
When to Apply the Fifth Commandment: The Effects of Parenting on Genetic
and Learning Agents

Michael Berger
�

Jeffrey S. Rosenschein
School of Engineering and Computer Science

Hebrew University
Jerusalem, Israel�

mberger,jeff � @cs.huji.ac.il

Abstract

This paper explores hybrid agents that use a variety of
techniques to improve their performance in an environment
over time. We considered, specifically, genetic-learning-
parenting hybrid agents, which used a combination of a
genetic algorithm, a learning algorithm (in our case, re-
inforcement learning), and a parenting algorithm, to mod-
ify their activity. We experimentally examined what consti-
tutes the best combination of weights over these three algo-
rithms, as a function of the environment’s rate of change.

For stationary environments, a genetic-parenting com-
bination proved best, with genetics being given the most
weight. For environments with low rates of change, genetic-
learning-parenting hybrids were best, with learning hav-
ing the most weight, and parenting having at least as much
weight as genetics. For environments with high rates of
change, pure learning agents proved best. A pure parent-
ing algorithm operated extremely poorly in all settings.

1. Introduction

1.1. Genetic and Learning Algorithms

Among the most prominent types of heuristic algorithms
used in dealing with NP-hard problems are genetic algo-
rithms. Genetic algorithms operate by representing every
possible solution to a given problem as a series of “genes”.
Multiple agents, each containing its own series of genes,
start working to solve the problem. As in biological evolu-
tion, these genes are developed over many generations by
a repeated process of genetic crossovers, mutations, evalua-
tions, and “survival of the fittest”. Over time, the developed
genes contain information that is gathered over these mul-
tiple generations, and hopefully, they eventually provide an
optimal or near-optimal solution to the problem.� Michael Berger is a student.

The main disadvantage of genetic algorithms is that they
are mainly suitable for dealing with stationary problems.
Problems, however, may be of a dynamic nature, i.e., have
a hidden parameter, or state, that occasionally changes. In
such dynamic situations, when a change occurs in the prob-
lem’s state, genetic algorithms tend to collapse and start
over again, searching for a new optimal solution, often with-
out much success [4].

A modification that can help genetic algorithms handle
dynamic problems is to combine them with a learning algo-
rithm. Such an approach has been used in developing both
agents that handle stationary environments [8] and agents
that handle dynamic environments [9].

Genetic algorithms and learning algorithms are inher-
ently different, in that genetic algorithms gather information
over many generations, while learning algorithms gather in-
formation only over a single generation. Herein lies the flex-
ibility of learning—it is unbiased by information gathered
in previous generations, and is therefore more suitable for
dealing with a dynamic problem, where information from
previous generations might not be relevant. On the other
hand, a learning process might actually be missing some im-
portant information from previous generations, causing it to
be more wasteful in relearning information, and ultimately
less accurate [7].

1.2. Parenting Algorithms

In the discussion above of algorithms that deal with dy-
namic problems, two extremes have been presented: a ge-
netic algorithm, which has high accuracy but low relevancy,
and a learning algorithm, which has low accuracy but high
relevancy. One might consider how algorithms that are “in-
between” might fare—specifically, for a problem with the
following two conditions:

Condition C1 The problem state can only change to a state
adjacent to it in the state space, with adjacency defined

by some metric over that space.

Condition C2 The problem has a very low (but positive)
dynamic rate of change.

For such problems, it seems that an in-between algorithm
might provide more accuracy than learning, while still pre-
serving an adequate level of relevancy, because C1 and C2
combined imply that a current problem state is somewhat
similar to problem states that were encountered over the last
few generations.

Thus, we introduce the notion of parenting. We define
a parenting algorithm as one in which agents follow in-
structions from their parents, i.e., agents of the previous
generation, and the parents determine their instructions ac-
cording to what they themselves had learned over the com-
plete course of their generation—a posteriori. In contrast to
learning agents, parenting agents do not execute their own
actions according to what they learn for themselves.

A parenting algorithm has higher accuracy than a learn-
ing algorithm, because it avoids decisions based on momen-
tary experience, which might be more prone to error [5].
Conversely, a parenting algorithm has lower accuracy than
a genetic algorithm, because its information is gathered over
the span of a single generation, and not over many genera-
tions.

As for relevancy, in a given generation, a parenting al-
gorithm has lower relevancy than a learning algorithm, be-
cause its information is gathered in the previous generation
and not in the current one. Conversely, a parenting algo-
rithm has higher relevancy than a genetic algorithm, be-
cause its information is unbiased by whatever happened in
generations before the previous one.

A parenting algorithm seems to fit the definition of an
“in-between” algorithm. Can it help handle a problem that
fulfills conditions C1 and C2? This question constitutes one
focus of this paper.

1.3. Overview of the Paper

In Section 2, we describe the overall environment of our
experiments, and what constituted our goal for the agents.
In Section 3, the hybrid agents themselves are presented,
along with their genetic, learning, and parenting aspects.
Section 4 describes the various experimental runs that were
made, while Section 5 presents the results of those experi-
ments. Our conclusions are discussed in Section 6.

2. Environment and Task

2.1. Environment

We define a round to be the basic time unit. The en-
vironment consists of a rectangular grid, with dimensions

�����	��

������� . The grid contains agents and food. In ev-
ery round, each agent can either “eat” or “starve”. This en-
vironment is generally similar to those used in [8, 9]. To
save some analytical complications, the grid is defined to
be cyclic.

In each round, each square on the grid may contain any
number of agents, and it may or may not contain unlimited
food—unlimited in the sense that when food is present in a
square, all agents in that square are said to have eaten (un-
like [8]). The reason for making food unlimited is to avoid
dependencies between the actions and performance of dif-
ferent agents, thus avoiding the complexity of social inter-
actions. At the end of a round, an agent may travel to an ad-
jacent square or stay put.

The appearance or non-appearance of food is actually
controlled by structures in the environment to which agents
are oblivious. These are food patches. A food patch is a pos-
itive probability function ��������� defined over a group of ad-
jacent squares on the grid. If � is a square, then � ��������� ��� de-
fines the probability that in a given round, food will appear
in square � . The environment contains � ��������! #"%$ food patches.

A fundamental attribute of the environment is & ����� ,
which is the probability that in a given round, the food
patches move (i.e., their domains move). When this occurs,
all food patches move one square, each in its own random
direction.

2.2. Mapping the Environment to an Abstract
Problem

If we define an abstract problem as that of finding food
in an environment that has a pre-determined set of � food
patches, each with a pre-determined shape, then a given po-
sition of all food patches actually constitutes one state of
that problem. For food patch ' , let �#(�������!)!*,+��������!)-� be any
representational point from within it.

A metric can then be defined on the ./� -dimensional
space of these states by defining any vector 0 in that space,021 �3(54 *,+ 4 *7686767* (� *�+ � � , to denote the positions of the rep-
resentational points of all food patches in that state,
i.e., 9:' �;(�������!)=< (:>@? +	�������!)=<A+ > � . Thus, the environ-
ment presented above in Section 2.1 fulfills condition C1.
For very low positive values of & ����� , it fulfills condi-
tion C2 as well.

2.3. Task

The goal in our experiments has been to synthesize an
agent that enjoys a maximal eating-rate—the fraction of
rounds in which it eats, out of the total number of rounds.
This task definition requires more detail, in two respects: 1)
how to integrate agent generations in the definition, and 2)
how to measure the success of agents.

An integration of agent generations in the task definition
is required since the development of genetic agents and par-
enting agents does not occur in a single agent’s lifetime,
but over many lifetimes. Thus, the concept of generation
is defined: a generation of agents is a group of agents that
start their life in the environment simultaneously, and end
their life in the environment simultaneously. To avoid hav-
ing some agents receive unfair advantages over others, all
agents of the same generation start at the same position, a
position that is randomly determined for each generation.

It is also important to note that the environment is com-
pletely oblivious to the concept of generations. This means
that the position of food patches is not reset at the start of
a new generation—the environment is “continuous” across
generations.

When considering how to measure agent success, such
measurement must not consist of only the initial generation;
agents that develop over multiple generations must be al-
lowed time to develop. Also, the measurement must include
a large enough number of generations so as to increase the
statistical validity of the results.

Having presented those aspects above that required more
detail, a more accurate task can now be formulated. For a
given agent generation, let a BER (best eating-rate) be de-
fined as the maximal eating-rate of all agents in that gener-
ation. In a run of ��B �DC,EF�G ��HJI�� agent generations, each consist-
ing of �KB �7C-EL5M agents that live for ��B �DC-EHJ� � rounds, let the mea-
sure of success N be defined as the average over the BERs
of the last �KB �DC-EF�G � B G CO generations. Our goal is then to de-
velop agents that maximize N .

3. Agents

The agents used in our experiments are hybrids of a
genetically-developing agent, a self-learning agent, and a
parenting agent. Before defining these agent types, a few
definitions are in order.

3.1. Definitions

Perception An element of the set:PRQ *867686S* � �����UTWV	X
 PRQ *768676D* � ������TYV�X
 PRQ * V�X
Indicates a position (of the agent) on the grid, and
whether the agent found food in that position.

Reward That part of the perception which indicates
whether the agent found food (reward is 1) or not (re-
ward is 0).

Action A direction of movement (for the agent to move
next). One of EAST, SOUTH, WEST, NORTH, HALT.

Memory A sequence containing the agent’s last
perception-action pairs. A memory of length (

will contain the last perception, preceded by the previ-
ous (TYV perception-action pairs.

MAM Memory-Action Mapper. Receives a memory as in-
put, and returns an action as output.

ASF Action-Selection Filter. Receives several actions as
input (i.e., action suggestions), and returns one of them
as output.

3.2. Genetic Agents

A genetic agent is one that selects its actions according to
its predetermined gene sequence, and can mate with other
genetic agents to produce new offspring that contain their
own gene sequences [1].

A genetic agent holds a memory of length Z F�G � . In ad-
dition, the genetic agent employs genes, with each gene
composed of a key and a value. The key is a possible mem-
ory, and the value is a possible action.

The MAM of a genetic agent is a gene sequence, con-
taining one gene for each possible memory. The position of
a gene in the sequence is defined uniquely by its key (i.e.,
the gene sequences of all genetic agents in the same envi-
ronment and with the same memory length contain genes
with an identical order of keys).

The MAM of a genetic agent is created when the agent is
created, and it is never updated afterwards. When the MAM
receives a memory as input, it maps it to the returned ac-
tion by finding the key that matches the memory, and then
returning its accompanying value.

Genetic algorithms employ generations of genetic
agents, letting each agent run in the environment and
then producing a new generation of agents by mat-
ing agents from the current generation. Conventionally,
the mating stage consists of two parts: generational selec-
tion and offspring creation. Here, only offspring creation
is implemented within the genetic agent. As for genera-
tional selection, it is implemented elsewhere, and is de-
scribed in Section 3.5.1.

Whenever two genetic agents mate, they create two off-
spring, the MAMs of which are created as follows. First, a
copy is created for each of the gene sequences of the par-
ents. We will denote the sequence copies as [4 and []\ . A
simultaneous scan is then started over [4 and [\ , gene by
gene. Let ^ >_ denote the gene of sequence copy [> at posi-
tion ` . As previously explained, ^ 4_ and ^a_ have the same
key. For any ` , when the scan reaches position ` , the fol-
lowing events may occur:

Crossover This event occurs with probability � F�G �b�c � C .
When it occurs, all genes at positions d e `
are swapped between [4 and [\ (i.e., the com-
plete sub-sequences of genes starting at ^ 4_ and^f_).

Mutation This is an event that occurs with probability� F�G �g I for each of the sequences. When it occurs for se-
quence [> , the value of gene ^ >_ changes to a randomly
selected value (action).

After the scan is complete, the offspring ' receives sequence' as the gene sequence in its MAM.

3.3. Learning Agents

A learning agent is an agent that selects its actions ac-
cording to a learning algorithm. The most appropriate type
of learning algorithm for this environment is reinforcement
learning [6], in which agents receive after every action a
signal that informs them how good their choice of action
was (here, the presence or absence of food in their position).
The reinforcement learning algorithm that was selected for
the learning agent was Q-learning with Boltzmann explo-
ration [10].

The learning agent holds a memory of length Zih c � .
When the agent’s MAM receives memory as input, it maps
it to the returned action according to the Q-learning with
Boltzmann exploration algorithm.

In the general Q-learning algorithm, an agent tries to
maximize rewards that it receives from the environment by
improving its action selection. The Q-learning algorithm
works by estimating these rewards for all possible actions,
in light of the current memory. Let � denote a memory, and
let j denote an action. Then the value k � �	*�jf� (termed a Q-
value) is defined as the expected discounted sum of future
rewards obtained by taking action j when the memory con-
tains � , and following an optimal policy thereafter. In our
setting, all Q-values are initialized to

Q 6 l , to prevent bias.
At learning step � , the discounted sum of future rewards is
defined as mon>qpJrJs >ut ��v > , where

Qxw szy V is a discount fac-
tor and t _ is the reward given at learning step ` .

If j is selected as the next action, k � ��*�jf� is updated af-
ter receiving the subsequent reward t , as follows:

{ k � ��*�jf�]<|& h c �~} t�� s h c ���x���� k � �R�#*!�D� T k � ��*�jf�%�
where &�h c � is the algorithm’s learning rate, and s h c � is the
discount factor.

For a current memory � , what action should be selected
next? One trivial answer is to select the action with the high-
est Q-value for � , thus “exploiting” the Q-value. However,
according to [10] (and, in another context, [3]), the algo-
rithm operates better if an element of exploration is added
to action-selection, thus improving the comparison that a
Q-learning agent makes among different actions.

In [10], a Boltzmann exploration method was selected.
According to this method, every possible action j > has the

following probability to be selected:

� � j > �]< �5�����%� �)u��
m � � �����%� � ��

where � is a computational parameter that controls
the amount of exploration, and in learning step � ,��<o� h c �B G%��� � ��� . � is an annealing temperature that decreases
over time, thus increasing exploitation and decreasing ex-
ploration (the action with the highest Q-value receives
probabilities that approach 1). Also, a freezing tempera-
ture � h c �� c�G,G%�SG has been defined, so that when � y � h c �� c!G-G%�SG ,
exploration (which is better for early steps) ceases com-
pletely, and full exploitation kicks in.

3.4. Parenting Agents

A parenting agent is an agent that differentiates between
learning experiences from the environment, and perform-
ing actions based on that experience. In fact, when a par-
enting agent decides on an action to perform, its experience
has absolutely no weight in that decision. Instead, the agent
turns to another parenting agent, its “parent”, and seeks ad-
vice about what action to perform. The parent, in turn, uses
its own experience to return an answer. Note that the par-
ent is an agent that interacted with the environment in the
previous generation, but no longer does so.

A group of methods that seems appropriate for such par-
enting agents is Monte Carlo methods, or MC-methods for
short [11]. MC-methods are used for evaluating and im-
proving policies, i.e., memory-action mappings. In contrast
to Q-learning, with MC-methods the evaluation and im-
provement are performed after complete episodes of rounds,
and not after every single round. In the current context, an
episode is simply a generation.

In the evaluation stage, the mapping of each possible
memory to each possible action is evaluated. The evalua-
tion produces a value, termed an MC-value. Let � be a mem-
ory and j an action. The MC-value of � ��*�ja� is the average
of rewards in all rounds following the agent’s encounter of
memory � and selection of j as the next action. In our set-
ting, all MC-values are initialized to

Q 6�l , to prevent bias.
In case the agent encountered memory � and responded

with action j more than once, the following approach was
used: for every encounter of the agent with � �	*�jf� , the aver-
age of rewards in all rounds following that encounter was
calculated. Then, the MC-value was set to the average of
these averages. This method is called an every-visit MC-
method.

In the improvement stage, the parenting agent stores
in its MAM a mapping of memories to actions, to be
used only by the agent’s offspring. Any possible mem-
ory � is mapped to an action j�� by simply selectingj���< �����]���/� �¡ £¢ � ��*�jf� . In addition to the MAM, the

parenting agent holds a memory of length Z ��� c . Also, the
parenting agent has an ASF component.

So far, the functions of parents and offspring have been
discussed, without mentioning the number of parents that
each offspring has. In this experiment, we used one of na-
ture’s models—every offspring has two parents. If they both
give the offspring advice, which advice does it take? In prin-
ciple, this is controlled by the ASF component. In our ex-
periments, each parent has an equal chance for its advice to
be accepted by offspring.

One final note concerns the exploration issue. As noted
in [11], MC-methods usually require exploration for them
to be effective. Otherwise, deterministic policies lead to the
exploration of only a single action for every memory. How-
ever, the intention here was purposely to develop a “pure”
parenting function, where the parent always gives advice
that it deems the best—i.e., the most exploitive one. In
contrast to learning, here exploration is not essential, be-
cause a parenting agent does not start its life with zero-
experience—it has its parents’ experience.

3.5. Complex Agents and Processes

As mentioned above, the agents that are situated in
our environment are actually hybrids of genetic, learning,
and parenting agents. The agent types mentioned in Sec-
tions 3.2, 3.3 and 3.4 are not situated directly in the envi-
ronment. Rather, the agent population is made up of agents
that are termed complex agents. Each complex agent con-
tains within it an instance of each of the mentioned types
(genetic, learning, and parenting), in a subsumption archi-
tecture [2]. Figure 1 helps visualize this structure. The com-
plex agent mediates between the genetic, learning, and par-
enting agents, on the one hand, and the environment, on the
other. The complete processes of mating, receiving a per-
ception, and executing an action are detailed in the follow-
ing subsections.

3.5.1. Mating At the end of a generation’s run, the per-
formance of each complex agent is evaluated by its eating-
rate. The evaluations’ average Z and standard deviation ¤
are calculated, and the agents are classified in strata of width¤ around Z . Each agent is then awarded mating rights, de-
termined by its startum [1], while preserving the principle
of “survival of the fittest” and some genetic variance. Mat-
ing rights specify the number of matings to which the agent
is entitled. This is the generational selection part of the ge-
netic algorithm, which was mentioned in Section 3.2. When
two complex agents mate, two offspring are created.

The course of an individual mating process is as follows.
Two complex agents mate and create two offspring by mat-
ing their respective inner genetic agents, as well as their re-
spective inner parenting agents, and then encapsulating the

inner offspring in new complex agent offspring. There are
three points that should be noted:

1. The inner genetic offspring receives genetic informa-
tion from its parents during mating, while the inner
parenting offspring does not.

2. In any complex offspring, the parents of its inner par-
enting agents are those associated with the parents
of the inner genetic agents—i.e., the inner parenting
agents take advice from their real parents, and not fos-
ter parents.

3. The inner learning agents of the complex offspring
have absolutely no association with the inner learning
agents of the complex parents.

3.5.2. Receiving a Perception The process of receiving a
perception is as follows. When the complex agent receives
a perception, it passes it on to the inner genetic, learning,
and parenting agents. The genetic agent updates its mem-
ory accordingly. The learning agent updates its memory and
its MAM. The parenting agent updates its memory and its
MAM (this is equivalent to updating the MAM only at the
generation’s end, because the MAM isn’t used during the
current generation).

Note that the parents from the previous generation are
completely unaware of the perception—they do not learn
any new information.

3.5.3. Executing an Action The flow of the action exe-
cution process is depicted in Figure 1. When the complex
agent executes an action, it asks its inner agents to suggest
it.

The genetic agent feeds its memory to its MAM, and
suggests the returned action as the action to execute.

The learning agent feeds its memory to its MAM, and
suggests the returned action as the action to execute.

The parenting agent feeds its memory to the MAMs of
its parents. The parenting agent feeds the returned actions
to its ASF, and then suggests the action returned by the ASF
as the action to execute.

The actions suggested by the inner agents are fed to the
complex agent’s ASF, which selects the genetic agent’s sug-
gestion with probability � b � ���F�G � , the learning agent’s sug-
gestion with probability � b � �]�h c � , and the parenting agent’s
suggestion with probability � b � ������ c . The complex agent ex-
ecutes the action selected by its ASF, and also perceives it
by causing the inner agents to perceive it in the usual man-
ner (see above, Section 3.5.2).

4. Runs

This section specifies which parameters were set to con-
stant values, which were treated as variables, and what runs
were performed in our experiments.

Figure 1. Action Flow

4.1. Constants

�KB �DC-EL5M <¥. Q , �KB �DC-EF�G ��HJI�� <¥¦�l Q	Q , �KB �DC-EF�G � B G CO < V Q�Q	Q ,�KB �DC,EHJ� � <¨§ Q	Q	Q�Q , ������� <¨. Q , ������� <¨. Q , � ��������! #"%$ < V ,Z F�G � < V , � F�G �b�c � C < Q 6 Q . , � F�G �g I < Q 6 Q	Q l , Z h c � < V ,& h c � < Q 6 . , s h c � < Q 6 ¦©l , � h c �B G-�]� � ���ª<«lz¬ Q 6 ¦�¦	¦ � ,� h c �� c�G,G%�SG < Q 6�. , Z ��� c < V .
The single food patch is l
 l in size. Its center has a

value of
Q 6 ­ . All inner frame squares have a value of

Q 6 ® .
All outer frame squares have a value of

Q 6 . .
4.2. Variables

The parameters that constituted independent variables
were as follows: & ����� , � b � ���F�G � , � b � ���h c � , � b � ������ c . ¯ (used
below) will be defined as � � b � �]�F�G � *�� b � ���h c � *�� b � ������ c � . The
only dependent variable was N .

4.3. Summary of Runs

For a given & ����� , all values of ¯ that fulfill the following
conditions were tested:

1. � b � ���F�G � e Q , � b � ���h c � e Q , � b � ������ c e Q .
2. � b � ���F�G � � � b � ���h c � � � b � ������ c < V .
3. � b � ���h c � < Q 6 V ¬7� ,� b � ���F�G � < Q 6 V ¬Rd°¬J± V²T � b � ���h c �´³°µ �=*�d·¶¹¸ .

Under the above conditions, there are 11 different values
that � b � ���h c � can receive (i.e.,

Q
,
Q 6 V , . . . , V). For each such

value, there are 11 values that � b � ���F�G � can receive, except
for � b � ���h c � < V , where � b � �]�F�G � can receive only one value
(0). Therefore, for a given & ���	� , there are 111 values of ¯
that fulfill the above conditions.

There were º different values of & ����� that were tested:Q * V Qf»5¼ * V Qf»:½ * V Q�»@¾ * V Q�»:¿ * V Qf» \�* V Qf» 4 . Since each combi-
nation of & ����� and ¯ was tested (in one run), this amounted
to a total of º	º	º runs.

5. Results

This section details the performance of agents by analyz-
ing the value of N . It is worth noting the scale by which a
value of N should be evaluated. The food patch had a peak ofQ 6 ­ . Thus, an agent that can direct itself to that peak would
be expected to have an eating-rate of about

Q 6 ­ . Therefore,
an agent could be considered “perfect” if it has an eating-
rate of

Q 6 ­ .1
Table 1 summarizes the main results—the N -value of

the pure agent types and the best performer for each value
of & ����� . Two points are derived from this table. First,
not surprisingly, N becomes degraded as & ����� rises. Sec-
ond, the performance of agents can be classified accord-
ing to three ranges of & ����� : Q , � Q *�ÀiÁ and Â Àz* V Q�» 4 Á , whereV Q�»:¿2w À w V Qf» \ . More details are presented in the sub-
sections below.

¯& ����� (1,0,0) (0,1,0) (0,0,1) Best ¯ Best N
0 0.2425 0.7233 0.0746 � Q 6Ãºa* Q * Q 6 §©� 0.7988V Q�»:¼ 0.2139 0.7188 0.0730 � Q 6 V l�* Q 6�ºf* Q 6 V l�� 0.7528V Q�»:½ 0.1806 0.6912 0.0670 � Q * Q 6 ¦�* Q 6 V � 0.7011V Q�»@¾ 0.1550 0.5454 0.0520 � Q 6 Q §�* Q 6 ¦�* Q 6 Q º	� 0.6021V Q�»:¿ 0.1462 0.3252 0.0291 � Q 6 Q .�* Q 6 ­�* Q 6 V ­©� 0.3647V Q�» \ 0.0805 0.1834 0.0167 � Q * V * Q � 0.1834V Q�» 4 0.0366 0.0698 0.0177 � Q * V * Q � 0.0698

Table 1. Result Summary of Runs

5.1. Pure Parenting (ÄÆÅ¡Ç�ÈÊÉË=ÌDÍ ÎÐÏ)
Pure parenting is ineffective. This is evident from Ta-

ble 1, and though it is true for all tested values of & ����� ,
it is most striking in Figure 2 (parenting probability is im-
plicit in the figure since � b � ���F�G � � � b � ���h c � � � b � ������ c < V).
1 Even though a higher value is possible, because the food patch is a

probabilistic function, for the purpose of defining a scale this fact is
negligible.

A probable explanation for this degraded performance
is the decision not to include exploration in the parenting
agent’s algorithm. Indeed, a closer look at the eating-rates of
pure parenting agents lends support to this explanation. The
eating-rates go through a two-generation cycle. As an exam-
ple, for & ����� < Q , the eating-rates of all agents in one gen-
eration usually have values between

Q 6 Q�Q l and
Q 6 Q .	l , while

in the next generation almost all eating-rates are
Q

(nick-
named a “zero-generation”). This cycle repeats. The zero-
generations occasionally have up to four eating-rates higher
than

Q 6 Q l , and there are rare zero-generations with one or
two medium or high eating-rates.

Lack of exploration could be the culprit. What seems
to be happening is that in the non-zero-generation, agents
start a search for food patches, which is beneficial to a cer-
tain extent. However, the search is not good enough for the
MC-method to consider it a success (since the initial MC-
values are

Q 6�l). Therefore, the offspring in the next gener-
ation, which is a zero-generation, receive advice from the
parents not to go where the parents went, i.e., abandon the
parents’ search. The obedient offspring do just that, and
search in other directions, which are usually barren. Now,
the offspring in the next non-zero-generation will receive
truly valuable advice, not to go in the barren directions.
However, for every memory, the non-zero-generationagents
still face three or four other directions in which they can go,
so they will be able to start a beneficial search, but only to a
certain extent. Hence, the cycle.

5.2. Runs with ÑÊÒ=Ó©Ô ÎÖÕ

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

Learning Prob.Genetic Prob.

Su
cc

es
s (

La
mb

da
)

Figure 2. N for & ����� < Q
Figure 2 shows the results for runs with & ����� < Q

. The
highest N -value,

Q 6Ãº/¦�­	­ , is achieved for ¯~< � Q 6�ºf* Q * Q 6 §�� .
Generally, for a given � b � �]���� c , N rises as � b � �]�h c � decreases.

Surprisingly, pure genetic agents perform poorly, while
the hybrids of genetic agents with learning and parenting

agents achieve a very high N . Still, in view of what is known
of genetic algorithms, and since the environment is sta-
tionary, the pure genetic agent is expected to have even-
tually achieved a near-perfect N had it been given enough
generations to develop. Indeed, according to [6], evolution
and “learning” complement each other. Learning may assist
evolution by making near-perfect individuals receive high
fitness scores, while evolution accelerates learning by mak-
ing individuals nearly perfect to begin with. Here, learn-
ing is manifested both by learning agents and by parent-
ing agents. Note that the acceleration of learning by evolu-
tion explains why parenting has such a positive contribution
to the genetic-parenting hybrid, compared to the poor per-
formance of pure parenting agents.

5.3. Runs with a Low Positive Ñ×Ò=Ó©Ô

0

0.5

1

00.20.40.60.81
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Learning Prob.Genetic Prob.

Su
cc

es
s (

La
mb

da
)

Figure 3. N for & ����� < V Qf»:¾
The results for the runs with & ����� ¶P V Qf»:¼ * V Q�»:½ * V Qf»:¾ * V Qf»5¿ X can be classified together.

The results for one representative & ���	� , V Q�»@¾ , are repre-
sented in Figure 3. In that figure, notice that the peak is
higher than pure learning’s N -value. The points that can be
derived from the results for these values of & ����� are as fol-
lows.

First, as expected, pure genetic agents perform much
worse than pure learning agents. Second, pure learning
agents are not the best performers. They are outperformed
by hybrids where the following conditions hold:

1. � b � ���h c � Ø � b � ���F�G � � � b � ������ c
2. � b � ������ c eY� b � ���F�G �

In other words, the best performers are those hybrids where
learning predominates (but is not absolute), and parenting
has at least as much weight as genetics. For & ����� Ø V Q�»:¼ ,
the inequality of the second condition is a strong one—the
best performer contains a mix where parenting has more

than twice the weight of genetics. Presumably, for & ����� <V Qf»5¼ environment changes occur at such a low rate that ge-
netics can handle them (one change every §	§ 4¿ generations
on average).

Third, The best performers of & ����� -values V Q »5¿ andV Qf»:¾ perform significantly better than the pure learning
agent (12.1% and 10.4% higher, respectively). For & ����� -
values V Q�»5½ and V Qf»5¼ , the difference is less significant
(1.4% and 4.7% higher, respectively).

5.4. Runs with a Higher Positive Ñ²Ò=Ó©Ô

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.05

0.1

0.15

0.2

0.25

Learning Prob.Genetic Prob.

Su
cc

es
s (

La
m

bd
a)

Figure 4. N for & ����� < V Q�» \
The results for the runs with & ����� ¶ P V Q�» \/* V Qf» 4 X

can be classified together. The results for one representa-
tive & ���	� , V Qf» \ , are represented in Figure 4. As expected,
for these values of & ���	� , pure genetic agents perform much
worse than pure learning agents. Also, pure learning agents
are the best performers.

6. Conclusions

Let us define an agent’s algorithm A to be an action-
augmentor of an agent’s algorithm B if the following con-
ditions hold: (1) Both algorithms are always used for re-
ceiving perceptions; (2) B is applied for executing an ac-
tion in most steps; (3) A is applied for executing an action
in at least 50% of the other steps.

The main results of our experiments can be rephrased as
follows:Ù When the environment is stationary, parenting can pro-

vide a positive contribution when used as an action-
augmentor for genetics. Note that in such an environ-
ment, conditions C1 and C2 (from Section 1.2) basi-
cally hold, although without the condition of C2 that
the rate of dynamic change be positive (but zero is in-
deed very low).

Ù When the environment has a very low rate of dynamic
change, parenting can provide a positive contribution
when used as an action-augmentor for learning. Note
that in such an environment, conditions C1 and C2
both hold.Ù When the environment has a higher rate of dy-
namic change, parenting loses its effectiveness, and
pure learning is the best performer. Note that in such
an environment, condition ¢ . does not hold.

In all cases, pure parenting performs extremely poorly.
In nature, parenting has two functions: providing for

the young, and educating them. However, there are settings
where the young have access to sufficient resources, elimi-
nating the need to provide for them. An interesting point for
biologists to explore might be whether for animals in such
settings, a parenting role evolves, as a function of the envi-
ronment’s rate of change. According to this paper’s results,
it would be expected to evolve if and only if the environ-
ment does not change too quickly.

References

[1] R. Axelrod. The Complexity of Cooperation: Agent-Based
Models of Competition and Collaboration. Princeton Uni-
versity Press, 1997.

[2] R. A. Brooks. A robust layered control system for a mobile
robot. IEEE Journal of Robotics and Automation, 2(1):14–
23, March 1986.

[3] D. Carmel and S. Markovitch. Exploration strategies for
model-based learning in multiagent systems. Autonomous
Agents and Multi-agent Systems, 2(2):141–172, 1999.

[4] H. G. Cobb and J. J. Grefenstette. Genetic algorithms for
tracking changing environments. In Proceedings of the Fifth
International Conference on Genetic Algorithms, pages 523–
530, San Mateo, 1993.

[5] T. D. Johnston. Selective costs and benefits in the evolu-
tion of learning. In Adaptive Individuals in Evolving Pop-
ulations: Models and Algorithms, pages 315–358. Addison-
Wesley, 1996.

[6] M. Littman. Simulations combining evolution and learning.
In Adaptive Individuals in Evolving Populations: Models and
Algorithms, pages 465–477. Addison-Wesley, 1996.

[7] G. Mayley. Landscapes, learning costs, and genetic assimi-
lation. Evolutionary Computation, 4(3):213–234, 1996.

[8] S. Nolfi, J. L. Elman, and D. Parisi. Learning and evolution
in neural networks. Adaptive Behavior, 3(1):5–28, 1994.

[9] S. Nolfi and D. Parisi. Learning to adapt to changing envi-
ronments in evolving neural networks. Adaptive Behavior,
5(1):75–98, 1997.

[10] T. W. Sandholm and R. H. Crites. Multiagent reinforce-
ment learning in the iterated prisoner’s dilemma. Biosys-
tems, 37:147–166, 1996.

[11] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. The MIT Press, 1998.

