layer, and the maximal
flow is limited by the total capacity of the edges between these two
consecutive layers.

PROPOSITION 4. Let Ec ⊂ E′ be a subset of edges that con-
tains a perfect matchingM ⊂ E in G and at least one more edge
ex between some vertexua ∈ U andva ∈ V . Then the maximal
flow betweens andt using only the edges inEc is at leastk+ε. We
call such a set asuper-matching, and it is not a perfect matching.

PROOF. A flow of k is possible, by using the edges of the perfect
match as in Proposition 3. We send a flow of 1 froms to each of

the vertices inU , send a flow of 1 from each vertexu ∈ U to its
matchv ∈ V , and send a flow of 1 from eachv ∈ V to t′. t′ gets
a total flow of exactlyk, and sends it tot. After using the edges
of the perfect matching, we send a flow ofε from s to ua (this is
possible since the capacity of the edge(s, ua) is 1+ ε and we have
only used up 1). We then send a flow ofε from ua to va. This
is possible since we have not used this edge at all—it is the edge
which is not a part of the perfect matching. We then send a flow of
ε from va to t′. Again, this is possible since we have used 1 out of
the total capacity of1 + ε which that edge has. Nowt′ gets a total
flow of k + ε, and sends it all tot, so we have achieved a total flow
of k + ε. Thus, the maximal possible flow is at leastk + ε.

THEOREM 5. Consider a #MATCHING instanceG =< U, V, E >

reduced to a BANZHAF-NETWORK-FLOW instanceG′ as explained
in Section 4.3. Letv(G′,k) be the network flow game defined onG′

with target flowk, andv(G′,k+ε) be the game defined with a target
flow ofk+ε. Let the resulting index of the first run beβef

(v(G′,k)),
andβef

(v(G′,k+ε)) be the resulting index of the second run. Then
the number of perfect matchings inG is the difference between the
answers in the two runs,βef

(v(G′,k))− βef
(v(G′,k+ε)).

PROOF. Consider the gamev(G′,k). According to Proposition 1,
in this game, the Banzhaf index ofEf does not count missing sub-
setsEc ∈ E′, since they are losing in this game. According to
Proposition 2, it does not count subsetsEc ∈ E′ that are sub-
matchings, since they are also losing. According to Proposition 3,
it adds 1 to the count for each perfect matching, since such subsets
allow a flow of k and are winning. According to Proposition 3,
it adds 1 to the count for each super-matching, since such subsets
allow a flow ofk (and more thank) and are winning.

Consider the gamev(G′,k+ε). Again, according to Proposition 1,
in this game the Banzhaf index ofEf does not count missing sub-
setsEc ∈ E′, since they are losing in this game. According to
Proposition 2, it does not count subsetsEc ∈ E′ that are sub-
matchings, since they are also losing. According to Proposition 3,
it adds 0 to the count for each perfect matching, since such subsets
allow a flow ofk but notk + ε, and are thus losing. According to
Proposition 3, it adds 1 to the count for each super-matching, since
such subsets allow a flow ofk + ε and are winning.

Thus the difference between the two indices,

βef
(v(G′,k))− βef

(v(G′,k+ε)),

is exactly the number of perfect matchings inG.

We have reduced a #MATCHING problem to a NETWORK-
FLOW-BANZHAF problem. This means that given a polynomial



algorithm to calculate the Banzhaf index of an agent in a gen-
eral network flow game, we can build an algorithm to solve the
#MATCHING problem. Thus, the problem of calculating the Banzhaf
index of agents in general network flow games is also #P-complete.

5. CALCULATING THE BANZHAF INDEX
IN BOUNDED LAYER GRAPH CONNEC-
TIVITY GAMES

We here present a polynomial algorithm to calculate the Banzhaf
index of an edge in a connectivity game, where the network is a
bounded layer graph. This positive result indicates that for some
restricteddomains of network flow games, it is possible to calculate
the Banzhaf index in a reasonable amount of time.

DEFINITION 3. A layer graphis a graphG =< V, E >, with
source vertexs and target vertext, where the vertices of the graph
are partitioned inton + 1 layers,L0 = {s}, L1, ..., Ln = {t}.
The edges run only between consecutive layers.

DEFINITION 4. Ac-boundedlayer graph is a layer graph where
the number of vertices in each layer is bounded by some constant
numberc.

Although there is no limit on the number of layers in a bounded
layer graph, the structure of such graphs makes it possible to cal-
culate the Banzhaf index of edges in connectivity games on such
graphs. The algorithm provided below is indeed polynomial in the
number of vertices given that the network is ac-bounded layer
graph. However, there is a constant factor to the running time,
which is exponential inc. Therefore, this method is only tractable
for graphs where the boundc is small. Bounded layer graphs may
occur in networks when the nodes are located in several ordered
segments, where nodes can be connected only between consecu-
tive segments.

Let v be a vertex in layerLi. We say an edgee occurs beforev if
it connects two vertices inv’s layer or a previous layer:e = (u, w)
connects vertexu ∈ Lj to vertexw ∈ Lj+1 andj + 1 ≤ i. Let
Predv ⊂ E be the subset of edges that occur beforev. Consider
a subset of these edges,E′ ⊂ Predv. E′ may contain a path
from s to v, or it may not. We definePv as the number of subsets
E′ ⊂ Predv that contain a path froms to v.

Similarly, letVi ∈ V be the subset ofall the vertices in the same
layerLi. LetPredVi ⊂ E be the subset of edges that occur before
Vi (all the vertices inVi are in the same layer, so any edge that
occurs before somev ∈ Vi occurs before any other vertexw ∈ Vi).
Consider a subset of these edges,E′ ⊂ PredV . Let Vi(E

′) be the
subset of vertices inVi that are reachable froms using only the
edges inE′: Vi(E

′) = {v ∈ Vi|E
′ contains a path from s to v}.

We sayE′ ∈ PredV connects exactlythe vertices inSi ⊂ Vi if all
the vertices inSi are reachable froms using the edges inE′ but no
other vertices inVi are reachable froms usingE′, soVi(E

′) = Si.
Let V ′ ⊂ Vi be a subset of the vertices in layerLi. We define

PV ′ as the number of subsetsE′ ⊂ PredV ′ thatconnect exactly
the vertices inV ′: PV ′ = |{E′ ⊂ PredV ′ |Vi(E

′) = V ′}|.

LEMMA 1. Let S1, S2 ⊂ Vi whereS1 6= S2 be two different
subsets of vertices in the same layer. LetE′, E′′ ⊂ PredVi be
two sets of edge subsets, so thatE′ connects exactly the vertices in
S1 andE′′ connects exactly the vertices inS2: Vi(E

′) = S1 and
Vi(E

′′) = S2. ThenE′ and E′′ do not contain the same edges:
E′ 6= E′′.

PROOF. If E′ = E′′ then both sets of edges allow the same
paths froms, soVi(E

′) = Vi(E
′′).

Let Si ⊂ Vi be a subset of vertices in layerLi. Let Ei ⊂
E be the set of edges between the vertices in layerLi and layer
Li+1. Let E ⊂ Ei be some subset of these edges. We denote by
Dests(Si, E) the set of vertices in layerLi+1 that are connected
to some vertex inSi by an edge inE:
Dests(Si, E) = {v ∈ Vi+1|there exists some

w ∈ Si and somee ∈ E thate = (w, v)}.
Let Si ⊂ Vi be a subset of vertices inLi andE ⊂ Ei be some
subset of the edges between layerLi and layerLi+1. PSi counts
the number of edge subsets inPredVi that connect exactly the ver-
tices inSi. Consider such a subsetE′ counted inPSi . E′ ∪ E is a
subset of edges inPredVi+1 that connects exactly toDest(Si, E).
According to Lemma 1, if we iterate over the differentSi’s in layer
Li, thePSi ’s count different subsets of edges, and thus every ex-
pansion using the edges inE is also different.

Algorithm 1 calculatesPt. It iterates through the layers, and
updates the data for the next layer given the data for the current
layer. For each layerLi and every subset of edges in that layer
Si ⊂ Vi, it calculatesPSi . It does so using the values calculated in
the previous layer. The algorithm considers every subset of possible
vertices in the current layer, and every possible subset of expanding
edges to the next layer, and updates the value of the appropriate
subset in the next layer.

Algorithm 1
1: procedure CONNECTING-EXACTLY-SUBSETS(G,v)
2: P{s} ← 1 . Initialization
3: for all other subsets of verticesS do . Initialization
4: PS ← 0
5: end for
6: for i← 0 to n− 1 do . Iterate through layers
7: for all vertex subsetsSi in Li do
8: for all edge subsetsE betweenLi, Li+1 do
9: D ← Dests(Si, E) . subset inLi+1

10: PD ← PD + PSi

11: end for
12: end for
13: end for
14: end procedure

A c-bounded layer graph contains at mostc vertices in each
layer, so for each layer there are at most2c different subsets of
vertices in that layer. There are also at mostc2 edges between 2
consecutive layers, and thus at most2(c2) edge subsets between
two layers.

If the graph containsk layers, the running time of the algorithm
is bounded byk·2c ·2(c2). Sincec is a constant, this is a polynomial
algorithm.

Consider the connectivity game on a layer graphG, with a single
source vertexs and target vertext. The Banzhaf index of the edge
e is the number of subsets of edges that allow a path betweens

and t, but do not allow such a path whene is removed (divided
by a constant). We can calculateP{t} = P{t}(G) for G using
the algorithm to count the number of subsets of edges that allow
a path froms to t. We can then removee from G to obtain the
graphG′ =< V, E \ {e} >, and calculateP{t} = P{t}(G

′). The
differenceP{t}(G) − P{t}(G

′) is the number of subsets of edges
that contain a path froms to t but no longer contain such a path

whene is removed. The Banzhaf index fore is
P{t}(G)−P{t}(G′)

2|E|−1
.

Thus, this algorithm allows us to calculate the Banzhaf index on an
edge in the connectivity games on bounded layer graphs.



6. RELATED WORK
Measuring the power of individual players in coalitional games

has been studied for many years. The most popular indices sug-
gested for such measurement are the Banzhaf index [1] and the
Shapley-Shubik index [19].

In his seminal paper, Shapley [18] considered coalitional games
and the fair allocation of the utility gained by the grand coalition
(the coalition of all agents) to its members. The Shapley-Shubik
index [19] is the direct application of the Shapley value to simple
coalitional games.

The Banzhaf index emerged directly from the study of voting in
decision-making bodies. ThenormalizedBanzhaf index measures
the proportion of coalitions in which a player is a swinger, out of
all winning coalitions. This index is similar to the Banzhaf index
discussed in Section 1, and is defined as:

β̃i =
βi(v)∑
k∈N

βk

.

The Banzhaf index was mathematically analyzed in [3], where
it was shown that this normalization lacks certain desirable proper-
ties, and the more natural Banzhaf index is introduced.

Both the Shapley-Shubik and the Banzhaf indices have been widely
studied, and Straffin [20] has shown that each index reflects specific
conditions in a voting body. [11] considers these two indices along
with several others, and describes the axioms that characterize the
different indices.

The naive implementation of an algorithm for calculating the
Banzhaf index of an agenti enumerates all coalitions containing
i. There are2n−1 such coalitions, so the performance is exponen-
tial in the number of agents. [12] contains a survey of algorithms
for calculating power indices of weighted majority games. Deng
and Papadimitriou [2] show that computing the Shapley value in
weighted majority games is #P-complete, using a reduction from
KNAPSACK. Since the Shapley value of any simple game has the
same value as its Shapley-Shubik index, this shows that calculat-
ing the Shapley-Shubik index in weighted majority games is #P-
complete.

Matsui and Matsui [13] have shown that calculating both the
Banzhaf and Shapley-Shubik indices in weighted voting games is
NP-complete.

The problem of computing power indices in simple games de-
pends on the chosen representation of the game. Since the number
of possible coalitions is exponential in the number of agents, cal-
culating power indices in time polynomial in the number of agents
can only be achieved in specific domains.

In this paper, we have considered the network flow domain, where
a coalition of agents must achieve a flow beyond a certain value.
The network flow game we have defined is a simple game. [10, 9]
have considered a similar network flow domain, where each agent
controls an edge of a network flow graph. However, they intro-
duced a non-simple game, where the value a coalition of agents
achieves is the maximal total flow. They have shown that certain
families of network flow games and similar games have nonempty
cores.

7. CONCLUSIONS AND FUTURE DIREC-
TIONS

We have considered network flow games, where a coalition of
agents wins if it manages to send a flow of more than some valuek

between two vertices. We have assessed the relative power of each
agent in this scenario using the Banzhaf index. This power index
may be used to decide how to allocate maintenance resources in

real-world networks, in order to maximize our ability to maintain a
certain flow of information between two sites.

Although the Banzhaf index theoretically allows us to measure
the power of the agents in the network flow game, we have shown
that the problem of calculating the Banzhaf index in this domain
in #P-complete. Despite this discouraging result for the general
network flow domain, we have also provided a more encouraging
result for a restricted domain. In the case of connectivity games
(where it is only required for a coalition to contain a path from
the source to the destination) played on bounded layer graphs, it is
possible to calculate the Banzhaf index of an agent in polynomial
time.

It remains an open problem to find ways to tractably approxi-
mate the Banzhaf index in the general network flow domain. It
might also be possible to find other useful restricted domains where
it is possible to exactly calculate the Banzhaf index. We have only
considered the complexity of calculating the Banzhaf index; it re-
mains an open problem to find the complexity of calculating the
Shapley-Shubik or other indices in the network flow domain. Fi-
nally, we believe that there are many additional interesting domains
other than weighted voting games and network flow games, and it
would be worthwhile to investigate the complexity of calculating
the Banzhaf index or other power indices in such domains.
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