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ABSTRACT
We present the Behaviosite paradigm, a new approach to affecting
the behavior of distributed agents in a multiagent system, which is
inspired by biological parasites with behavior manipulation prop-
erties. Behaviosites are special kinds of agents that “infect” a sys-
tem composed of agents operating in that environment. The be-
haviosites facilitate behavioral changes in agents to achieve altered,
potentially improved, performance of the overall system. Behavio-
sites need to be designed so that they are intimately familiar with
the internal workings of the environment and of the agents operat-
ing within it, and behaviosites apply this knowledge for their ma-
nipulation, using various infection and manipulation strategies. To
demonstrate and test this paradigm, we implemented a version of
the El Farol problem, using behaviosites.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence ]: Distributed AI—Intelligent Agents,
Multiagent Systems

1. INTRODUCTION
Parasites have been examined in biomimetics, but one of the

most interesting abilities of biological parasites has received lit-
tle attention in technological contexts — their ability to manipulate
and alter their host’s behavior. In rare cases, biological parasites
can actually benefit the host or the host’s society.

In this paper, we present a novel paradigm that employs a special
kind of agent (called abehaviosite) that manipulates the behavior
of other agents so as to achieve altered, possibly improved, perfor-
mance of the entire system. The behaviosite (by definition) is not
itself necessary for the normal conduct of the system; thus, it is
termed a kind of “parasite”.

Within the field of MultiAgent Systems (MAS), the behaviosite
is closely related to the idea of adjustable autonomy (AA) [6]. In
the context of the Behaviosite paradigm, an agent usually transfers
some of its autonomy to the behaviosite unwittingly, and in any
case the agent is better described asceding autonomy.

Introducing behaviosites to a system may be either planned as
part of the overall system design, or added (after the fact) to an
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already working system. When planned as part of the overall sys-
tem, it is possible to choose between applyinginternal behaviosites
(design hooks inside agents, so that behaviosites can attach to the
agent and manipulate them) orexternal behaviosites(which manip-
ulate only the input/output of the agent, vis-à-vis the environment).
When applied to an already working system, external behaviosites
are usually the only option.

Section 2 presents a formalization of the Behaviosite paradigm.
Section 3 discusses the El Farol problem, and how behaviosites
could be employed in its solution. Section 4 concludes with a dis-
cussion of our approach and of future work.

2. THE BEHAVIOSITE MODEL

2.1 Overall Structure
The Behaviosite paradigm is composed of three parts: the envi-

ronment, agents (also referred to as hosts), and behaviosites. Envi-
ronment, agents, and behaviosites will be referred to collectively as
“the system” (as in ecosystem).

Environment: encapsulates all of the external factors, conditions,
and influences that affect a community of agents and behaviosites.

Agent society: A society of agents is a system composed of mul-
tiple, interacting, possibly cooperating agents.

Behaviosite: Most basically, a specialized type of agent. A be-
haviosite is an additional property/information added to a system
with a society of agents, and is not (and should not be) a property
of the agent or the environment. The behaviosite is not required
for the system, but should be beneficial in some sense; too many
behaviosites can degrade some aspects of the system.

2.2 Required Traits
Benefiting the system: Behaviosites must prove beneficial to the

system in some respect, since they come with costs. Behaviosites
may influence a system in two desired ways: they may increase
social utility, or they may create new features in a working sys-
tem. Both are accomplished by altering the behavior of some of
the agents.

System knowledge: A behaviosite must be designed with deep
understanding of how the system works: agent-agent interactions,
agent-environment interactions, and also internal workings of the
agents in some cases. One type of system in which behaviosites can
be beneficial is a system that works in a suboptimal equilibrium.
The internet is one example of a system in suboptimal equilibrium,
with regard to the congestion problem caused by packet routing.
The El Farol problem presents another, similar example.

Not a property of the agent nor of the environment: Behaviosites
exist in the middle ground between agents and the environment,
and should not be a property of either of them.



2.3 Optional Traits
Hidden or apparent infection: We usually will not want agents

to know who is infected by the behaviosite, since such knowledge
might help individual agents exploit the situation. However, there
are some settings in which such knowledge can benefit the system
(as also occurs in nature).

Finding the host: A behaviosite designer may endow the envi-
ronment with the responsibility of infecting agents in the system
using some strategy (like in the parasitized El Farol problem), or it
may leave the task of infection to the behaviosites themselves, thus
making the behaviosites more autonomous.

Behaviosite communication: Behaviosites may communicate with
one another within a host (the host may be infected with more than
one behaviosite), or across hosts. This may enable the behaviosites
to be a catalyst for the creation of norms or social laws.

2.4 Placing the Behaviosite
To alter host behavior, the behaviosite should be placed some-

where along the flow of the system, as can be seen in Figure 1.

Figure 1: (a) marks where external behaviosite can alter host’s
behavior, by altering its input/output. (b) marks where internal
behaviosite can alter host’s behavior, by altering internal data
or by partial or full replacement of behavior modules.

Behaviosites can be divided into two groups, external behaviosites,
and internal behaviosites. External behaviosites can alter the input
or output of the agent vis-à-vis the environment (Figure 1a). In this
way, the host designer(s) need not know of the possible existence
of a behaviosite now or in the future. Moreover, the behaviosite
designer may introduce them into an existing system.1 On the
other hand, internal behaviosites usually require the system to be
designed “plug and play” for the behaviosite (Figure 1b).

Internal behaviosites can have two main manipulation methods:
changing the host’s internal data (Figure 1b, interaction between
see-behavior-act modules) or replacing some or all of its behav-
ioral modules (Figure 1b, behavior module). The hook for the sec-
ond manipulation method is very easy to program, by using the
behavioral design patterns suggested by the “gang of four” [3].

2.5 Cost of Manipulation
In different scenarios, behaviosites have different types of costs.

The first cost that should be considered is the cost to the system
designer, for there is the immediate issue of designing behaviosites
and testing them. Other costs of behaviosites are system specific,
such as balancing behaviosite complexity and number with the ben-
efit they give to the system, cost of possibly increased variation in
the society, oscillations, run-time costs, and so forth.

3. PARASITIZED EL FAROL PROBLEM

3.1 The El Farol Problem
1Of course, these external behaviosites affect inter-agent commu-
nication only if it, too, travels via the environment.

In the El Farol problem [1],N (e.g., 100) agents decide indepen-
dently each week whether to go to the El Farol bar or not. Com-
fortable capacity is limited, and the evening is enjoyable only if the
bar is not overcrowded (specifically, fewer than 60 agents out of the
possible 100 attend). No communication or collusion is possible,
and the only information available to the agents is the number of
attendees in the past. An agent will go if it predicts less than 60
agents will go, and will stay home otherwise. Arthur’s [1] utility
function was:

Util(ag[i]) =

8

>

<

>

:

x attended and undercrowded

0 did not attend

−y attended and overcrowded

wherex = y = 0.5. A set of personal deterministic strategies
combined with a simple learning algorithm facilitated system con-
vergence to the capacity after some initial learning time. More-
over, membership kept changing, and some degree of fairness was
maintained. However, the system fluctuated chaotically around the
capacity, resulting in low personal and social utility.

The learning algorithm used in the parasitized El Farol simula-
tion was the additive updating learning algorithm, introduced in [5].
Basically, each agent has a pool of simple, personal deterministic
strategies. Each such behavior has a weight, initially distributed
uniformly, and updated each round.

3.2 Applying Behaviosites
The El Farol bar problem presents a distributed system with sub-

optimal social and personal utility. The main idea of the parasitized
El Farol problem is to increase social utility with as few side effects
as possible, using behaviosites. The main problem was that agents
learn and adapt themselves to new situations — behaviosites’ ef-
fects can vanish, or in each round behaviosites will need to make a
stronger impact to achieve the same effect.

Figure 2: The environment/agent/behaviosite relationship

The system is composed of environment, agents (hosts) and be-
haviosites (Figure 2). Each agent has an internal behaviosite field
that is always occupied, usually with the null behaviosite (see [3])
who has no effect over his host’s behavior. Each round, the environ-
ment infects some of the agents according to an infection strategy,
and infection lasts only one round. Agents are asked to provide a
decision and if the behaviosite is not the null behaviosite, it alters
the relevant host’s data (the behaviosite is placed between “see”
and “behavior” of Figure 1).

Environment infection strategies: The environment had three strate-
gies of infection. In the first, all agents were candidates for infec-
tion (infect all). In the second, only the agents attending in the
given round were candidates for infection (infect attending). In the
third, all the agents attending in the given round were candidates
for infection, but only when the bar was overcrowded (infect over-
crowded). In each strategy, only a percentage of the candidates
for infection actually got infected (responsibility of the behaviosite
design), depending on the infection rate (0%-100%).2

Behaviosite manipulation strategies: The behaviosite replaced
the parasitized agents’ belief regarding the current capacity with a

2Another possible design is that the entire infection strategy is a
property of the behaviosite, but this was not implemented.



lower one, common to all behaviosites. Since capacity information
was kept as the private history of the agent, this decrease was also
considered in future rounds by the agent. This was intended to en-
force a strict approach; agents were affected by the world according
to their personal beliefs, not according to global truth.

3.3 Parasitized El Farol Simulation Results
The parasitized El Farol problem was simulated for 2000 rounds,

with 100 agents in the system. 3 different capacities were tested:
50, 60, and 80, where the behaviosite manipulation strategy was
to decrease capacity for parasitized agents (50 decreased to 40, 60
also decreased to 40, and 80 decreased to 60). For each capacity,
3 different environment infection strategies were tested, as men-
tioned above:infect all, infect attending, and infect overcrowded,
giving a total of 9 different simulations. For each of the 9 simula-
tions, a different percentage of the agents who were candidates for
infection were actually infected, with infection rates ranging from
0% to 100% with jumps of 10% (11 different simulations for each).
Each of these 99 different simulations was repeated 50 times.

3.3.1 Mean Attendance
In the parasitized El Farol problem, we would like to increase the

social utility, without lowering by too much the mean attendance.
As would be expected, theinfect all strategy decreased the mean
attendance severely, while theinfect overcrowdedstrategy resulted
in a relatively low effect on the mean attendance. The outcome of
the infect attendingstrategy depended on the bar’s capacity. For
capacity of 80, theinfect all andinfect attendingstrategies yielded
very similar results and for capacities of 50 and 60,infect attending
strategy’s effect resembles theinfect overcrowdedstrategy.

3.3.2 Mean Utility
The main objective in the parasitized El Farol problem simula-

tion was to show that it is possible to increase social utility using
behaviosites. TheInfect all strategy for capacities of 60 and 80
showed improvement of 7–9 times that which was achieved in a
system without behaviosites, and was relatively close to the opti-
mal. For capacity of 50, improvement was 27 times the minimal,
though still near zero (0.065 out of possible 0.25).

Infect overcrowdedresulted in a moderate utility increase, with
respect to other strategies. For capacities of 60 and 80, the maximal
mean utility was about 2.5–3.5 times that which was achieved in a
system without behaviosites. For the capacity of 50, the maximal
mean utility was 22 times better, but still near zero (0.034).

The Infect attendingoutcome depended heavily on the level of
the used capacity. For high capacities (specifically 80), the strat-
egy’s behavior was very much likeinfect all, and for low capacities
(specifically 50), the strategy’s outcome was very much likein-
fect overcrowded. In between (specifically 60), the behavior of this
strategy combined features of both.

3.3.3 Forced Justice
Two previous attempts to increase social utility in the El Farol

problem resulted in two proposed solutions, both with undesirable
features in certain settings. One feature was the need to charge util-
ity from attending agents [4], which basically kept the social utility
within the system. Another led to the creation of bullies [2] —
regulars and casuals. In the original El Farol problem, the member-
ship of the agents kept changing, thus keeping some level of social
fairness. Social fairness was calculated by the following formula:

1− 1

#trials

P

t∈trials

Personal Attendance SD[t]
Mean Attendance[t]

For capacities of 50 and 60,infect attendingand infect over-

crowdedstrategies increase social fairness as a function of infec-
tion rate. For capacity of 80, they improved social fairness only a
small amount, since the vast majority of agents already go to the
bar. However, theinfect all strategy increased social fairness as
a function of infection rate until a certain maximum was reached,
and then decreased again. For capacity of 80, it reached exactly the
level of social fairness of capacity 60, as would be expected.

4. DISCUSSION AND FUTURE WORK
We presented the Behaviosite paradigm in the spirit of biomimet-

ics — parasites manipulating their hosts’ behavior. We specified
the behaviosite concept, which in essence is a special type of agent,
which infects and manipulates other agents to achieve altered per-
formance of the system. We described the parasitized El Farol
problem, and showed that social and personal utilities and social
fairness can be increased using behaviosites; in some cases, mean
attendance deviates from the capacity by only a small amount.

The parasitized El Farol problem simulated self-interested agents
with external behaviosites. However, behaviosites could also be
integrated into a cooperative society to form new norms or social
laws, or to eliminate ill-functioning agents.

Behaviosites are not just a way of propagating false information
within a system. The intimacy of the agent-behaviosite relation-
ship induces far more powerful effects. Lies can be disregarded or
overcome by agents. However, when a host is parasitized, the be-
haviosite is considered an almost integral part of the agent. Agents
can doubt external information, but do rely on their internal beliefs.

In the future, we would like to further strengthen the Behaviosite
paradigm by showing it is applicable and desirable in other scenar-
ios. An appealing application is the automatic generation of stories;
it is a rapidly growing field, with high potential in the gamers com-
munity. Behaviosites are an excellent solution for altering stories
by changing some of the characters’ behavior and adding new, un-
predictable system behavior in a distributed manner.
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