
Robust Mechanisms for Information Elicitation

Aviv Zohar Jeffrey S. Rosenschein
School of Engineering and Computer Science

The Hebrew University of Jerusalem
Jerusalem, Israel

{avivz, jeff}@cs.huji.ac.il

ABSTRACT
We study information elicitation mechanisms in which a
principal agent attempts to elicit the private information
of other agents using a carefully selected payment scheme
based on proper scoring rules. Scoring rules, like many other
mechanisms set in a probabilistic environment, assume that
all participating agents share some common belief about the
underlying probability of events. In real-life situations how-
ever, underlying distributions are not known precisely, and
small differences in beliefs about these distributions may al-
ter agent behavior under the prescribed mechanism.

We propose designing elicitation mechanisms in a man-
ner that will be robust to small changes in belief. We show
how to algorithmically design such mechanisms in polyno-
mial time using tools of stochastic programming and convex
programming, and discuss implementation issues for multi-
agent scenarios.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed AI—Intelli-
gent Agents, Multiagent Systems;
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1. INTRODUCTION
In this paper we examine a scenario in which a principal

agent is interested in purchasing information about some
event from some other agent (or group of agents) that has
private access to that information. The sellers are required
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to invest some effort in order to learn the information, and
may be tempted to guess or report falsely if they expect to
benefit from doing so. The buyer of information must there-
fore design its payments in a way that will induce truthful-
ness on the part of the sellers. This is ordinarily done using
Proper Scoring Rules [2]. With a well-designed payment
scheme, the expected utility of the sellers is maximized only
when they invest the effort to learn the information and
reveal it truthfully.

To construct such a mechanism, the designer must take
into account the beliefs of the sellers about the probabilities
of events, since these affect the cost-benefit analysis the sell-
ers make. Unfortunately, these probabilities might not be
common knowledge, and may in fact be secret information
the agents do not wish to reveal.

We propose to design information elicitation mechanisms
to be robust not only against manipulation by the partici-
pants, but also against small variations in the beliefs they
may hold. The classic approach to dealing with variations
in beliefs (or “type”) of agents within mechanism design is
the use of direct revelation mechanisms. These are mech-
anisms in which the participants reveal everything to the
mechanism, which in turn acts optimally on their behalf —
eliminating the need to lie. This approach is not appropriate
in scenarios involving information elicitation where informa-
tion is considered a commodity that is to be sold and not
revealed freely.

2. THE SCENARIO
We model the information of agents using discrete random

variables. Each seller i is assumed to own a private variable
Xi that it can access at a cost of ci. These variables are not
necessarily independent. Once the transaction is complete,
the buyer is given access to a random variable denoted Ω.
The variable Ω is assumed to be somewhat coupled with the
variables Xi, and provides a limited means of verification
about their true values. Alternatively, one may think of Ω
as some outcome that the buyer is attempting to predict,
which eventually becomes known. We denote the governing
probability distribution Pr(Ω = ω, X1 = x1, . . . , Xn = xn)
by pω,x1...xn

. Payments to the agents are made after the
value of Ω is revealed and may thus depend on the outcome,
as well as the reports of all the agents (it is impossible to
create the incentives for truthfulness without some measure
of the correctness of the information provided). We denote
the payment to agent i by ui

ω,x1,...,xn
. When dealing with

only one agent, we shall drop the script i from all notations.
We require three things from a proper payment scheme.

These are presented below in the case of a single agent:



1. Truth Telling. Once an agent knows its variable is
x, it must have an incentive to reveal it, rather than
any lie x′.

∀x, x
′

s.t. x 6= x
′

X

ω

pω,x ·(uω,x−uω,x′) > 0 (1)

Here pω,x is the probability of what actually occurs,
while the payment uω,x′ is based only on what the
agent reported.

2. Individual Rationality. An agent must have a pos-
itive expected utility from participating in the game:

X

ω,x

pω,x · uω,x > c (2)

3. Investment. The value of information for the agent
must be greater than its cost. Any guess the agent
makes without actually computing its value must be
less profitable (in expectation) than revealing the vari-
able:

∀x
′

X

ω,x

pω,x · (uω,x − uω,x′) > c (3)

When a mechanism is designed for multiple agents, similar
requirements should be considered. Their exact nature de-
pends on the level of cooperation possible among the selling
agents (transfer of utility, shared information, etc.). They
can still be described in the form of linear constraints, but
the number of constraints can sometimes be exponentially
large in the number of agents.

2.1 Building Non-Robust Mechanisms
The three requirements above can all be characterized us-

ing linear constraints and can thus be solved efficiently using
linear programming methods. Furthermore, a solution can
be found that minimizes some target function such as the
expected cost of the mechanism to the buyer.

A great deal of insight into the design problem can be ob-
tained when considering the vectors defined by
~px , (pω1,x . . . pωk,x) and ~ux , (uω1,x . . . uωk,x). Using this
notation, the truthfulness constraints can be viewed as the
requirement that the probability vectors ~px, ~px′ will be lin-
early separated by the vector of payments ~ux − ~ux′ .

The following proposition shows necessary and sufficient
conditions for the existence of a proper payment scheme.

Proposition 1. In the single agent case, a proper pay-
ment scheme exists iff the probability vectors ~px are pairwise
independent. Furthermore, if any proper payment scheme
exists then there is one with a mean cost as close to c as
desired. Such a scheme is optimal, due to the individual
rationality constraint.

Proof Sketch. When two vectors ~px, ~px′ are linearly
dependent, there is no way to satisfy the two truthfulness
constraints for x, x′. If they are independent, then the truth-
fulness constraints can be satisfied (for example) by setting

for any α > 0 and any ~β, ~ux = ~px

||~px||
·α+ ~β. α and ~β can be

adjusted independently to satisfy the individual rationality
and investment constraints tightly. Notice that this implies
that the truthfulness constraints are the only things that
might prevent us from finding a proper payment scheme.
See [3] for a more detailed proof.

3. DESIGNING ROBUST MECHANISMS
We shall now turn our attention to the case where the

probabilities associated with the random variables Ω, Xi are
not common knowledge. From now on, p̂ω,x shall denote the
probabilities the principal agent believes in, and pω,x will de-
note the beliefs of an agent. Since beliefs about probabilities
are usually grounded by observations, they are not likely to
be very far from the truth. We shall assume that different
beliefs are “close” to one another according to some distance
metric: p̂ω,x = pω,x + εω,x and ||~ε|| < ε. We have opted for
the use of the L∞ norm for measuring distance, since it is
easily described using linear constraints, but the methods
we present can be easily adapted for any other norm.

3.1 The Robustness of a Payment Scheme

Definition 1. We shall say that a given payment scheme
uω,x is ε-robust with regard to an elicitation problem with
distribution p̂ω,x if it is a proper solution to every elicitation
problem with distribution p̂ω,x + εω,x such that ‖~ε‖∞ < ε,
and is infeasible for at least one problem instance of any
larger norm.

The definition above is conservative. An ε-robust payment
scheme will create the proper incentives for truthfulness for
every possible belief variation of the agent that is within a
distance of ε. This represents a “large margins” point of
view, where the solution is required to satisfy all constraints
with enough redundancy to handle small changes in them.

3.1.1 Determining the Robustness of a Given Scheme
Given a payment scheme uω,x, and an elicitation prob-

lem with probabilities pω,x, we can determine the robustness
level of uω,x by finding out how much the probabilities must
be perturbed to violate one of the constraints required for
a truthful mechanism. We can do this by solving a linear
program for every constraint. For example, the following
program finds a perturbation that violates the truth-telling
constraint for a secret x and a lie x′.

min ε
s.t.

P

ω

(p̂ω,x + εω,x)(uω,x − uω,x′) ≤ 0

∀x, ω p̂ω,x + εω,x ≥ 0
P

ω,x

εω,x = 0

∀x, ω −ε ≤ εω,x ≤ ε

A solution to this program will be a small perturbation
εω,x with a small norm ε that manages to violate the con-
straint. The requirements on εω,x assure us that the per-
turbed values are still legal probabilities. Once we solve a
linear program for every constraint, we simply take the min-
imal value of ε that was found. This is the robustness level
of the mechanism.

3.1.2 Efficiently Finding Someε-Robust Mechanism
From a design point of view, we may be interested in find-

ing a solution that is at least ε-robust for some ε and has
a minimal cost. We can do this using tools for Stochas-
tic Programming. A stochastic program is simply a mathe-
matical program that contains uncertainty about the exact
constraints that need to be satisfied, or the function that is
optimized. The following stochastic program describes our
problem:



min
P

ω,x

p̂ω,x · uω,x

s.t.
∀x 6= x′ P

ω

pω,x(uω,x − uω,x′) > 0
P

ω,x

pω,x · uω,x > c

∀x′ P

ω,x

pω,x(uω,x − uω,x′) > c

where:
∀x, ω pω,x = p̂ω,x + εω,x

pω,x ≥ 0
P

ω,x

pω,x = 1

−ε ≤ εω,x ≤ ε

Stochastic programs with the conservative solution we re-
quire can be solved efficiently. [1] presents methods for doing
so by treating the problem as a regular convex programming
problem. Naturally, there can be cases where no solution ex-
ists for the given robustness level.

3.2 The Robustness Level of a Problem

Definition 2. We define the robustness level ε∗ of the prob-
lem p̂ as the supremum of all mechanism robustness levels ε
for which there exists a proper mechanism:

ε
∗

, sup
~u

{ε|∃~u that is an ε-robust mechanism for p̂} (4)

To find the robustness level of a problem, one can simply
perform a binary search. The robustness level is certainly
somewhere between 0 and 1. One may test at every desired
level in between to see if there exists a mechanism with
some specified robustness by solving the stochastic program
above. The space between the upper and lower bounds is
then narrowed according to the answer that was received.

3.2.1 A Bound for Problem-Robustness
A simple bound for robustness of the problem can be de-

rived from examining the truthfulness conditions. In fact,
Proposition 1 for non-robust mechanisms can be viewed as
a private case of the following proposition when applied to
0-robust mechanisms:

Proposition 2. The robustness level ε∗ of a problem p̂
can be bounded by the smallest distance between a vector p̂x

and the optimal hyper-plane that separates it from p̂x′ :

ε
∗ ≤ min

x,x′

||p̂x−(p̂tr
x ·~ϕx,x′)·~ϕx,x′ ||∞ ; ~ϕx,x′ =

p̂x + p̂x′

||p̂x + p̂x′ ||2

The optimal separating hyper-plane is a hyper-plane that
separates the points and is of maximal (and equal) distance
from both of them.

Proof sketch. If there exist x, x′ that give distance ε
to the hyperplane then the vectors p̂x, p̂x′ can be perturbed
towards the hyperplane with a perturbation of norm ε, until
they are linearly dependent. For this problem instance, ac-
cording to Proposition 1, there is no possible mechanism.

In the case where |Ω| = 2, the vectors p̂x are situated in a
two-dimensional plane, and it can be shown that the bound
given above is tight — the problem robustness is determined
exactly by the closest pair of vectors.

3.3 Mechanisms for Multiple Agents
We assume here that sellers cannot collude, share infor-

mation, or transfer utility among themselves. Models that
allow for collusion are interesting to explore from the view-
point of robustness, but are beyond the scope of this paper.

When designing mechanisms for multiple agents, the de-
signer has to choose the solution concept it wishes to achieve.
It is sometimes possible to design mechanisms that will pro-
vide the agents with dominant strategies of truth telling —
each agent is better off telling the truth no matter what the
other agents do. However, in some cases this is not possible,
and the designer must implement a mechanism that provides
for good behavior only in equilibrium, when all players are
behaving well. In these cases the payments made to the
players utilize the information given by their peers. Each
solution concept translates into a different linear program
that may provide a different answer.

In this case, the design of a robust mechanism becomes
even more difficult. The designer must now take into ac-
count not only the possible beliefs of agents about the prob-
abilities of events, but also their beliefs about the beliefs of
other agents. For an agent to believe that some strategy is
in equilibrium, it must also be convinced that its counter-
parts believe that their strategies are in equilibrium, or are
otherwise optimal. This will only occur if the agent believes
that they believe that it believes that its strategy is in equi-
librium — and so on to infinity. Any uncertainty about the
beliefs of other agents grows with every step up the belief hi-
erarchy. If agent A knows that all agents have some radius
ε of uncertainty in beliefs, and its view of the world con-
sists of some probability distribution p it assigns to events,
then it is possible that agent B believes the distribution is p′

and further believes that agent A believes the distribution
is some p′′ which is at a distance of up to 2ε from p. With
an infinite belief hierarchy, it is therefore possible to reach
any probability if we go high enough in the hierarchy.

A possible solution to this problem is to use a mixture
of solution concepts. The mechanism can often be designed
to make each agent’s payment depend only on a subset of
agents that precedes it. In this case it only needs to take
their beliefs into consideration when deciding on a strategy.
The necessary belief hierarchy is then finite, which limits
the possible range of beliefs about beliefs. The most ex-
treme case of this is to design the mechanism for dominant
strategies only. Naturally, a solution constructed in such a
way may be less efficient or may not exist at all. Another
possibility is to consider only bounded agents that can only
consider a finite number of levels in the belief hierarchy.
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