Synchronization of Multi-Agent Plans

Jeffrey S. Rosenschein
Computer Science Department
Stanford University
Stanford, CA 94305

Abstract

Consider an intelligent agent constructing a plan to be executed by scveral other agents;
correct plan exccution will often require that actions be taken in a specific sequence. Therefore, the
planncr cannot simply tcll cach agent what action to perform; explicit mechanisms must cxist for
maintaining the exccution scquence.  This paper outlines such mechanisms. A framework for
multiple-agent planning is developed, consisting of scveral parts.  First, a formalism is adopted for
representing  knowledge about other agents’ belicfs and goals, and is cxtended to allow
representation of their capabilitics.  Communication primitives are dcfined that allow sclective
acceptance of goals and facts, and an cxplicit means of inducing an agent to perform an act is
introduced. Finally, the ordering mechanisms (consisting of sequencing operators and a planning
heuristic) arc presented, along with a specific cxample of their use.

Introduction

In recent years there has been growing intercst in distributed artificial intelligence systems,
collections of intclligent agents cooperating to solve goals. The motivation for a distributed
approach to problem solving is two-fold: increased cfficiency and incrcased capabilitics. Certain
tasks, such as sensing and control of air or ship traffic, have an inherently distributed naturc and so
lend themsclves to a distributed solution [1] [2]. Even non-sensory tasks may be inherently
distributed; the knowledge required to carry out these tasks might be split among sceveral machincs.
Again, distributed problem solving is a natural way to proceed.

There exist two major paradigms for distributed artificial intelligence systems.  The first
paradigm is planning for multiple agents, where a single intelligent agent constructs a plan to be
carricd out by a group of agents. and then hands out the picces of the plan to the relevant
individuals. Randy Davis calls this paradigm "distributing the solution” [3]. The second paradigm
is distributed problem solving, where a group of intelligent agents together construct, and possibly
cxccute, the final plan,

This paper is concerned with the first paradigm, that of planning for multiple agents; in
particular, we cxamine the problem of achicving synchrony among a group of agents who will be
carrying out a ceatrally-produced plan. Imagine, for example, intelligent agents (located on various
computers) that can construct and cxccute plans in the opcrating systems domain as well as
communicate with cach other (this is the domain being cxplored by the Stanford Intclligent Agents
project). A uscr might tell the agent at Stanford that he wants a file X at MI'T to be printed at
CMU; the Stanford agent will construct a complete plan to accomplish this goal (containing certain
actions Lo be taken by the MI'T and CMU agents), and then tell MI'T" and CMU what to do. The
plan might involve MI'T" sending the file to CMU, and CMU’s printing it, butl the Stanford agent
must assurc that these two actions occur in this order and arc not reversed. One solution is for
MIT to send file X to CMU, and then notify CMU that it has been sent; CMU waits for this
notification, and then prints the file.

We present a method that formalizes the above solution, and thus can be used to maintain an
ordering of actions performed by various agents. As a framework for the multiple-agent planning
system, a formalism is adopted for representing beliefs and goals of agents, as well as their
capabilitics; primitives for inter-agent communication arc defined. A planning heuristic for multi-
agent synchrony is presented, along with its requisitc opcrators.  Iinally, the example above is
presented in greater detail.



The Multi-Agent Formalism

Beliefs and Goals

To construct plans for other agents, the planner must be able to represent and reason about
their beliefs and goals. Though scveral alternatives are possible (such as "possible-worlds"
formalisms [4] [5] [6] [7]). we choose the FACT and GOAL list formalism of Konolige and Nilsson
[8]. In this approach, cach agent has a FACT list that contains items that it belicves, including the
belicfs and goals of other agents (these last two are specificd through the use of a mctalanguage);
the GOAL list contains the current goals of the agent. As an cxample, if A0 belicves that Al
belicves Al has file FOO, and AOQ also believes that Al has the goal of deleting that file, the
following items appear in AQO's data base:

FACT(A1’EXIST(FOO,A1)")
GOAL(ALDELETED(IFOOY))

All planning will make usc of STRIPS-likc opcrators [9). Wec allow instantiated opcrators to
appcar cxplicitly on any agent’s GOAL list, rather than limiting this list to statc descriptions. We
differentiate between the two types of goals by calling the latter "operator-goals™” and the former
"state-goals”.

Capabilities

Previous work on multiple agents has assumed that all agents have identical capabilitics, that
is, that all agents have access to the identical operators. When agents are planning for differing
operating system cnvironments, this is clearly not the case. For cxample, an agent located on one
machinc may be able to run TEX on a file, while the agent on another machinge that lacks TEX will
not. We introduce the predicate HASCAP(agent,operator) to represent the capability of agent to
carry out operator. Generality is provided by the usce of partially instantiated operators in the
HASCAP predicatc.  For example, if agent AQ belicves that agent Al can, in gencral, DELETE
files, the following would appecar in AQ's data base:

HASCAP(ALDELETE(ALfile))

We usc the standard convention that the free variable "file” is universally quantified. HASCAP is
also dcfined over more complex operator combinations; for cxample, the following axiom holds:

HASCAP(agent, ANI)(opcratorl,opcrator2)) € HASCAP(agent,operatorl) A
HASCAP(agent,opcrator)

WILL-PERFORM as a Precondition

Cohen and Perrault [10] recognized the uscfulness of making an agent's "wanting” to usc an
operator an cxplicit precondition of that operator. In this manner, one can get an agent to perform
some action by making the action’s preconditions true, including the precondition of making the,
agent "want” to carry out the action. We adopt a similar strategy recast into a more general form,
and introduce the predicate WILL-PERFORM(agent.operator) to signify that agent will perform
operator. WILL-PERFORM appcars as an explicit precondition of all operators that do not occur
spontancously; so, for A0 to get Al to apply the operator OP, A0 nceds to make sure WILL-
PERFORM(A1,0P) is truc. The following axiom says that if an agent has the capability to perform
an act and has the desire to perform the act, then he will perform it:

HASCAP(agent,oper) A GOAl(agent,oper) D WILL-PERFORM(agent,oper)

Since the fact that this axiom is universally known is also known, the following axiom actually



appears in cvery agent’s data base:
FACT(x, HASCAP(agent,oper) A GOAL(agent,6per) D WILL-PERFORM(agent,oper)’)

This axiomatization of WILL-PERFORM modcls an agent’s using an opcrator as an act of
volition; if involuntary performance of acts is possible, WILL.-PERIFOR M(agent,opcrator) could be
made truc without the agent actually possessing the operator as a goal. Other axioms would be
introduced to modecl these casces.

An agent can apply an opcrator once WILL-PERFORM(agent,operator) becomes true; he will
not nccessarily check the truth of the operator’s other preconditions or try to make them true.
Given these assumptions, it is essential for the planner to assurce that WILL-PERFORM's brother
preconditions are truc before WILL-PERFFORM itsclf becomes true.  Achieving this ordering of
preconditions is identical to achicving synchrony, and will be discussed in further detail below.

Communication Primitives

To integratc planning and communication, we nced to adopt a coherent theory of planning
communication acts themsclves. The work of Cohen and Perrault sheds considerable light on this
issue, and wc usc scveral of their communication opcrators (with modification) in the work that
follows. For simplicity, the initiator of a communication act will be called the "spcaker,” and the
receiver will be called the "hcarer.”

Wec use four communication operators: REQUEST, CAUSE-TO-WANT, INFORM, and
CONVINCE. REQUEST and INFORM arc illocutionary acts, that is, thcy modcl the speaker’s
communication act, but not thc cffect that act has on the hcarer. CAUSE-TO-WANT and
CONVINCI: are perlocutionary acts, that is, they model the cffects of communication acts. For
cxample, the speaker might REQUEST some act of a hearer, but this will not directly causc the
hearer to adopt that act as a goal; before the hearcr adopts the goal, a CAUSE-TO-WANT must
occur. ‘This decoupling of the communication act from its clfect allows for natural modeling of goal
or fact rcfusal by the hearer (as contrasted with Konolige and Nilsson’s single-step “asktoachicve”
and "tell” operators). While Cohen and Perrault make CAUSIE-TO-WANT and CONVINCE
trivially triggered by REQUEST and INIFORM respectively, we introduce the predicates ACCEPT
and BE-SWAYED as cxplicit preconditions on the former operators. ‘I'he communication opcrators
arc defined as follows:

REQUEST(x,y,act) -- x requests y to adopt act as a goal
P: WILL-PERFORM(x,REQUEST(x,y,act))
A: FAC(y, GOAL(x,act))

The cffect of REQUEST is to let y know that x has "act” as a goal; x nced not believe a priori that
y can satisfy “act.”"

CAUSE-TO-WAN'T(x,y,act) -- x causes y to adopt act as a goal
P: FACT(y.,GOAl (x,act)) A FACI(y. HIASCAP(y,act)) A
ACCEP T (x.y.act) A HASCAP(y,CAUSE-TO-WANT(x,y.act))
A: GOAL (y,act)

CAUSE-TO-WANT causcs y to adopt x's goal as its own, but only if y belicves he has the
capability to satisfy the goal and the ACCEPT predicate is true.

INFORM(x,y,prop) -- x informs y of prop

P: prop : WILL-PERFORM(x,INFORM(x,y.prop))
A: FACT(y,FACI'(x,prop)’)

INFORM should only take place if prop is truc; its effect is to let y know that x belicves prop.



The ";" appearing in INFORM's precondition list means that the item appcaring before it should
be satisfied before the item following it.

CONVINCE(x,y,prop) -- x convinces y to belicve prop
P: FACT(y,’FACT(x,prop)) A BE-SWAYED(x,y,prop)
A HASCAP(y,CONVINCE(x,y,prop))
A: FACT(y.prop)
D: FACI(y,NEGATE(prop))

CONVINCE causes y to adopt x’s belicf as its own, but only if BE-SWAYED is true; any
contradictory belicf is discarded. NEGA'TE is a function over strings such that NEGATE(x') gives
the string "™x".  Also, note the absence of WILL-PERFORM as a precondition of CAUSE-TO-
WANT and CONVINCE; these operators will be applied when their preconditions are true, without
any agent cxplicitly “"wanting” them,

Agents’ data bases contain axioms involving the ACCEPT and BE-SWAYED predicates; these
axioms spccify conditions under which the hearer will accept the speaker’s facts or goals. For
cxample, if agents AO and Al arc in a master-slave relationship, we might have the following three
axioms to indicatc Al's subscrvicnce to AOQ's dictates:

MASTER(AQ,A1)
MASTER(x,y) D ACCEPT(x.y,act)
MASTER(x,y) D BE-SWAYED(x,y,prop)

Other axioms might model Al’s willingness to ACCEPT requests if his machine’s load is low,
or if he owes AQ a favor; he might BE-SWAYED by AOQ if he knows AO to be reliable, or to have
particularly good information about this kind of fact (c.g. A0 will know best whether a file exists on
his own machine).

Ordered Preconditions

As cxplained above, the planner cxpects to make WILL-PERFORM(agent,operator) true in
order to get agent to perform operator, once this predicate is true. the operator can be applied at
any time. WILL-PERFORM will not be made true, however, until agent accepts the operator-goal
operator (because of the above axiomatization of WILL-PERFORM). Thus, all other preconditions
of operator should be true before the operator itself is adopted as a goal.  Satisfaction of this
principle will guarrantce multi-agent synchrony.

In general, an operator-goal should not be adopted by an agent until he knows that the other
preconditions of the operator have been satisfied. "T'o accomplish this, we introduce the predicates
WAITING and 1HAS-DONE, and the operators PAUSE and WHEN-GII, defined as follows:

PAUSE(agent precond,aim) -- agent decides to wait until precond is satisfied
before adopting aim
P: WILL-PERFORM(agent.PAUSI(agent.precond,aim))
A FACT(agent, WATTING(precond,aim)’)

WHEN-GET(agent,prccond,aim) -- agent adopts aim when he knows that
precond is satisfied
P: FACT(agent, WAITING(precond,aim)) A FACT(agent,precond)
A HASCAP(agent, WHEN-GET(agent,precond,aimy))
A: GOAIl (agent,aim)
D: FACI(agent, WAITING(precond,aim)’)

So, for cxample, to get agent Al to wait until agent AO has done act G before himsclf doing



act H, we would pass thc following opcrator-goal to Al: .
PAUSE(A1,HAS-DONE(A0,G),H)

This causes Al to place WAITING(HAS-DONE(A0,G),H) in its data basc. When Al finds out (or
morc usually, is told) that A0 HAS-DONE G, WHEN-GI:T is triggered and Al adopts H as a goal.

Notc that the variable "precond” can actually be a conjunction of items; only when all the
items arc bclicved by the agent will WHEN-GET be triggered, since

FACT(agent,propl) A FACT'(agent,prop2) 2 FACT(agent, ANIX(propl,prop2)).

Our planncr cmploys the following heuristic to guarantcc multi-agent synchrony: assume
there is an opcrator OP with preconditions Pl through PN (some J clement subset “S™ of which is
not alrcady truc in the initial state), and WILL-PERFORM. The planncr wants agent AQ to apply
OP. Expansion of the plan on Pl through PN occurs before expansion of WILL-PERFORM;
assume that the clements of S are madc true by agents Al through AJ, using operators Ol through
OJ respectively. Then, instcad of dircctly inducing OP's WILL-PERFORM opcrator-goal through a
REQUEST and CAUSE-TO-WAN'T, the planner satisfics it through the PAUSE and WHIEN-GET
operators, whose "precond” variables arc instantiated as the conjunction of J clements of the form
HAS-1DONE(AI,01), where "i" ranges from 1 to J. Satisfaction of WHEN-GET's sccond FACT
precondition is accomplished by INFORMs and CONVINCEs of the agents satisfying S, cach of
whom sends their own "HAS-DONE(AiOi)" message. Iinally, the planncr must direct cach of
these ag)cnls to first apply Oi, and then inform AQ that they have done so (with a HAS-DONE
message).

An_Example

A person using an Intelligent Agent at Stanford [S'T] would like file REP.PRESS at MIT to be
printed on the Dover printer at CMU. ‘The agent at Stanford knows about the following two
operators (in addition to the communication opcrators, PAUSE and WHEN-GET opcrators
cxplained above):

DOVER(agent.file) -- agent prints file on the Dover

P: EXIST(flc,agent) : WILIL-PERFORM(agent,DOVER(agent,file))
A: D-PRINTEID(file,agent)

FI'P-SENIX(x.y,filc) -- x sends file to y

P: EXIST(file,x) ; WILL-PERFORM(x,IFTP-SENI(x.y.filc))
A: EXIST(file,y)

The following items appcar on the Stanford agent’s FACT list (in addition to thc HASCAP
and WILL-PERFORM axioms listed above):

(1) FACI(x,HASCAP(CMU,DOVER(CMU filc)))

(2) FACIx HASCAPMET FI'P-SENIXMIT,.CMU, file)))

3) FACIT(x, TTIASCAP(CMU.PAUSI(CMU.precond.aim))’)

4) FACI(x,HASCAP(CMU,WHEN-GIEET(CMU,precond,aim))’)
(5) FACI (2 HASCAP(x,REQUEST(x,y.act)))

(6) FACI(z,’HASCAP(y,CAUSE-TO-WANT(x,y,act))’)

(7) FACT(z.HASCAP(x,INIFORM(x,y,prop))’)

(8) FACT(z,HASCAP(y,CONVINCE(x,y,prop)))

(9) EXIST(REP.PRESSMIT)

(10) FACT(x,MASTER(ST,CMUY)



(11) FACT(x,MASTER(ST,MIT))

(12) FACT(x,BE-SWAYED(MIT,CMU,prop)’)

(13) FACT(z’'MASTER(xy) D ACCEPT(x.y,act)’)

(14) FACT(z'MASTER(xy) D BE-SWAYED(x,y,prop))

Axioms 1 through 8 list capabilitics of thc agents involved (actually, knowledge about these
capabilitics), with 5-8 stating that all agents have the basic communication primitives. Axioms 10
through 14 cnlighten us about the hicrarchy of control among the agents. Note that by the
semantics of FACT, the axiom FACT(x.prop) in an agent's data basc implics that prop is also in his
data basc (i.c. if an agent knows that cveryonc knows prop, then he knows prop).

Figure 1 gives the cxpanded plan that ST constructs to fulfill the user’s goal (the
communication acts arc represented schematically). It involves getting MI'T to first send the file to
CMU and then inform CMU that the file has been sent.  In turn, CMU is told to wait until
notified that MIT has carricd out the FI'P-SEND, and then to DOVER the file.

Construction of the plan proceeds as follows: working backwards from the D-PRINTED goal,
ST chooses the DOVER opcrator to achieve it. Since the operator’s preconditions arc ordered, ST
cxpands the first precondition (1EXIST) before the sccond (WILI-PERIFORM). The WILL-
PERFORM in Figurc I’s lcft branch does not trigger the planning heuristic, since its brother
precondition "EXIST(REP.PRESS,MIT)" is truc in the initial statc. Howcver, the WILL-
PERFORM in the right branch docs trigger the heuristic, since its brother precondition,
"EXIST(REP.PRESS,CMU)" is not initially true, Thus, the goal "DOVER(CMU,REP.PRESS)" is
not passed to CMU by a REQUEST and CAUSE-TO-WANT from ST. Instead, ST plans for
CMU to get this goal through the PAUSE and WHEN-GET operators; both of these operators’ aim
variables are instantiated to "DOVER(CMU,REP.PRESS)", and their precond variables arc
instantiated to "HAS-DONEMITITP-SEND(MIT,.CMU,REP.PRESS))". WHEN-GET's sccond
FACT precondition is thus satisfied by a message from MIT, "HAS-DONE(MIT,FIP-
SENIDXMIT,CMU,REP.PRESS))". In turn, MI'T is instructed to send this message to CMU after it
has, in fact, donc the FIP-SEND.

Acknowledgment

The issucs presented in this paper have been greatly clarified through many uscful discussions
with Mike Genesercth,



FIGURE 1
D-PRINTED(REP.PRESS,CMU)

DOVER(CM.BEP.PRESS)
\

WILL-PERFORM(CMU,
DOVER(CMU.REP.PRESS))

FTP-SEND(MIT?AU.R P.PRESS) /41\

HASCAP(CMU,

EXIST(REP.PRESS.MIT) DOVER(CMU,REP.PRESS)) GOAL(CMU,
'DOVER{CMU.REP PRESS))

WILL-PERFORM(MIT, WHEN-GET
FTP.SEND{MIT,CMU,REP.PRESS)) \

FACT(CMU, FACT(CMU, HASCAP(CMU,
‘HAS-DONEMIT..))  WAITING(..)") WHEN.GET....)

EXIST(REP.PRESS.CMU)

HASCAP(MIT FTP-SEND
{MIT.CMU,REP.PRESS)) PAUSE(CMU...)

WILL-PERFORM{CMU.PAUSE(CMU...))

GOAL(MIT,FTP-SEND GOALMIT, INFORM(MIT.CMU.,
(MIT.CMU.REP.PRESS)") "HAS-DONEMIT.FTP. SEND
(MIT.CMU,REP PRESS))'))

GOAL(CMU, HASCAP(CMU,
H @ PAUSE(CMU....)') PAUSEZ(CMU...))

STANFORD
= REQUEST and CAUSE-TO-WANT
_~— = INFORM and CONVINCE



9.

REFERENCES

Davis, R. and R. G. Smith, "Ncgotiation as a Mctaphor for Distributed Problem Solving,” Artificial
Intelligence Laboratory Memo No. 624, Massachusctts Institute of Technology, Cambridge, MA
(May 1981).

Steeb, R., S. Cammarata, F. A. Haycs-Roth, P. W. Thorndyke and R. B. Wesson, " Distributed
Intelligence for Air Fleet Control,” R-2728-ARPA, Rand Corporation, Santa Monica, CA (October
1981). .

Davis, R., "A Maodel for Planning in a Multi-Agent Environment: Steps Toward Principles for
Teamwork,” A.l. Working Paper, Massachusetts Institutc of Technology, Cambridge, MA (June
1981).

Moore, R. C., "Reasoning About Knowledge and Action,” in IJCAI-S, pp. 223-227 (1977).

Moore, R.C., " Rcasonihg About Knowledge and Action,” Artificial Intelligence Center Technical
Note 191, SR1 International, Menlo Park, California (1980).

Appelt, D)., Planning Natural Language Ulterances to Satisfy Multiple Goals, Ph.D. thesis, Stanford
University, December 1981.

Appelt, D. E., "A Planner for Reasoning about Knowledge and Action.” Proc. of the First Annual
Conference of the American Association for Artificial Intelligence, Stanford, California (August
1980).

Konolige, K. and N. J. Nilsson, "Multiplc-Agent Planning Systcms,” Proc. of the First Annual
Conference of the American Association for Artificial Intelligence, Stanford, California (August
1980). :

Nilsson, N. 1., Principles of Artificial Intelligence, (Menlo Park: ‘Tioga Publishing Co., 1980).

10. Cohen, P. R. and C. R. Perrault, "Elements of a Plan-Bascd Theory of Speech Acts,” Cognitive

Science. 3(3), pp. 177-212(1979).



