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ABSTRACT 1. INTRODUCTION

Preference aggregation is used in a variety of multiagent applica-  Social choice theory can serve as an appropriate foundation upon
tions, and as a result, voting theory has become an important topicwhich to build multiagent applications. There is a rich literature
in multiagent system research. However, power indices (which on the subject of votingfrom political science, mathematics, and
reflect how much “real power” a voter has in a weighted voting economics, with important theoretical results, and builders of auto-
system) have received relatively little attention, although they have mated agents can benefit from this work as they engineer systems
long been studied in political science and economics. The Banzhafthat reach group consensus.
power index is one of the most popular; it is also well-defined for Interest in the theory of economics and social choice has in fact
any simple coalitional game. become widespread throughout computer science, because it is rec-

In this paper, we examine the computational complexity of cal- ognized as having direct implications on the building of systems
culating the Banzhaf power index within a particular multiagent do- comprised of multiple automated agents [16, 4, 22, 17, 14, 8, 15].
main, a network flow game. Agents control the edges of a graph; a What distinguishes computer science work in these areas is its con-
coalition wins if it can send a flow of a given size from a source ver- cern for computational issues: how are results arrived at (e g, eq
tex to a target vertex. The relative power of each edge/agent reflectslibrium points)? What is the complexity of the process? Can com-
its significance in enabling such a flow, and in real-world networks plexity be used to guard against unwanted phenomena? Does com-
could be used, for example, to allocate resources for maintaining plexity of computation prevent realistic implementation of a tech-
parts of the network. nique?

We show that calculating the Banzhaf power index of each agent  The practical applications of voting among automated agents are
in this network flow domain is #P-complete. We also show that already widespread. Ghosh et al. [6] built a movie recommenda-
for some restricted network flow domains there exists a polynomial tion system; a user's preferences were represented as agents, and

algorithm to calculate agents’ Banzhaf power indices. movies to be suggested were selected through agent voting. Can-
didates in virtual elections have also been beliefs, joint plans [5],
Categories and Subject Descriptors an(_j schedule§ [7]. In_fact, to see the generalit_y of the (automated)
voting scenario, consider modern web searching. One of the most
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-  massive preference aggregation schemes in existence is Google’s
lem Complexity; PageRank algorithm, which can be viewed as a vote among in-
[.2.11 %rtlfICIaI Intelligence ]: Distributed Atrtificial Intelligence— dexed web pages on candidates determined by a user-input search
Multiagent Systems string; winners are ranked (Tennenholtz and Altman [21] consider
J.4 [Computer Applications]: Social and Behavioral Sciences—  the axiomatic foundations of ranking systems such as this).
Economics In this paper, we consider a topic that has been less studied in the
context of automated agent voting, namely power indices. A power
General Terms index is a measure of the power that a subgroup, or equivalently

a voter in a weighted voting environment, has over decisions of a
larger group. The Banzhaf power index is one of the most popular
measures of voting power, and although it has been used primarily
Keywords for measuring power in weighted voting games, it is well-defined
Computational complexity, Voting, Power indices for any simple coalitional game.

We look at some computational aspects of the Banzhaf power
index in a specific environment, namely a network flow game. In
this game, a coalition of agents wins if it can send a flow of &ize
from a source vertex to a target vertex, with the relative power
of each edge reflecting its significance in allowing such a flow. We
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nectivity games on bounded layer graphs), ttdwes exisa poly- We model this problem by consideringnatwork flow gameThe
nomial algorithm to calculate the Banzhaf power index of an agent. game consists of agents in a network flow graph, with a certain
There are implications in this scenario to real-world networks; for source vertex and target vertex. Each agent controls one of the
example, the power index might be used to allocate maintenancegraph’s edges, and a coalition of agents controls all the edges its
resources (a more “powerful” edge being more critical), in order to members control. A coalition of agents wins the game if it manages
maintain a given flow of data between two points. to send a flow of at leagt from sources to targett, and loses
The paper proceeds as follows. In Section 2 we give some back- otherwise.
ground concerning coalitional games and the Banzhaf power in- To ensure that the network is capable of maintaining the desired
dex, and in Section 3 we introduce our specific network flow game. flow betweens and¢, we may choose to allocate our limited main-
In Section 4 we discuss the Banzhaf power index in network flow tenance resources to the edges according to their impact on allow-
games, presenting our complexity result in the general case. Ining this flow. In other words, resources could be devoted to the
Section 5 we consider a restricted case of the network flow game, links whose failure is most likely to cause us to lose the ability to
and present results. In Section 6 we discuss related work, and wesend the required amount of information between the source and

conclude in Section 7. target.
Under a reasonable probabilistic model, the Banzhaf index pro-
2. TECHNICAL BACKGROUND vides us with a measure of the impact each edge has on enabling

this amount of information to be sent between the sites, and thus
provides a reasonable basis for allocation of scarce maintenance
resources.

A coalitional game is composed of a setrofagents,/, and a
function mapping any subset (coalition) of the agents to a real value
v : 2I — R. In asimplecoalitional gamey only gets values of 0 or
1(v: 2" — {0,1}). We say a coalitior”’ C I winsif v(C) = 1, 3.2 Formal Definition
and say itlosesif v(C) = 0. We denote the set of all winning
coalitions ag¥ (v) = {C c 2'|v(C) = 1}.

An agenti is a swinger (or “pivot”) in a winning coalitionC'
if the agent’s removal from that coalition would make it a losing

coalition: v(C) = 1, v(C \ {i}) = 0. A swingis a pair< i, S > - - ;
such that agentis a swinger in coalitiors. which controls the edgeSc: = {e;|: € C'}, we can check whether
the coalition allows a flow ok from s to t. We define thesimple

A guestion that arises in this context is that of measuring the coalitional game of network flows the game where the coalition
influence a given agent has on the outcome of a simple game. One 9 9

approach to measuring the power of individual agents in simple wins if it allows such a flow, and loses otherwise:
coalitional games is the Banzhaf index. {1 if Ec allows a flow ofk from s to ;
v(C) = '

2.1 The Banzhaf Index 0 otherwise;

A common interpretation of the power an agent possesses is that A simplified version of the network flow game is thennectivity
of its a priori probability of having a significant role in the game.  game in a connectivity game, a coalition wants to have some path
Different assumptions about the formation of Coalitions, and dif- from source to targe’[. More precise|y, a Connectivity game is a
ferent definitions of “having a Signiﬁcant I’Ole," have caused re- network flow game where each of the edges has identical Capacity,
searchers to define different power indices, one of the most promi- .(¢) = 1, and the target flow value i = 1. In such a scenario,
nent of which is the Banzhaf index [1]. This index has been widely the goal of a coalition is to have at least one path frotm ¢:
used, though primarily for the purpose of measuring individual
power in a weighted voting system. However, it can also easily o(C) {1 if Ec contains a path from to ¢;

Formally, a network flow game is defined as follows. The game
consists of a network flow graght =< V, E >, with capacities on
the edges : £ — R, a source vertex, a target vertex, and a sef
of agents, where agentontrols the edge;. Given a coalition”,

be applied to any simple coalitional game. 0 otherwise;
The Banzhaf index depends on the number of coalitions in which

an agent is a swinger, out of all possible coalitiériBhe Banzhaf Given a network flow game (or a connectivity game), we can
index is given by3(v) = (51 (v), ..., Bn(v)) Where compute the power indices of the game. When a coalition of edges
1 is chosen at random, and each coalition is equiprobable, the appro-
Bi(v) = 5 Z [v(S) —v(S\ {:})]. priate index is the Banzhaf indéxWe can use the Banzhaf value
SCN|ies of an agent € I (or the edge it controlss;), B, (v) = Bi(v), to

. e m reitsim n allowin iven flow .
Different probabilistic models on the way a coalition is formed easure its impact on allowing a given flow betweemd?

yield different appropriate power indices [20]. The Banzhaf power

index reflects the assumption that the agents are independent in4- THE BANZHAF INDEX IN NETWORK

their choices. FLOW GAMES

We now define the problem of calculating the Banzhaf index in
3. NETWORK FLOW GAMES the network flow game.
3.1 Motivation DEFINITION 1. NETWORK-FLOW-BANZHAF: We are given a

Consider a communication network, where it is crucial to be able Network flow graphz =< V, E' > with a source vertex and a

to send a certain amount of information between two sites. Given target vertex;, a capacity function: : £ — R, and a target flow
limited resources to maintain network links, which edges should valuek. We consider the network flow game, as defined above in

get those resources? Section 3. We are given an age‘rjtontrolling the edge;, and are
asked to calculate the Banzhaf index for that agent. In the network

’Banzhaf actually considered the percentage of such coalitions out
of all winning coalitions. This is called theormalizedBanzhaf SWhen eactorderingof edges is equiprobable, the appropriate in-
index. dex is the Shapley-Shubik index.



flow game, leC.,; be the set of all subsets &f that containe;:
C., = {C C Ele; € C}. Inthis game, the Banzhaf index«fis:

Bi0) = s 30 (B — u(B\ {ea})].
E/CCe,

Let W (C.,) be the set of winning subsets of edge€in, i.e.,
the subset&’ € C., where a flow of at least can be sent from
s to t using only the edges il’. The Banzhaf index af; is the
proportion of subsets il (C.,;) wheree; is crucialto maintaining
the k-flow. All the edge subsets W (C.,) containe; and are
winning, but only for some of thenty’ € W(C,,), do we have
thatv(E’ \ {e;}) = 0 (i.e., E' is no longer winning if we remove
e;). The Banzhaf index @f is the proportion of such subsets.

4.1 #P-Completeness of Calculating the Banzhaf
Index in the Network Flow Game

We now show that the general case of NETWORK-FLOW-BANZH
is #P-complete, by a reduction from #MATCHING.

First, we note that NETWORK-FLOW-BANZHAF is in #P. There
are several polynomial algorithms to calculate the maximal net-
work flow, so it is easy to check if a certain subset of edges: E
containse; and allows a flow of at leagt from s to ¢. It is also
easy to check if a flow of at leadt is no longer possible when
we removee; from E’ (again, by running a polynomial algorithm
for calculating the maximal flow). The Banzhaf indexegfis ex-
actly the number of such subsd® c £, so NETWORK-FLOW-
BANZHAF is in #P. To show that NETWORK-FLOW-BANZHAF
is #P-complete, we reduce a #MATCHING probftma NETWORK-
FLOW-BANZHAF problem.

DEFINITION 2. #MATCHING: We are given a bipartite graph
G =< U,V,E >, such thatU| = |V| = n, and are asked to
count the number of perfect matchings possiblé&'in

4.2 The Overall Reduction Approach

The reduction is done as follows. From the #MATCHING in-
put, G =< U,V, E >, we build two inputs for the NETWORK-
FLOW-BANZHAF problem. The difference between the answers
obtained from the NETWORK-FLOW-BANZHAF runs is the an-
swer to the #MATCHING problem. Both runs of the NETWORK-
FLOW-BANZHAF problem are constructed with the same graph
G' =< V', E’ >, with the same source vertexand target vertex
t, and with the same edgsg for which to compute the Banzhaf in-
dex. They differ only in the target flow value. The first run is with
a target flow ofk, and the second run is with a target flowkof- e.

A choice of subsefs. C E' reflects a possible matching in the
original graph.G' is a subgraph of the constructét. We identify
anedgeir’, e € E’, with the same edge id. This edge indicates
a particular match between some vertex U and another vertex
v € V. Thus, ifE. C E’is a subset of edges @’ which contains
only edges in the subgraph 6f, we identify it with a subset of
edges inG, or with some candidate of a matching.

We sayE. C E’ matchessome vertexw € V, if E. contains
some edge that connectsitd.e., for some: € U we have(u, v) €
E.. E. is a possible matching if it does not match a vertex V'
with more than one vertex if/, i.e., there are not two vertices
u1 # ug in U that both(uy, v) € E. and(us2,v) € E.. A perfect
matching matches all the verticesiin

If E. fails to match a vertex i’ (the right side of the partition),
the maximal possible flow that. allows inG’ is less thark. If it
matches all the vertices v, a flow of k is possible. If it matches

“This is one of the most well-known #P-complete problems.

all the vertices inV/, but matches some vertex inmore than once
(which means this is not a true matching), a flow:efe is possible.
€ is chosen so that if a single vertex € V' is unmatched, the
maximal possible flow would be less thdr|, even if all the other
vertices are matched more than once. In other wards chosen
so that matching several verticeslihmore than once can never
compensate for not matching some vertextinin terms of the
maximal possible flow.

Thus, when we check the Banzhaf indexgfwhen the required
flow is at leastt, we get the number of subsdi¥ C E that match
all the vertices inV/ at least once. When we check the Banzhaf
index ofe; with a required flow of at leagt+ ¢, we get the number
of subsetdy’ C E that match all the vertices ¥ at least once, and
match at least one vertax € ¥ more than once. The difference
between the two is exactly the number of perfect matchings.in

Therefore, if there existed a polynomial algorithm for NETWORK-
FLOW-BANZHAF, we could use it to build a polynomial algo-
Afhm for #MATCHING, so NETWORK-FLOW-BANZHAF is #P-
complete.

4.3 Reduction Details

The reduction takes the #MATCHING input, the bipartite graph
G =< U,V,E >, where|U| = |V| = k. It then generates
a network flow graph’ as follows. The graplt: is kept as a
subgraph ofG’, and each edge i is given a capacity of 1. A
new source vertex is added, along with a new vertéxand a new
target vertext. Lete = ﬁl so thate - £ < 1. The sources is
connected to each of the verticedlin the left partition ofGG, with
an edge of capacity+ e. Each of the vertices il is connected to
t' with an edge of capacity + e. ¢’ is connected te with an edge
ey of capacityl + .

As mentioned above, we perform two runs of NETWORK-FLOW-
BANZHAF, both checking the Banzhaf index of the edgein the
flow networkG’. We denote the network flow game defined@hn
with target flowk asv(g- ry. The firstrun is performed on the game
with a target flow ofk, v(ar r), returning the indexde , (v(g- x))-
The second run is performed on the game with a target flow of
k + €, v(ar k+e), returning the indexse , (v(ar k1¢)). The number
of perfect matchings irz is the difference between the answers
in the two runs e . (v(ar k) — Be; (V(ar ktey)- This is proven in
Theorem 5.

Figure 1 shows an example of constructi@gfrom G. On the
left is the original grapl, and on the right is the constructed net-
work flow graphG’.

4.4 Proof of the reduction

We now prove that the reduction above is correct. In all of this
section, we take the input to the #MATCHING problem to be
G =< U,V,E > with |U| = |V| = k, the network flow graph
constructed in the reduction to & =< V', E’ > with capacities
c: E' — R as defined in Section 4.3, the edge for which to cal-
culate the Banzhaf index to leg, and target flow values df and
k + e.

PropPoOSITION 1. Let E. C E’ be a subset of edges that lacks
one or more edges of the following:

1. The edges connecteddp
2. The edges connectedtfo
3. The edge; = (¥, ).

We call such a subsetraissingsubset. The maximal flow between
s andt using only the edges in the missing sulisets less thark.



Figure 1: Reducing #MATCHING to NETWORK-FLOW-BANZHAF

PROOF The graph is a layer graph, withbeing the vertex in
the first layer,U the vertices in the second layéf,the vertices in
the third,’ the vertex in the fourth, antlin the fifth. Edges inG’
only go between consecutive layers. The maximal flow in a layer

the vertices inJ, send a flow of 1 from each vertex € U to its
matchv € V, and send a flow of 1 from eaghe V tot’. ¢’ gets
a total flow of exactlyk, and sends it ta. After using the edges
of the perfect matching, we send a floweofrom s to u, (this is

graph is limited by the total capacity of the edges between every possible since the capacity of the edgeu, ) is 1 + ¢ and we have

two consecutive layers. If any of the edges betweemd U is
missing, the flow is limited by |V| — 1)(1 + €) < k. If any of
the edges betwee¥i andt’ is missing, the flow is also limited by
(IVI=1)(1+e€) < k. If the edgee; is missing, there are no edges
going to the last layer, and the maximal flow is Q.1

index ofey (they add O to the sum), from now on we will consider
only non-missing subsets. As explained in Section 4.2, we identify
the edges i’ that were copied froni? (the edges betwedii and

V in G") with their counterparts id. Each such edgeu, v) € E’
represents a match betweemandv in G. E. is a perfect matching

if it matches every vertex to a single vertex and vice versa.

PROPOSITION 2. Let E. C E’ be a subset of edges that fails
to match some vertex € V. The maximal flow betweenand¢
using only the edges in the missing subisets less thark. We call
such a sesub-matchingand it is not a perfect matching.

ProoOF If E. fails to match some vertex € V, the maximal
flow that can reach the vertices in thidayer is(1+¢)(k—1) < k,
so this is also the maximal flow that can reach [

PROPOSITION 3. Let E. C E’ be a subset of edges that is a
perfect matching inG. Then the maximal flow betweenand ¢
using only the edges iA. is exactlyk.

PrROOF A flow of k is possible. We send a flow of 1 from
to each of the vertices iV, send a flow of 1 from each vertex
u € U toits matchw € V, and send a flow of 1 from eaghe V'
tot’. t' gets a total flow of exactly;, and sends it ta. A flow
of more thank is not possible since there are exadtlydges of
capacity 1 between th& layer and thé/ layer, and the maximal
flow is limited by the total capacity of the edges between these two
consecutive layers.[]

PROPOSITION 4. Let E. C E’ be a subset of edges that con-
tains a perfect matching/ C F in G and at least one more edge
e, between some vertex, € U andv, € V. Then the maximal
flow betweer andt using only the edges if. is at leastk +¢. We
call such a set auper-matchingand it is not a perfect matching.

ProoOF A flow of k is possible, by using the edges of the perfect
match as in Proposition 3. We send a flow of 1 frero each of

Since such missing subsets of edges do not affect the Banzhaf,

only used up 1). We then send a flow ofrom u, to v,. This

is possible since we have not used this edge at all—it is the edge
which is not a part of the perfect matching. We then send a flow of
e from v, tot’. Again, this is possible since we have used 1 out of
the total capacity of + e which that edge has. Not{ gets a total

flow of k + ¢, and sends it all ts, so we have achieved a total flow

O

THEOREM 5. Consider a#MATCHING instaneg =< U, V, E >
reduced to a BANZHAF-NETWORK-FLOW instat¥es explained
in Section 4.3. Leb(/,x) be the network flow game definedGh
with target flowk, andv g/ 1+.) be the game defined with a target
flow ofk+e¢. Let the resulting index of the first run I8, (v(g- 1)),
and S, (v(ar k1)) be the resulting index of the second run. Then
the number of perfect matchingsahis the difference between the
answers in the two rungl. , (v(gr x)) — Be; (Vi kte))-

of k + €. Thus, the maximal possible flow is at le&st e.

PrROOF. Consider the game- ). According to Proposition 1,
in this game, the Banzhaf index &f; does not count missing sub-
setsE. € E’, since they are losing in this game. According to
Proposition 2, it does not count subsdfs ¢ E’ that are sub-
matchings, since they are also losing. According to Proposition 3,
it adds 1 to the count for each perfect matching, since such subsets
allow a flow of k£ and are winning. According to Proposition 3,
it adds 1 to the count for each super-matching, since such subsets
allow a flow of & (and more thart) and are winning.

Consider the game g +). Again, according to Proposition 1,
in this game the Banzhaf index &f; does not count missing sub-
setsE. € E’, since they are losing in this game. According to
Proposition 2, it does not count subséfs € E’ that are sub-
matchings, since they are also losing. According to Proposition 3,
it adds 0 to the count for each perfect matching, since such subsets
allow a flow of k& but notk + ¢, and are thus losing. According to
Proposition 3, it adds 1 to the count for each super-matching, since
such subsets allow a flow &f+ € and are winning.

Thus the difference between the two indices,

Bey (Ve k) = Bey (V@ kre))s
is exactly the number of perfect matchinggin [

We have reduced a #MATCHING problem to a NETWORK-
FLOW-BANZHAF problem. This means that given a polynomial



algorithm to calculate the Banzhaf index of an agent in a gen-
eral network flow game, we can build an algorithm to solve the

Let S; C V; be a subset of vertices in layér;. Let E; C
E be the set of edges between the vertices in ldyeand layer

#MATCHING problem. Thus, the problem of calculating the BanzhafL; .. Let E C E; be some subset of these edges. We denote by

index of agents in general network flow games is also #P-complete.

5. CALCULATING THE BANZHAF INDEX
IN BOUNDED LAYER GRAPH CONNEC-
TIVITY GAMES

We here present a polynomial algorithm to calculate the Banzhaf
index of an edge in a connectivity game, where the network is a
bounded layer graph. This positive result indicates that for some
restricteddomains of network flow games, it is possible to calculate
the Banzhaf index in a reasonable amount of time.

DEFINITION 3. Alayer graphs a graphG =< V, E >, with
source vertex and target vertex, where the vertices of the graph
are partitioned inton + 1 layers, Lo = {s}, L1, ..., Ln = {t}.
The edges run only between consecutive layers.

DEFINITION 4. Ac-boundedayer graph is alayer graph where
the number of vertices in each layer is bounded by some constan
numbere.

Although there is no limit on the number of layers in a bounded

layer graph, the structure of such graphs makes it possible to cal-
culate the Banzhaf index of edges in connectivity games on such

graphs. The algorithm provided below is indeed polynomial in the
number of vertices given that the network iscdounded layer
graph. However, there is a constant factor to the running time,
which is exponential ire. Therefore, this method is only tractable
for graphs where the bounds small. Bounded layer graphs may

occur in networks when the nodes are located in several ordered
segments, where nodes can be connected only between consecu-,

tive segments.

Letv be a vertex in layef;. We say an edgeoccurs before if
it connects two vertices in's layer or a previous layee = (u, w)
connects vertex. € L; to vertexw € L;y1 andj + 1 < 4. Let
Pred, C E be the subset of edges that occur befar&onsider
a subset of these edgeB; C Pred,. E’ may contain a path
from s to v, or it may not. We definé, as the number of subsets
E’ C Pred, that contain a path fromto v.

Similarly, letV; € V be the subset dll the vertices in the same
layerL;. Let Predy, C E be the subset of edges that occur before
Vi (all the vertices inV; are in the same layer, so any edge that
occurs before some € V; occurs before any other vertexe V).
Consider a subset of these edgB5,C Predy. LetV;(E') be the
subset of vertices i¥; that are reachable from using only the
edges inE": V;(E') = {v € V;|E’ contains a path from s to}v
We sayE’ € Predy connects exactlthe vertices inS; C V; if all
the vertices inS; are reachable fromusing the edges ift’ but no
other vertices ifV; are reachable fromusingE’, soV;(E') = S;.

Let V' C V; be a subset of the vertices in layer. We define
Py as the number of subsefs C Predy thatconnect exactly
the vertices iV': Py, = [{E’ C Predy/|Vi(E") = V'}|.

LEMMA 1. LetS:,S2 C V; whereS; # S> be two different
subsets of vertices in the same layer. E&tE” C Predy, be
two sets of edge subsets, so thatconnects exactly the vertices in
S1 and E” connects exactly the vertices#a: V;(E’) = S; and
Vi(E") = S2. ThenE’ and E” do not contain the same edges:
El # E”.

PrROOF If E/ = E’ then both sets of edges allow the same
paths froms, soV;(E') = V;(E"). O

t

Dests(S;, E) the set of vertices in layek; . that are connected
to some vertex irt; by an edge inF:
Dests(Si, E) = {v € Viy1]there exists some

w € S; and some: € E thate = (w,v)}.
Let S; C V; be a subset of vertices ih; and E C E; be some
subset of the edges between laygrand layerL; . Ps, counts
the number of edge subsetsitredy, that connect exactly the ver-
tices inS;. Consider such a subskt counted inPs,. E' U E is a
subset of edges iRredV;+1 that connects exactly tbest(S;, F).
According to Lemma 1, if we iterate over the differéhts in layer
L;, the Ps,’s count different subsets of edges, and thus every ex-
pansion using the edges nis also different.

Algorithm 1 calculatesP;. It iterates through the layers, and
updates the data for the next layer given the data for the current
layer. For each layef,; and every subset of edges in that layer
Si C V;, it calculatesPs, . It does so using the values calculated in
the previous layer. The algorithm considers every subset of possible
vertices in the current layer, and every possible subset of expanding
edges to the next layer, and updates the value of the appropriate
subset in the next layer.

Algorithm 1
1: procedure CONNECTING-EXACTLY-SUBSETYG, v)

2: Ppgy <1 > Initialization
3: for all other subsets of verticesdo > Initialization
4: Ps+—0

5: end for

6: for i — 0ton —1do > Iterate through layers
7 for all vertex subsets; in L; do

for all edge subset® betweenL;, L;+1 do

9: D «— Dests(S;, E) > subset inL;y1
10: Pp «— Pp + PSi

11: end for

12: end for

13: end for

14: end procedure

A c-bounded layer graph contains at mestertices in each
layer, so for each layer there are at mestdifferent subsets of
vertices in that layer. There are also at megsedges between 2

consecutive layers, and thus at ma&t”) edge subsets between
two layers.
If the graph containg layers, the running time of the algorithm

is bounded b)k-2c-2(cz). Sincec is a constant, this is a polynomial
algorithm.

Consider the connectivity game on a layer gréptwith a single
source vertex and target vertex. The Banzhaf index of the edge
e is the number of subsets of edges that allow a path between
andt, but do not allow such a path whenis removed (divided
by a constant). We can calculaig,; = Py (G) for G using
the algorithm to count the number of subsets of edges that allow
a path froms to t. We can then remove from G to obtain the
graphG’ =<V, E'\ {e} >, and calculate’;;; = Py;;(G’). The
differencePy,; (G) — Pp3(G') is the number of subsets of edges
that contain a path from to ¢ but no longer contain such a path

whene is removed. The Banzhaf index feris W.
Thus, this algorithm allows us to calculate the Banzhaf index on an

edge in the connectivity games on bounded layer graphs.



6. RELATED WORK real-world networks, in order to maximize our ability to maintain a

Measuring the power of individual players in coalitional games Certain flow of information between two sites.
has been studied for many years. The most popular indices sug- Although the Banzhaf index theoretically allows us to measure
gested for such measurement are the Banzhaf index [1] and thethe power of the agents in the network flow game, we have shown
Shapley-Shubik index [19]. that the problem of calculating the Banzhaf index in this domain

In his seminal paper, Shapley [18] considered coalitional games in #P-complete. Despite this discouraging result for the general
and the fair allocation of the utility gained by the grand coalition Network flow domain, we have also provided a more encouraging
(the coalition of all agents) to its members. The Shapley-Shubik result for a restricted domain. In the case of connectivity games
index [19] is the direct application of the Shapley value to simple (where it is only required for a coalition to contain a path from

coalitional games.

The Banzhaf index emerged directly from the study of voting in
decision-making bodies. TheormalizedBanzhaf index measures
the proportion of coalitions in which a player is a swinger, out of
all winning coalitions. This index is similar to the Banzhaf index
discussed in Section 1, and is defined as:

5=

ZkeN ﬁk

The Banzhaf index was mathematically analyzed in [3], where
it was shown that this normalization lacks certain desirable proper-
ties, and the more natural Banzhaf index is introduced.

Both the Shapley-Shubik and the Banzhaf indices have been wide

studied, and Straffin [20] has shown that each index reflects specific
conditions in a voting body. [11] considers these two indices along
with several others, and describes the axioms that characterize th
different indices.

The naive implementation of an algorithm for calculating the
Banzhaf index of an ageritenumerates all coalitions containing
i. There ar@™ ! such coalitions, so the performance is exponen-
tial in the number of agents. [12] contains a survey of algorithms
for calculating power indices of weighted majority games. Deng
and Papadimitriou [2] show that computing the Shapley value in
weighted majority games is #P-complete, using a reduction from
KNAPSACK. Since the Shapley value of any simple game has the
same value as its Shapley-Shubik index, this shows that calculat-
ing the Shapley-Shubik index in weighted majority games is #P-
complete.

Matsui and Matsui [13] have shown that calculating both the
Banzhaf and Shapley-Shubik indices in weighted voting games is
NP-complete.

The problem of computing power indices in simple games de-

pends on the chosen representation of the game. Since the number

of possible coalitions is exponential in the number of agents, cal-
culating power indices in time polynomial in the number of agents
can only be achieved in specific domains.

In this paper, we have considered the network flow domain, where
a coalition of agents must achieve a flow beyond a certain value.
The network flow game we have defined is a simple game. [10, 9]
have considered a similar network flow domain, where each agent
controls an edge of a network flow graph. However, they intro-
duced a non-simple game, where the value a coalition of agents
achieves is the maximal total flow. They have shown that certain
families of network flow games and similar games have nonempty
cores.

7. CONCLUSIONS AND FUTURE DIREC-
TIONS

We have considered network flow games, where a coalition of
agents wins if it manages to send a flow of more than some ¥%alue

between two vertices. We have assessed the relative power of each

agent in this scenario using the Banzhaf index. This power index

may be used to decide how to allocate maintenance resources in

the source to the destination) played on bounded layer graphs, it is
possible to calculate the Banzhaf index of an agent in polynomial
time.

It remains an open problem to find ways to tractably approxi-
mate the Banzhaf index in the general network flow domain. It
might also be possible to find other useful restricted domains where
it is possible to exactly calculate the Banzhaf index. We have only
considered the complexity of calculating the Banzhaf index; it re-
mains an open problem to find the complexity of calculating the
Shapley-Shubik or other indices in the network flow domain. Fi-
nally, we believe that there are many additional interesting domains
other than weighted voting games and network flow games, and it

ould be worthwhile to investigate the complexity of calculating
¥e Banzhaf index or other power indices in such domains.
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