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Abstract

This paper investigates a relatively new direction in Mul-
tiagent Reinforcement Learning. Most multiagent learning
techniques focus on Nash equilibria as elements of both the
learning algorithm and its evaluation criteria. In contrast,
we propose a multiagent learning algorithm that is optimal
in the sense of finding a best-response policy, rather than
in reaching an equilibrium. We present the first learning al-
gorithm that is provably optimal against restricted classes
of non-stationary opponents. The algorithm infers an accu-
rate model of the opponent’s non-stationary strategy, and
simultaneously creates a best-response policy against that
strategy. Our learning algorithm works within the very gen-
eral framework of n-player, general-sum stochastic games,
and learns both the game structure and its associated opti-
mal policy.

1. Introduction

Multiagent learning has been a research area of much in-
terest over the last decade [13, 11]. The progress made on
reinforcement learning [14], in particular, has opened the
way for designing autonomous agents capable of acting in
unknown environments by exploring different possible ac-
tions and their consequences. However, a major drawback
of reinforcement learning has been its assumption of a sta-
tionary underlying environment. A more complex environ-
ment, inhabited by autonomous, self-interested agents act-
ing to maximize their own payoffs, cannot be treated in this
manner.

We present NSCP-learner1 — the first learning algo-
rithm that is provably optimal against restricted classes of
non-stationary opponents. The algorithm infers a provably
accurate model of the opponent’s non-stationary strategy,
and at the same time designs a best-response policy against

1 NSCP stands for Non-Statonary Converging Policies

that strategy. The algorithm works within the very general
framework ofn-player, general-sum stochastic games, and
learns both the game structure and its associated optimal
policy. We provide both theoretical and experimental results
of our algorithm.

In contrast to previous work in multiagent learning, we
eschew Nash equilibria as a relevant evaluation criterion
for an agent’s learned policy. Instead, we embrace the so-
called “AI Agenda” [12] and its goal of best-response poli-
cies against specific classes of opponents.

1.1. Reinforcement Learning in Multiagent Envi-
ronments

We here briefly discuss previous research on reinforce-
ment learning (RL), and its relevance to multiagent envi-
ronments.

Most work in reinforcement learning has been of the
single-agent type. In single-agent RL, we are concerned
with a lone agent operating in an unknown environment so
as to maximize its payoffs. The environment is usually mod-
eled as a Markov Decision Process (MDP), with the agent
as the controller of the process. The first, and most well-
known, algorithm for single-agent RL is Q-learning [16].
Q-learning acts in an unknown environment (in the sense of
rewards and transitions), and has been proven to converge
to an optimal policy that maximizes the expected reward.

However, a major drawback of reinforcement learn-
ing is its assumption that the underlying environment
is stationary. This assumption may be inappropri-
ate for more complex environments, inhabited by au-
tonomous, self-interested agents. In fact, if several agents
co-inhabiting an environment all use the Q-learning al-
gorithm concurrently, none converges to an optimal pol-
icy.

It is worth noting, however, that if all (other) agents in
an environment use only stationary policies, then the (lone)
Q-learner would, in fact, converge to an optimal policy. In
this simplified case, the other agents may be treated simply



as part of the environment, and since this environment can
still be modeled as an MDP, the Q-learning convergence as-
sumptions hold. The algorithm we present in this paper is
more flexible, in the sense that it is proved to converge to an
optimal policy even if the environment is inhabited by cer-
tain types of non-stationary agents.

Multiagent reinforcement learning is the attempt to ex-
tend RL techniques to the setting of multiple agents. The
theoretical framework in which multiagent RL takes place
is either matrix games or stochastic games; matrix games
are games with one state, and stochastic games are games
with multiple states.

Littman [8] introduced the Mini-Max Q-learning algo-
rithm, which was proven to converge to the game-theoretic
optimal value for zero-sum (purely competitive) two-player
games. Claus and Boutilier [3] investigated the convergence
to Nash equilibrium of JALs (Joint Action Learners) in
the setting of common-payoff (team) games. Hu and Well-
man [7] introduced the Nash-Q algorithm which works for
general-sum games (when the payoffs of agents are not cor-
related), and under certain assumptions converges to Nash
equilibrium.

Littman [9], in turn, noticed that the assumptions of
Nash-Q are quite restrictive, and reinterpreted the algorithm
as the Friend-or-Foe (FOF) algorithm. The FOF-learner
treats each other agent as either friend or foe, and the al-
gorithm converges to Nash equilibrium for special cases of
stochastic games. CE-Q [5] is similar to Nash-Q, but uses
the value of correlated equilibria instead of Nash equilib-
ria.

As can be seen, the goal of most multiagent learning al-
gorithms mentioned above is to converge to a (Nash) equi-
librium. However, this approach is problematic on many
grounds [12]. It is not clear what justifies the focus on equi-
librium: equilibrium may identify a point at which learning
should stop, but it does not necessarily have to be the goal
of the learning process. Another problem with this approach
is the potential existence of multiple equilibrium points. In
these cases, the learning agents need some kind of an ora-
cle in order to coordinate their choice of a unique equilib-
rium point.

Shoham has proposed the so called “AI Agenda” as a
more appropriate direction for the development of the field
of multiagent learning. The “AI Agenda” asks what is the
best learning strategy for an agent, given a fixed class of
other agents in the game. In other words, it asks how to de-
sign an optimal agent for a given environment inhabited by
certain types of other agents. The goal of the learning pro-
cess is to get an ‘optimal’ payoff in the presence of other
agents, and not to consider equilibrium as necessary or even
relevant.

Following this line, Hu [6] introduced the Best-Response
algorithm for multiagent learning. It was proven to converge

to a best response policy in the presence of a stationary op-
ponent in general-sum, two-player stochastic games. Simi-
larly, Conitzer and Sandholm introduced AWESOME [4], a
learning algorithm for repeated matrix games that learns to
play optimally against stationary opponents, and converges
to a Nash equilibrium in self-play.

Bowling and Veloso [2] proposed criteria for multiagent
learning algorithms: learning should (1) always converge
to a stationary policy, and (2) only terminate with a best-
response to the play of other agents. While our algorithm
satisfies these requirements, it does not satisfy another cri-
terion mentioned by Conitzer and Sandholm [4]: conver-
gence to Nash equilibrium in self-play. While this last crite-
rion is quite desirable, we argue that it might be overly strict
when designing best-response learning algorithms against
fixed classes of opponents — the problem of designing best-
response algorithms for even simple classes of agents is
hard enough. We discuss this issue at greater length below
in Section 6.

Our NSCP learning algorithm continues the research di-
rection of exploring best-response learning algorithms, and
derives best-response policies against a restricted class of
non-stationary opponents. As mentioned above, it works in
the general framework ofn-player, general-sum stochastic
games.

2. Theoretical Framework and Definitions

We will consider multiagent reinforcement learning in
the most generic model, namely general-sum stochastic
games. As background for our presentation, we present in
this section definitions of a stage game, stochastic game,
strategy, and stationary/non-stationary policy in a game.

Definition 1 An N-player stage game (or matrix game)is a
tuple hn;A1::n; R1::ni, where n is the number of agents, Ai

is the discrete action space available to agent i, and R i is
the reward function for agent i — Ri : A1�� � ��An ! <:

Definition 2 A strategyS in a stage game is a probability
distribution that assigns probability pi to each possible ac-
tion ai — S : A! [0; 1]:

Definition 3 The distance D between two stage game
strategies S1 and S2 is the distance between the probabil-
ity vectors of the strategies.

D(S1; S2) = jS1 � S2j1

We now define astochastic game, which is an extension of
the stage game to multiple stages.

Definition 4 An N-player stochastic gameis a tu-
ple hn; S;A1::n; T; R1::ni, where n is the number of



agents, S is the discrete state space, Ai is the discrete ac-
tion space available to agent i, T is the transition func-
tion T : S�A1�����An�S ! [0; 1] andRi is the reward
function for agent i — Ri : S �A1 � � � � �An � S ! <:

A strategy for a stochastic game assigns a stage-game
strategy to each possible stage (state) in the game. A pol-
icy for the stochastic game is thus a sequence of strategies.

Definition 5 A policy � in a stochastic game is a (possibly
infinite) sequence of strategy rules � = (�0; :::; �t; :::). �t
is called the strategy rule at time t and assigns probability
pi to action aj at state sk — �t : S �A! [0; 1]:

Definition 6 A policy � = (�0; :::; �t; :::) is called sta-
tionary if the strategy rules are independent of time —
8t : �t = �t�1. A policy is called non-stationaryif the strat-
egy rules change over time — 9ti; tj such that �ti 6= �tj .

Definition 7 The distance between two strategy rules �ti
and �tj is defined as

���ti � �tj
�� =X

s2S

D(�ti(s); �tj (s))

where �tk (s) denotes the probability vector over actions
played in state s by the decision rule �tk .

Definition 8 We define an epochas a period of rounds dur-
ing which the opponents’ strategies do not change.

We do not restrict the length of the epoch (e.g., it can be 1),
but we assume that we do know its lengthL.

3. NSCP: Best-Response Q-Learning Algo-
rithm for Non-Stationary Policies with a
Limit

In this section, we present a Q-learning-like learning al-
gorithm which is provably optimal in environments inhab-
ited by agents whose policies are non-stationary but have a
limit. In the following subsections, we provide a brief re-
view of single-agent Q-learning, formally define the class
of non-stationary agents that have a limit, and then present
our NSCP-learner and prove its convergence.

3.1. Single Agent Q-learning

In single-agent Q-learning [16], the goal of the agent is
to learn the optimal Q-values, defined as

Q�(s; a) = r(s; a) + � �
X
s0

p(s0js; a) � v(s0; ��)

where
v(s0; ��) = max

a
Q�(s; a)

The agent starts with arbitrary Q-values, and updates them
as follows:

Qt+1(s; a) = (1��t)�Qt(s; a)+�t�[rt+��max
b

Qt(st+1; b)]

Under standard RL assumptions, the sequenceQt con-
verges toQ� with probability 1, and the optimal policy is
simply taking the action that maximizesQt(s; a) at any
states.

3.2. Non-Stationary Policies with a Limit

Our algorithm works with any number of agents that
come from the class of agents whose policies have a limit.
More formally, the probability that the strategy rule would
be far away from the limit gets smaller ast gets larger.

Definition 9 A non-stationary policy � = (�1; : : : ; �t; : : :)

has a limit if it satisfies

9�� s:t: 8� > 0 lim
t!1

P (j�t � ��j > �) = 0

Note that although we do require the opponents’ strate-
gies to converge in probability, this is different from play-
ers that play changing strategies but eventually settle down
to stationary strategies after a constant, finite number of
moves. Our opponents maynever settle down to fixed,
stationary strategies, but rather continue with decreasing
changes forever. In addition, we do not require or assume
that the limit�� is known to our algorithm.

3.3. Modeling Policies with a Limit

We here describe how the approximated model
�̂ = (�̂i1; : : : �̂

i
t; : : :) is derived based on observa-

tions of agenti’s actions taken according to his real
policy � = (�i1; : : : �

i
t; : : :). Our goal is to have an ac-

curate model of the other agent’s policy; in other words,
we want our model sequence to converge to the real se-
quence:j�̂t � �tj ! 0 ast!1.

When another agent plays a stationary strategy, it is ob-
vious that algorithms such as fictitious play converge to the
agent’s stationary strategy, since they get more and more
samples from the same fixed distribution. However, we al-
low the strategy of the opponent to change afterL moves
(an epoch), and we never get more thanL samples from the
same distribution. Thus, it is not obvious that fictitious play
would satisfyj�̂t � �tj ! 0 as t ! 1 — but, in fact, it
does.

The intuition is that we getL samples of each opponent’s
strategy rule, and since the distance between the strategy
rules gets smaller, theL samples of the previous rule may be
used with increasingly good accuracy to model the current
rule as well. Thus, ast ! 1, we can use more and more



samples to model the current strategy rule since the sam-
ples from previous epochs describe the current strategy rule
increasingly well (because the distance between the strat-
egy rules is getting smaller).

Let t denote the number of the epoch andn t(s; a) the
number of times actionawas chosen in states during epoch
t. We then definê�t+1 as

�̂t+1(s; a) =

n1(s;a)

L
+ : : :+

nt(s;a)

L

t

Lemma 1

lim
t!1

P (j�̂t � �tj > �) = 0

Proof: �̂t and�t are defined over all states and all ac-
tions and assign probabilityp to actiona at states. Let
pt = �t(s; a) , p� = ��(s; a) andp̂t = �̂t(s; a). We know
that limt!1 P (jpt � p�j > �) = 0 and we have to show
thatlimt!1 P (jp̂t � ptj > �) = 0.

LetX be a random variable defined as:

X =

�
1 if actiona was chosen in states
0 otherwise

In epocht the probability to play actiona in states is p t, so
E(X) = 1 � pt+0 � (1� pt) = pt. For epocht we define~pt
to be the proportion of actiona in states during the epoch:

~pt =
X1 + : : :+XL

L

and our estimator ofpt at epocht+ 1 is defined as:

p̂t+1 =
~p1 + : : :+ ~pt

t

The expected value of~pt is

E( ~pt) = E

�
X1 + : : :+XL

L

�

= 1
L
� (E(X1) + : : :+E(XL))

= 1
L
� L � pt = pt

Whent!1 we havept ! p� so limt!1 E( ~pt) = p�.
Sincep� is the expected value of~pt, from the central

limit theorem we get

lim
t!1

P

����� ~p1 + : : :+ ~pt

t
� p�

���� > �

�
= 0

Replacing the fraction bŷpt we get

lim
t!1

P (jp̂t � p�j > �) = 0

and because it is given that

lim
t!1

P (jpt � p�j > �) = 0

we get as needed that

lim
t!1

P (jp̂t � ptj > �) = 0

and the proof is completed.

3.4. Generalization of Q-learning

In our scenario, the agent’s payoff depends not only on
the actions it takes, but on the actions of other agents as
well. Since the other agents are not assumed to be station-
ary, we cannot adopt the common approach, which assumes
that other (stationary) agents are part of the extended en-
vironment, and the learning problem is reduced to learning
in an MDP instead of in a stochastic game. Therefore, when
talking about an optimal policy for our agent, we have to ex-
plicitly take into account the strategies of other agents in the
environment. We define the optimal Q-values for our agent,
with respect to the othern � 1 agents in the environment,
as:

Q�(s; a
1; : : : ; an) = r(s; a1; : : : ; an)+

� �
P

s0 p(s
0js; a1; : : : ; an) � v(s0; �1br; �

2
�
: : : �n

�
)

wherev(s0; �1br ; �
2
�
: : : �n

�
) is our agent’s total discounted

reward over infinite periods starting froms 0, given that the
other agents follow strategies(�2

�
; : : : �n

�
) (the limits), and

�1br is the best response strategy to(�2
�
; : : : �n

�
).

Our learning algorithm maintains a table of Q-
valuesQ(s; a1; : : : an) for each states and joint action
(a1; : : : an). The Q-values are updated using the follow-
ing rule.

Qt+1(s; a
1; : : : ; an) = (1� �t) �Qt(s; a

1; : : : ; an)+

�t � [rt + � �max�1
br

P
a1

P
a2 : : :

P
an �

1
br(s

0; a1) �

�
Qn

i=2 �̂
i
t(s

0; ai) �Qt(s
0; a1; : : : ; an)]

where�̂it is our agent’s model of opponent agenti and� 1
br is

our agent’s best-response strategy rule against(�̂ 2t : : : �̂
n
t ).

Our agent uses this strategy rule for choosing the next ac-
tion in the game.

Our proof of convergence is based on the follow-
ing lemma by Szepesvari & Littman [15]. Before we
get to the formal proof, we first explain some notations
used in Lemma 2.fQg denotes a set of all Q-functions
Q : S �A1 � : : :�An ! < andPt maps each Q-function
to some other Q-function. The normk�k of a Q-function is
the supremum norm defined as

kQk = sup
(s;a1;:::;an)

Q(s; a1; : : : ; an) <1

Lemma 2 Assume that �t satisfies the typical assumptions
for Q-learning, and the mapping Pt : fQg ! fQg satisfies
the following condition: there exists a number 0 < 
 < 1,
and a sequence �t > 0 converging to zero with probability
1, such that kPtQ� PtQ�k � 
 � kQ�Q�k + �t for all
Q 2 fQg and Q� = E[PtQ�], then the iteration defined by

Qt+1 = (1� �t) �Qt + �t � [PtQt]

converges to Q� with probability 1.



Proof: Corollary 5 by Szepesvari & Littman [15].

Lemma 3 Our update rule of Q-values converges to the op-
timal Q�-values with probability 1.

Proof: Our proof is based on Lemma 2. We first show that
our update rule satisfieskPtQ� PtQ�k � 
 � kQ�Q�k+
�t. We will use the following definition, to make the proof
presentation more concise.

BR(� 2 f��; �t; �̂tg; Q 2 fQt; Q�g) =

max�1
br

P
a1

P
a2 : : :

P
an �

1
br(s

0; a1)

�
Qn

i=2 �
i(s0; ai) �Q(s0;~a)

This denotes our best-response reward with respect to other
agents’ policy��; �t or �̂t and Q-functionQt or Q�. For
example,BR(�̂t; Qt) is the maximum discounted reward
that we would get from states0 with regard to our current
state-action evaluationQt(s

0; a1; : : : ; an) and our models
of the other agent’s real strategies�̂ it.
In our definition,

PtQt(s; a
1; : : : ; an) = rt + � � BR(�̂t; Qt):

We also have

PtQ�(s; a
1; : : : ; an) = rt + � �BR(��; Q�):

The proof: since Q-functions are defined over a finite set of
state-actions tuples,sup(s;~a)Q = max(s;~a)Q

kPtQt � PtQ�k = max
(s;~a)

jPtQt(s;~a)� PtQ�(s;~a)j

and

jPtQt(s;~a)� PtQ�(s;~a)j

= j(rt + � �BR(�̂t; Qt)� (rt + � �BR(��; Q�)j

= � � jBR(�̂t; Qt)�BR(��; Q�)j

Since�̂it(s
0; ai) converges in probability to� i

t(s
0; ai), we

replace eacĥ�it(s
0; ai) with �it(s

0; ai) + �̂it, and we get that
the above term is less than

� � � jBR(�t; Qt)�BR(��; Q�)+

max�1
br

P
a1

P
a2 : : :

P
an �

1
br(s

0; a1) �Qn
i=2 �̂

i
t(s

0; ai) �Qt(s
0;~a)j

� � � jBR(�t; Qt)�BR(��; Q�)j+

� � jmax�1
br

P
a1

P
a2 : : :

P
an �

1
br(s

0; a1)

�
Qn

i=2 �̂
i
t(s

0; ai) �Qt(s
0;~a)j

= jBR(�t; Qt)�BR(��; Q�)j+ �1t

where �1t = jmax�1
br

P
a1

P
a2 : : :

P
an �

1
br(s

0; a1) �Qn
i=2 �̂

i
t(s

0; ai) � Qt(s
0;~a)j. Since8i �̂it ! �it with prob-

ability 1 ast!1, we get that8i �̂it ! 0 ast!1, and

then�1t ! 0 with probability 1 ast!1.

Now we look at jBR(�t; Qt) � BR(��; Q�)j. Since
�it(s

0; ai) converges in probability to� i
�
(s0; ai), we re-

place each�it(s
0; ai) with �i

�
(s0; ai) + �

j
t , and we get that

jBR(�t; Qt)�BR(��; Q�)j is less than

jBR(��; Qt)�BR(��; Q�)j+ �2t

where �2t = jmax�1
br

P
a1

P
a2 : : :

P
an �

1
br(s

0; a1) �Qn
i=2 �

i
t(s

0; ai) � Qt(s
0;~a)j ! 0 with probabil-

ity 1. Now assume (without loss of generality2) that
BR(��; Qt) � BR(��; Q�) and that �1br maximizes
BR(��; Qt). We put�1br in BR(��; Q�) and get

BR(��; Qt)�BR(��; Q�) �

P
a1

P
a2 : : :

P
an �

1
br(s

0; a1) �
Qn

i=2 �
i
�
(s0; ai)

�Qt(s
0;~a)

�
P

a1

P
a2 : : :

P
an �

1
br(s

0; a1) �
Qn

i=2 �
i
�
(s0; ai)

�Q�(s
0;~a)

=
P

a1

P
a2 : : :

P
an �

1
br(s

0; a1) �
Qn

i=2 �
i
�
(s0; ai)

�(Qt(s
0;~a)�Q�(s

0;~a))

�
P

a1

P
a2 : : :

P
an �

1
br(s

0; a1) �
Qn

i=2 �
i
�
(s0; ai)

�
�
max(s0;~a)(Qt(s

0;~a)�Q�(s
0;~a))

�

=
�
max(s0;~a)(Qt(s

0;~a)�Q�(s
0;~a))

�
�

�
P

a1

P
a2 : : :

P
an �

1
br(s

0; a1) �
Qn

i=2 �
i
�
(s0; ai)

= max(s0;~a)(Qt(s
0;~a)�Q�(s

0;~a)) � 1

� max(s0;~a) jQt(s
0;~a)�Q�(s

0;~a)j

= kQt �Q�k

In conclusion, we get that kPtQ� PtQ�k �
� �kQt �Q�k+�

1
t+�

2
t and�t = (�1t+�

2
t ) ! 0 with prob-

ability 1 ast!1, so the first condition of Lemma 1 is sat-
isfied.

We now show thatQ� = E[PQ�]. By the defini-
tion ofQ� we have:

Q�(s; a
1; : : : ; an) = r(s; a1; : : : ; an)+

� �
P

s0 p(s
0js; a1; : : : ; an) � v(s0; �1br ; �

2
�
: : : �n

�
)

= r(s; a1; : : : ; an) + � �Es0 [v(s
0; �1br; �

2
�
: : : �n

�
)]:

On the other side, we have:

E[PQ�(s; a
1; : : : ; an)] =

E[r(s; a1; : : : ; an) + � �BR(��; Q�)]

= r(s; a1; : : : ; an) + � �Es0 [BR(��; Q�)]

2 If BR(��; Q�) � BR(��;Qt), we put the�1
br

that maximizes
BR(��;Q�) in BR(��;Qt)



Since BR(��; Q�) is the maximum discounted re-
ward with regard to�i

�
and Q�, it is actually equal to

v(s0; �1br; �
2
�
: : : �n

�
), and thus we get thatQ� = E[PQ�].

The proof is completed.

3.5. NSCP-learner Skeleton

In this subsection, we describe the full algorithm, com-
bining the modeling and Q-value learning algorithms.

1. Init: 8s 2 S anda 2 A andi 2 N; �̂i0(s; a) =
1
jAj

2. 8s 2 S and a 2 A and i 2 N; initialize
Q0(s; a

1; : : : ; an) to any value

3. Fork = 1 toL do (during epoch)

(a) Observe the actions taken by other agents
(a2t ; : : : ; a

n
t ), new states0, and rewardrt

(b) Update the other agents’ models(�̂2t ; : : : �̂
n
t )

(c) Select the best-response strategy�1br that maxi-
mizes

X
a1

X
a2

: : :
X
an

�1br(s
0; a1)�

�
Qn

i=2 �̂
i
t(s

0; ai) �Qt(s
0;~a)]

(d) Update Q-values using the following rule:

Qt+1(s; a
1; : : : ; an) = (1� �t) �Qt(s;~a)+

�t � [rt + � �
P

a1

P
a2 : : :

P
an �

1
br(s

0; a1) �

�
Qn

i=2 �̂
i
t(s

0; ai) �Qt(s
0;~a)]

(e) Choose the next action for states0 according to
�1br

4. Go to 3

4. Example of a Non-Stationary Opponent

We here describe an example algorithm for a non-
stationary opponent. The algorithm may adapt, and chooses
the next strategy according to previous history. Theoreti-
cally, the algorithm never settles down to a fixed stationary
strategy.

1. Initialize:8s 2 S anda 2 A; �0(s; a) =
1
jAj

2. Initialize:�0 = 1; t = 0

3. Play epocht using strategy�t and observe historyHt

4. Choose strategy for next epoch:�t+1 =

argmax�(Reward(Ht; �) j j� � �tj < �t)

5. �t+1 = �t
2

6. t = t+ 1

7. Go to 3

Reward(Ht; �) denotes the reward that the agent would
have received if he had played the strategy� in the pre-
vious epoch. This algorithm uses the following policy: the
strategy for the first epoch is, “for every state, use the uni-
form distribution over actions.” After it observes the his-
tory of epocht, it chooses for the next epoch the strategy
that maximizes the reward for the previous epoch. In this
manner, the algorithm may adapt to the game history. How-
ever, there is a restriction on the set of strategies from which
the next strategy is chosen: the next strategy has a distance
of at most�t from the previous strategy, and�t is getting
smaller after each epoch. Note that there is no finite timet

when�t becomes equal to zero, so theoretically the oppo-
nent may always choose�t+1 6= �t. It is clear that this al-
gorithm changes the agent’s strategy, so the agent’s policy
is not stationary.

Proposition 1 The NSCP-learner would find the opti-
mal policy against the non-stationary opponent described
above.

Proof: The proof is based on the following lemma. All we
have to show is that the sequence of strategies chosen by the
opponent’s algorithm has a limit.

Lemma 4 (Cauchy Criterion) The sequence xn converges
to some value if and only if the following holds: for every
� > 0 we can find K such that jxn � xmj < � whenever
n;m > K.

Since j�t+1 � �tj < �t and �t ! 0, it is clear that the
Cauchy Criterion is satisfied and the opponent’s strategy se-
quence has a limit.

The fact that this non-stationary opponent may also
learn, and its converging strategy depends on the behav-
ior of our NSCP-learner, may at first seem confusing. It
creates a “learning loop” in which both agents eventually
converge. The opponent agent’s strategy converges since its
learning rate is forcibly decreased. The NSCP-learner con-
verges since it did not make any assumptions about the rea-
son for the opponent’s convergence and the actual limit to
which it converges. Thus, either the opponent agent tries to
adapt or it chooses its actions independently of the NSCP-
learner’s actions — if its strategy converges in the limit,
NSCP-learner would find the best response policy to that
strategy.

5. Experimental Results

In this section, we present several experimental results
regarding our algorithm.

5.1. Pursuit Problem

Experimental results were obtained in the pursuit do-
main [1], which has been widely examined in multiagent



system research. We used the following variant of the pur-
suit problem:

� A 5 � 5 grid world with 1 predator agent and 1 prey
agent. The grid world with the agents and the direc-
tions in which they can move is shown in Figure 5.1.

� The goal of the predators is to hunt the prey and the
goal of the prey is to escape from the predators. Our
predator agent gets a reward of 1 when it captures prey.

� The game is divided into discrete time steps,
at which both agents simultaneously choose
and perform one of the following actions:
A = fLeft; Right;Down;Up; Stayg.

� The state of the environment perceived by both agents
is the location of both agents in the grid world. For ex-
ample, the state in Figure 5.1 is represented ass =

f(0; 2); (3; 3)g.

� The game is finished when the predator is in the same
location as the prey.

� At each time step, the prey agent has a small constant
probability of choosingStay. This models the situa-
tion in which a predator is a bit faster than the prey.

Figure 1. A pursuit problem in a grid
world: arrows denote the directions in which
hunter/prey can move

5.2. Experiments

In our experiments we compared our NSCP-learner al-
gorithm with the usual Q-learning algorithm. The compar-
ison is in terms of the number of steps until the prey is
caught, as a function of the number of learning iterations.
In each game the predator and the prey are positioned in

the predefined positions and the game runs until the prey is
caught. Every such game constitutes one learning iteration
(or episode) and the learned Q-values were passed from it-
eration to iteration.

The prey agent has the following non-stationary policy:
it starts with a strategy of movingLeft with probability
1 and zero probability for all other actions. The probabil-
ity mass slowly moves towards 1 on choosingUp and zero
for all other actions. Although this policy is very simple and
does not change according to the history of the game, it is
still non-stationary.

We ran the game 2000 times during which Q-learner
and NSCP-learner were learning. The prey changed his pol-
icy during the first 1000 games and kept a constant policy
during the last 1000 games. We then repeated this experi-
ment 10 times in order to obtain the average time needed to
catch prey as a function of the number of learning episodes.
Figure 5.2 shows the comparison between Q-learning and
NSCP-learning. In general, for both algorithms it took more
moves to catch the prey when the latter’s strategy was
changing. However, NSCP-learner outperformed Q-learner
in both periods: when the prey’s strategy was changing (dur-
ing the first 1000 games), and when it stopped changing
(during the last 1000 games).

Figure 2. Q-learner vs. NSCP-learner in pres-
ence of a non-stationary agent

6. Best-Response for Other Agent Classes: a
Discussion

We here briefly discuss the development of a Best-
Response learning algorithm for richer classes of agents.
Although our learning algorithm is optimal for environ-
ments with any number of agents with any converging
policies, it still covers a very restricted class of agents.



It is important to mention that finding the best-response
strategy for any given opponent is a very hard prob-
lem. Nachbar [10] shows that even in two-player stochas-
tic games (and in particular, in the discounted repeated
game of Prisoner’s Dilemma), there exist strategies for
which no best response is implementable by a Turing ma-
chine. It means that we should not hope to find a sin-
gle best-response algorithm which would be optimal for all
classes of opponent agents.

Thus, we return to the discussion about agent classes.
When we speak about agents with converging policies, we
define the notion of best-response with regard to the limit
of the policy. However, this is impossible when we start
to speak about agents with non-converging policies. These
agents constantly change their strategy, and never converge
to a fixed stationary strategy (for example, because their
learning process never terminates). This scenario is realistic
in a rich, dynamic environment inhabited by autonomous,
selfish learning agents. In this case, our learning agent
should not converge to a stationary policy, but rather should
be ready to adapt indefinitely to new agents and new occur-
rences in the environment. The learning process should try
to track a moving learning goal, and for this to be meaning-
ful we have to define new evaluation criteria for such learn-
ing processes.

7. Conclusions and Future Work

We presented a multiagent learning algorithm for
general-sum stochastic games which is optimal (best-
response) in the presence of other agents with converg-
ing policies. The algorithm explicitly models the other
agents in the environment and learns a best-response pol-
icy which is proved to be optimal with regard to the
limits of the other agents’ policies. We also showed ex-
perimental results comparing our learning algorithm to
Q-learning.

One direction for future work includes further investi-
gation of this algorithm, performing intensive experiments
in additional frameworks and in the presence of other non-
stationary agents. Another direction is defining new mean-
ingful classes of agents and designing best-response learn-
ing algorithms for these classes. In addition, new evaluation
criteria should be defined for algorithms that do not con-
verge to a stationary strategy, but view the learning task as
a constantly moving target.
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