
When to Apply the Fifth Commandment: The Effects of Parenting on Genetic
and Learning Agents

Michael Berger Jeffrey S. Rosenschein
School of Engineering and Computer Science

Hebrew University
Jerusalem, Israel

{mberger,jeff}@cs.huji.ac.il

Abstract

This paper explores hybrid agents, which use a combina-
tion of a genetic algorithm, a learning algorithm, and a par-
enting algorithm. We experimentally examined what consti-
tutes the best combination of weights over these three algo-
rithms, as a function of an environment’s rate of change.

1. Introduction

Genetic algorithms (GAs) represent every possible so-
lution to a given problem as a sequence of “genes”. Over
many generations, different sequences evolve towards a
near-optimal solution. A disadvantage of GAs is that they
are mostly suitable for stationary problems; problems, how-
ever, may have a dynamic state, and in such cases, GAs tend
to collapse. GAs can be improved by combining them with a
learning algorithm [3]. While GAs gather information over
many generations, learning gathers information over a sin-
gle generation, and, unbiased by information from previous
generations, is more suitable for dynamic problems. How-
ever, learning might miss important information from previ-
ous generations, and is thus more wasteful. How would al-
gorithms that are “in-between” fare, when a problem state
remains somewhat similar between one generation and the
next? Consider problems with the following conditions:

C1 A problem state can only change to an “adjacent” state.

C2 The problem has a very low (positive) rate of change.

We introduce parenting as such an “in-between” algorithm.

2. Environment and Task

A round is the basic time unit. The environment con-
sists of a cyclic rectangular grid,wEnv × hEnv in size. The
grid contains agents and food. In a given round, when food
is present in a square, all agents in that square “eat”. At the

end of a round, an agent may travel to an adjacent square or
stay put. Afood patchis a positive probability function over
a group of adjacent squares, which determines the probabil-
ity that food would appear in a square in a given round.
Agents are not aware of food patches.αEnv is the proba-
bility that in a given round, all food patches move, each in
its own random direction. This environment fulfillsC1. For
very low positive values ofαEnv, it fulfills C2as well.

A generationis a group of agents that live in the environ-
ment simultaneously. In a given generation, all agents start
at the same position (determined randomly). Aneating-rate
of an agent is the fraction of rounds in which it eats out of
the rounds in which it lives. For a given generation, aBER
(best eating-rate)is the maximal eating-rate in that gener-
ation. In a run ofnTask

GenRun generations, each consisting of
nTask

Ag agents that live fornTask
Rnd rounds,λ is the mean over

the BERs of the lastnTask
GenTest generations. Our goal is to

develop agents that maximizeλ.

3. Agent Definitions and Types

A reward indicates whether an agent ate (1) or not (0).
A perceptioncontains an agent’s position and reward. An
Action is one of EAST, SOUTH, WEST, NORTH, HALT.
A memory is a sequence of the agent’s last perception-
action pairs. AMAM (Memory-Action Mapper) receives a
memory as input, and returns an action as output. AnASF
(Action-Selection Filter) receives several action suggestions
as input and returns one of them as output.

The MAM of a genetic agent is its gene sequence. Each
gene is composed of akey(a possible memory) and avalue
(a possible action). The MAM of a genetic agent is created
with the agent, and it is never updated. When the MAM re-
ceives a memory as input, it returns an action by return-
ing the value that matches the appropriate key. GAs employ
generations of genetic agents, letting each agent run in the
environment and then producing a new generation by mat-
ing agents from the current generation [1]. When two ge-



netic agents mate, they create two offspring. The MAMs of
the offspring are created by passing the gene sequences of
the parents through a process of crossovers and mutations.

A learning agent employs the Q-learning algorithm with
Boltzmann exploration [4]. In Q-learning, an agent tries to
maximize rewards by estimating them in advance. TheQ-
valueQ(s, a) is the expected discounted sum of future re-
wards obtained by taking actiona when the memory iss,
and following an optimal policy thereafter. Whena is se-
lected as the next action,Q(s, a) is updated after receiving
the subsequent reward. Boltzmann exploration is responsi-
ble for selecting the next action. Every possible action is
given a probability of being selected. For any given mem-
ory, the probability is initially equal for all actions, but over
time, the probability of selecting actions with high Q-values
increases. After a while, exploration stops, and the action
with the maximal Q-value is always selected thereafter.

A parenting agent selects an action by turning to another
parenting agent, its “parent”, for advice. The parent, which
interacted with the environment in the previous genera-
tion, uses its own experience to return an answer. We used
Monte Carlo (MC) methods [5] to simulate parenting. MC-
methods evaluate and improve memory-action mappings af-
ter episodesof rounds (i.e., generations). In the evaluation
stage, the mapping of each possible memory to each possi-
ble action produces anMC-value. MC(s, a) is the average
of rewards in all rounds following the agent’s encounter of
memorys and selection of actiona as the next action. In the
improvement stage, the parenting agent stores in its MAM
a mapping of memories to actions, to be used only by the
agent’s offspring. Any possible memory is mapped to an ac-
tion by selecting the action with the highest MC-value for
that memory. The parenting agent has an ASF, which gives
each parent an equal chance for its advice to be taken.

The real agent population consists only ofcom-
plex agents. Each complex agent contains an instance of
each simple type (genetic, learning, and parenting), in
a subsumption architecture [2]. A complex agent medi-
ates between its inner agents and the environment.

At a generation’s end, each complex agent is awarded
mating rights according to its eating-rate. Two complex
agents mate by mating their respective inner agents and en-
capsulating the inner offspring in a new complex offspring.

When a complex agent receives a perception, it passes it
on to its inner agents, which update their MAMs if needed.

When a complex agent executes an action, it asks its in-
ner agents to suggest it. The complex agent then feeds the
suggested actions into its ASF, which selects the sugges-
tion of the genetic agent, the learning agent, or the parenting
agent with probabilitiesPComp

Gen , PComp
Lrn , andPComp

Par , re-
spectively. The complex agent executes the action selected
by its ASF and also perceives it in the usual manner.

4. Runs and Results

The constants were:nTask
Ag = 20, nTask

GenRun = 9500,
nTask

GenTest = 1000, nTask
Rnd = 30000, hEnv = 20, wEnv =

20. There was one food patch,5 × 5 in size. Its center
had a value of0.8. All outer frame squares had a value of
0.2. All other squares had a value of0.4. The dependent
variable wasλ. The independent variables wereαEnv and
δ ≡ (PComp

Gen , PComp
Lrn , PComp

Par ). Results appear in table 1.

δ
αEnv (1,0,0) (0,1,0) (0,0,1) Bestδ Bestλ

0 0.2425 0.7233 0.0746 (0.7, 0, 0.3) 0.7988
10−6 0.2139 0.7188 0.0730 (0.2, 0.6, 0.2) 0.7528
10−5 0.1806 0.6912 0.0670 (0, 0.9, 0.1) 0.7011
10−4 0.1550 0.5454 0.0520 (0.03, 0.9, 0.07) 0.6021
10−3 0.1462 0.3252 0.0291 (0.02, 0.8, 0.18) 0.3647
10−2 0.0805 0.1834 0.0167 (0, 1, 0) 0.1834
10−1 0.0366 0.0698 0.0177 (0, 1, 0) 0.0698

Table 1. Result summary of runs

5. Conclusions

An agent’s algorithm A is anaction-augmentorof an
agent’s algorithm B if: (1) Both algorithms always receive
perceptions; (2) B selects the action in most steps; (3) A se-
lects the action in at least 50% of the other steps.

In a stationary environment (C1 holds,C2 holds except
that the rate of dynamic change is notpositive), parenting
can contribute as an action-augmentor for genetics. In an
environment with a low rate of dynamic change (C1andC2
both hold), parenting can contribute as an action-augmentor
for learning. In an environment with a high rate of dynamic
change (C2doesn’t hold), parenting loses its effectiveness.

The conclusions above might help determine when par-
enting would be expected to appear in natural environments.

References

[1] R. Axelrod. The Complexity of Cooperation: Agent-Based
Models of Competition and Collaboration. Princeton Univer-
sity Press, 1997.

[2] R. A. Brooks. A robust layered control system for a mobile
robot. IEEE Journal of Robotics and Automation, 2(1):14–23,
March 1986.

[3] S. Nolfi and D. Parisi. Learning to adapt to changing envi-
ronments in evolving neural networks.Adaptive Behavior,
5(1):75–98, 1997.

[4] T. W. Sandholm and R. H. Crites. Multiagent reinforce-
ment learning in the iterated prisoner’s dilemma.Biosystems,
37:147–166, 1996.

[5] R. S. Sutton and A. G. Barto.Reinforcement Learning: An In-
troduction. The MIT Press, 1998.


