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Abstract

We study the stability of cooperative games played over an
interaction network, in a model that was introduced by My-
erson (1977). We show that the cost of stability of such
games (i.e., the subsidy required to stabilize the game) can
be bounded in terms of natural parameters of their underly-
ing interaction networks. Specifically, we prove that if the
treewidth of the interaction network H is k, then the relative
cost of stability of any game played over H is at most k + 1,
and if the pathwidth of H is k′, then the relative cost of sta-
bility is at most k′. We show that these bounds are tight for
all k ≥ 2 and all k′ ≥ 1, respectively.

1. Introduction
Coalitional game theory models scenarios where groups of
agents can work together profitably; the agents form coali-
tions, and each coalition generates a payoff, which then
needs to be shared among the members of that coalition.
The agents are assumed to be selfish, so the payoffs should
be divided in such a way that each agent is satisfied with
his share. In particular, it is desirable to allocate the payoffs
so that no group of agents can do better by abandoning their
coalitions and embarking on a project of their own; the set of
all payoff division schemes that have this property is known
as the core of the game. However, this requirement turns out
to be very strong, as many games have an empty core.

There are several ways to capture the intuition behind the
notion of the core, while relaxing the core constraints. For
instance, one can assume that deviation comes at a cost, so
players will not deviate unless the profit from doing so ex-
ceeds a certain threshold; formalizing this approach leads
to the notions of ε-core and least core. Another approach,
pioneered by Myerson (1977), assumes that communication
among agents may be limited, and that agents cannot de-
viate unless they can communicate with one another. In
more detail, the game has an underlying interaction network,
called the Myerson graph; agents are nodes, and an edge in-
dicates the presence of a communication link. Permissible
coalitions correspond to connected subgraphs of the Myer-
son graph. Finally, stability may be achieved via subsidies:
an external party may try to stabilize the game by offering a
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lump sum to the agents if they form some desired coalition
structure. The minimum subsidy required to guarantee sta-
bility is known as the cost of stability (CoS) (Bachrach et al.
2009). In what follows, we use the relative cost of stabil-
ity (RCoS ) (Meir, Rosenschein, and Malizia 2011), which
is defined as the ratio between the minimum total payoff
needed to ensure stability and the total value of an optimal
coalition structure.

In this paper, we study the interplay between restricted
interaction and the cost of stability. Our goal is to bound
the relative cost of stability in terms of structural proper-
ties of the interaction network. One such property is the
treewidth: this is a combinatorial measure of graph structure
that, intuitively, says how close a graph is to being a tree. A
closely related notion is that of pathwidth, which measures
how close a graph is to being a path. Breton, Owen and We-
ber (1992) have demonstrated a connection between struc-
ture and stability by showing that if the Myerson graph is a
tree then the core of the game is non-empty. This result was
later reproduced by Demange (2004), who also provided an
efficient algorithm for constructing a core imputation. It is
thus natural to ask if games whose Myerson graphs have
small treewidth are close to having a non-empty core.

Related Work There is a significant body of work on sub-
sidies in cooperative games. Many of the earlier papers fo-
cused on cost-sharing games, where agents share the cost
of a project, rather than its profits (see, for example, (Jain
and Vazirani 2001; Devanur, Mihail, and Vazirani 2005)).
For profit-sharing games, Bachrach et al. (2009) have re-
cently introduced the notion of cost of stability (CoS),
which is defined as the minimum subsidy needed to sta-
bilize such games. Bachrach et al. gave bounds on the
cost of stability for several classes of coalitional games,
and analyzed the complexity of computing the cost of sta-
bility in weighted voting games. Several groups of re-
searchers have extended this analysis to other classes of
coalitional games (Resnick et al. 2009; Meir, Bachrach,
and Rosenschein 2010; Aziz, Brandt, and Harrenstein 2010;
Meir, Rosenschein, and Malizia 2011; Greco et al. 2011a;
2011b). In particular, Meir et al. (2011) and Greco et
al. (2011b) studied questions related to the CoS in games
with restricted cooperation in the Myerson model, provid-
ing bounds on the CoS for some simple graphs.



It is well-known that many graph-related problems that
are computationally hard in the general case become
tractable once the treewidth of the underlying graph is
bounded by a constant (see, e.g., (Courcelle 1990)). There
are several graph-based representation languages for coop-
erative games, and for many of them the complexity of com-
putational questions that arise in cooperative game theory
(such as finding an outcome in the core or an optimal coali-
tion structure) can be bounded in terms of the treewidth
of the corresponding graph (Ieong and Shoham 2005; Aziz
et al. 2009; Bachrach et al. 2010; Greco et al. 2011a;
Voice, Polukarov, and Jennings 2012). However, in general
bounding the treewidth of the Myerson graph (except for the
special case of width 1) does not lead to a tractable solu-
tion for these computational questions, as shown by Greco
et al. (2011b) and by Chalkiadakis et al. (2012).

Our Contribution We provide a complete characteriza-
tion of the relationship between the treewidth of the interac-
tion network and the worst-case cost of stability. We prove
that for any game G played over a network of treewidth k,
its relative cost of stability is at most k + 1, and this bound
is tight whenever k ≥ 2. A similar result with respect to the
pathwidth of the interaction network is also given. These
results stand in sharp contrast to the observation that bound-
ing the treewidth of the Myerson graph does not lead to
efficient algorithms (except on a tree). To the best of our
knowledge, our work is the first to employ treewidth in or-
der to prove a game-theoretic result that is not algorithmic
in nature. We conclude by highlighting several implications
of our results for some classes of games defined on graphs
and hypergraphs. Some proofs have been deferred to the
appendix.

2. Preliminaries
In what follows, we use boldface lowercase letters to denote
vectors, and uppercase letters to denote sets of agents.

A transferable utility (TU) game is a tuple G = 〈N, v〉,
whereN = {1, . . . , n} is a finite set of agents and v : 2N →
R is the characteristic function of the game. By convention
v(∅) = 0. Also, unless explicitly stated otherwise, we re-
strict our attention to games where v(S) ≥ 0 for all S ⊆ N .

A TU game G = 〈N, v〉 is superadditive if v(S ∪ T ) ≥
v(S) + v(T ) for every S, T ⊆ N such that S ∩ T = ∅; it
is monotone if v(S) ≤ v(T ) for every S, T ⊆ N such that
S ⊆ T . Further, G is said to be simple if for all S ⊆ N it
holds that v(S) ∈ {0, 1}. Note that we do not require simple
games to be monotone; this allows us to use an inductive
argument in Section 3. A coalition S in a simple game G =
〈N, v〉 is winning if v(S) = 1 and losing if v(S) = 0.

Following Aumann and Dréze (1974), we assume that
agents may form coalition structures. A coalition structure
over N is a partition of N into disjoint subsets. We denote
the set of all coalition structures over N by CS(N). Given
a CS ∈ CS(N) we define its value v(CS ) as v(CS ) =∑

S∈CS v(S) and set CS+ = {S ∈ CS | v(S) > 0}.
Let OPT (G) = max{v(CS ) | CS ∈ CS(N)}. A

coalition structure CS is said to be optimal if v(CS ) =
OPT (G). Note that if G is superadditive, {N} is optimal.

Payoffs and Stability Having split into coalitions and
generated profits, agents need to divide the gains among
themselves. A payoff vector is simply a vector x =
(x1, . . . , xn) ∈ Rn

+, where the i-th coordinate is the payoff
to agent i ∈ N . We denote the total payoff to a set S ⊆ N by
x(S), i.e., we write x(S) =

∑
i∈S xi. We say that a payoff

vector x is a pre-imputation for a coalition structure CS if
for all S ∈ CS it holds that x(S) = v(S). A pair of the form
(CS ,x), where CS ∈ CS(N) and x is a pre-imputation for
CS , is referred to as an outcome of the game G = 〈N, v〉;
an outcome is individually rational if xi ≥ v({i}) for ev-
ery i ∈ N . If x is a pre-imputation for CS that is indi-
vidually rational, it is called an imputation for CS . We say
that an outcome (CS ,x) of a game G = 〈N, v〉 is stable if
x(S) ≥ v(S) for all S ⊆ N . The set of all stable outcomes
of G is called the core of G, and is denoted Core(G). We
denote by S(G) the set of all payoff vectors (not necessarily
pre-imputations) that satisfy the stability constraints:

S(G) = {x ∈ Rn
+ | x(S) ≥ v(S) for all S ⊆ N}.

We refer to elements of S(G) as stable payoff vectors.
The Relative Cost of Stability (RCoS) of a game G is the

smallest total payoff that stabilizes the game:

RCoS (G) = inf

{
x(N)

OPT (G)
| x ∈ S(G)

}
.

Note that RCoS (G) ≥ 1 for every TU game G, and
RCoS (G) = 1 implies Core(G) 6= ∅.

Interaction Networks and Treewidth An interaction
network (also called a Myerson graph) over N is a graph
H = 〈N,E〉. Given a game G = 〈N, v〉 and an interaction
network over N , we define a game G|H = 〈N, v|H〉 by set-
ting v|H(S) = v(S) if S is a connected subgraph of H , and
v|H(S) = 0 otherwise; that is, in G|H a coalition S ⊆ N
may form if and only if its members are connected.

A tree decomposition of H is a tree T over the nodes
V (T ) such that: a) Each node of T is a subset of N . b) For
every pair of nodesX,Y ∈ V (T ) and every i ∈ N , if i ∈ X
and i ∈ Y then for any node Z on the (unique) path between
X and Y in T we have i ∈ Z. c) For every edge e = {i, j}
of E there exists a node X ∈ V (T ) such that e ⊆ X .

The width of a tree decomposition T is tw(T ) =
maxX∈V (T ) |X| − 1; the treewidth of H is defined as
tw(H) = min{tw(T ) | T is a tree decomposition of H}.
Examples of graphs with low treewidth include trees (whose
treewidth is 1) and series-parallel graphs (whose treewidth
is at most 2); see, e.g., (Bodlaender 2005).

Given a subtree T ′ of a tree decomposition T (we use the
term “subtree” to refer to any connected subgraph of T ), we
denote the agents that appear in the nodes of T ′ by N(T ′).
Conversely, given a set of agents S⊆N , let T (S) denote the
subgraph of T induced by nodes {X ∈V (T ) | X∩S 6= ∅};
it is not hard to check that T (S) is a subtree of T for every
S ⊆ N . Given a tree decomposition T of H and a node
R∈V (T ), we can set R to be the root of T . In this case, we
denote the subtree rooted in a node S∈V (T ) by TS .

A tree decomposition of a graph H such that T is a path
is called a path decomposition of H . The pathwidth of H is



pw(H) = min{tw(T ) | T is a path decomposition of H}.
For any graph H , tw(H) ≤ pw(H) ≤ O(tw(H) log(n)).

3. Treewidth and the Cost of Stability
Our goal in this section is to provide a general upper bound
on the cost of stability for TU games whose interaction net-
works have bounded treewidth. We start by proving a bound
for simple games; we then show how to extend it to the gen-
eral case. However, prior to proving our main result, we
refute an alternative suggestion by Meir et al. (2011).

RCoS and the degree of H Meir et al. conjectured that
RCoS (G|H) ≤ d(H), where d(H) is the maximum degree
of a node in H . They also claimed that this bound is tight
(if true), using the projective plane as an example.

Our next proposition shows that this conjecture is false.
Moreover, the “tight” example given by Meir et al. is incor-
rect: the game Gq that corresponds to the projective plane
of dimension q satisfies q ≤ RCoS (Gq) ≤ q + 1 (see
(Bachrach et al. 2009)), but it can be shown that for any
interaction network H such that Gq|H = Gq it holds that
the degree of H is at least 2q.

Proposition 1. There exists an interaction network H with
d(H) = 6 such that for any k ∈ N there exists a simple
superadditive game G with RCoS (GH) ≥ k.

Simple Games
We now show that for any simple game G = 〈N, v〉 and an
interaction network H over N , RCoS (G|H) ≤ tw(H) + 1.
Our proof is constructive: we show that Algorithm 1, whose
input is a simple game G = 〈N, v〉, a network H , a pa-
rameter k, and a tree decomposition T of H of width at
most k, outputs a stable payoff vector x for G|H such that
x(N) ≤ (tw(H) + 1) · OPT (G|H). Briefly, Algorithm 1
picks an arbitrary node R ∈ V (T ) to be the root of T and
traverses the nodes of T from the leaves towards the root.
Upon arriving at a node A, it checks whether the subtree
TA contains a coalition that is winning in G|H (note that
we have to check every subset of N(TA) ∩ Nt, since G|H
is not necessarily monotone). If this is the case, it pays 1
to all agents in A and removes all agents in TA from every
node of T . Note that every winning coalition in TA has to be
connected, so either it is fully contained in a proper subtree
of TA or it contains agents in A. The reason for deleting the
agents in TA is simple: every winning coalition that contains
members of TA is already stable (one of its members is get-
ting a payoff of 1). The algorithm then continues up the tree
in the same manner until it reaches the root. Note that Algo-
rithm 1 is similar to the one proposed by Demange (2004);
however, Algorithm 1 may pay 2 · OPT (G|H) if H is a
tree.1 Moreover, unlike Demange’s algorithm, Algorithm 1
may require exponential time, since it is designed to work
for non-monotone simple games. However, if the simple

1This is because Algorithm 1 operates on T , which has nodes
of size 2. In this special case we can modify our algorithm by only
paying one of the agents in A—the one that does not appear above
A in the tree. The resulting payoff vector would then coincide with
the one constructed by Demange’s algorithm.

Algorithm 1: STABLE-TW(G = 〈N, v〉 , H, k, T )
Fix an arbitrary R ∈ V (T ) to be the root;
t← 0, N1 ← N , x← 0n;
for A ∈ V (T ), traversed from the leaves upwards do

t← t+ 1;
if ∃S ⊆ N(TA) ∩Nt s.t. v|H(S) = 1 then

for i ∈ A ∩Nt do
xi ← 1

Nt+1 ← Nt \N(TA);
else

Nt+1 ← Nt;

return x = (x1, . . . , xn);

game given as input is monotone, a straightforward modi-
fication (check whether v|H(S) = 1 only for S = N(TA)
rather than for every S ⊆ N(TA)) makes it run in polyno-
mial time.
Theorem 2. For every simple game G = 〈N, v〉 and every
interaction network H over N , RCoS (G|H) ≤ tw(H) + 1.

Proof. Let T be a tree decomposition of H such that
tw(T ) = k. Let x be the output of Algorithm 1. We claim
that x is stable and x(N) ≤ (k + 1)OPT (G|H).

To prove stability, consider a coalition S with v|H(S) =
1; we need to show that x(S) > 0. Suppose for the sake of
contradiction that x(S) = 0; this means that each agent in
S is deleted before he is allocated any payoff. Consider the
first time-step when an agent in S is deleted; suppose that
this happens at step t when a node A ∈ V (T ) is processed.
Clearly for an agent in S to be deleted at this step it has to be
the case that T (S) ∩ TA 6= ∅. Further, it cannot be the case
that S∩(A∩Nt) 6= ∅, since each agent inA∩Nt is assigned
a payoff of 1 at step t, and we have assumed that x(S) = 0.
Therefore, T (S) must be a proper subtree of TA. Let B be
the root of T (S), and consider the time-step t′ < t when B
is processed. At time t′, all agents in S are still present in
T , so the node B meets the if condition in Algorithm 1, and
therefore each agent in B gets assigned a payoff of 1. This
is a contradiction, since B is the root of T (S), and therefore
B ∩ S 6= ∅, which implies x(S) > 0.

It remains to show that x(N) ≤ (k + 1)OPT (G|H). To
this end, we will construct a specific coalition structure CS∗

and argue that x(N) ≤ (k + 1)v|H(CS∗). The coalition
structure CS∗ is constructed as follows. Let At be the node
of the tree considered by Algorithm 1 at time t, and let St =
N(TAt) ∩ Nt, i.e., St is the set of all agents that appear in
TAt at time t. Let T ∗ be the set of all values of t such thatAt

meets the if condition in Algorithm 1. For each t ∈ T ∗ the
set St contains a winning coalition; let Wt be an arbitrary
winning coalition contained in St. Finally, let L = N \
(∪t∈T∗Wt), and set CS∗ = {L} ∪ {Wt | t ∈ T ∗}.

Observe that CS∗ is a coalition structure, i.e., a partition
of N . Indeed, L ∩Wt = ∅ for all t ∈ T ∗, and, moreover,
if i ∈ Wt for some t > 0, then i was removed from T at
time t, and cannot be a member of coalition Wt′ for t′ > t.
Further, we have vH(CS∗) ≥ |T ∗|.



To bound the total payment, we observe that no agent is
assigned any payoff at time t 6∈ T ∗, and each agent that is
assigned a payoff of 1 at time t ∈ T ∗ is a member of At.
Hence we have

x(N) =
∑
t∈T∗

x(At) ≤
∑
t∈T∗

|At| ≤ (k + 1)|T ∗|

≤ (k + 1)v|H(CS∗) ≤ (k + 1)OPT (G),

which proves that RCoS (G) ≤ k + 1.

We remark that under the payment scheme constructed by
Algorithm 1 the payoff of every agent is either 1 or 0. Note
also that the proof of Theorem 2 goes through as long as
G|H is simple, even if G itself is not simple.
The General Case
Using Theorem 2, we are now ready to prove our main re-
sult.
Theorem 3. For every game G = 〈N, v〉 and every in-
teraction network H over N it holds that RCoS (G|H) ≤
tw(H) + 1.

Proof. Given a game G′ = 〈N, v′〉, let #(G′) = |{S ⊆
N | v′(S) > 0}|. We prove the theorem by induction on
#(G|H). If #(G|H) = 1 then RCoS (G|H) = 1: any out-
come of this game where the positive-value coalition forms
is stable. Now suppose that our claim is true whenever
#(G|H) < m; we will show that it holds for #(G|H) = m.
To simplify notation, we identify v with v|H , i.e., we write
v in place of v|H throughout the proof.

We define a simple gameG′ = 〈N, v′〉 by setting v′(S) =
1 if v(S) > 0 and v′(S) = 0 otherwise. By Theorem 2,
there exists a payoff vector x′ such that x′(S) ≥ v′(S) for
all S ⊆ N and x′(N) ≤ (tw(H) + 1)v(CS ′), where CS ′

is an optimal coalition structure for G′. Moreover, we can
assume that x′ ∈ {0, 1}n, as Algorithm 1 outputs such a
payoff vector.

We set ε = min{v(S) | v(S) > 0} and define a game
G′′ = 〈N, v′′〉 by setting v′′(S) = max{0, v(S)− εx′(S)}.
Intuitively, we “split” G to a simple game εG′ and a remain-
der G′′, and stabilize each one independently.

Consider a coalition S with v(S) = ε. We have v′(S) = 1
and hence x′(S) = 1. Therefore, v′′(S) = 0 and hence
#(G′′) < m, so the induction hypothesis applies to G′′.
Therefore, there is a stable payoff vector x′′ such that
x′′(N) ≤ (tw(H) + 1)OPT (G′′), We set x = εx′ + x′′.
We will now show that x(N) ≤ (tw(H) + 1)OPT (G) and
x(S) ≥ v(S) for all S ⊆ N .

We have x(S) = εx′(S) + x′′(S) ≥ εx′(S) + v′′(S) ≥
εx′(S) + v(S) − εx′(S) = v(S) for all S ⊆ N , so x is a
stable payoff vector for G.

Let CS ′′ be an optimal coalition structure for G′′. We
can assume without loss of generality that there is only one
coalition of value 0 in CS ′′; we denote this coalition by S0.
Set N∗ = N \ S0; we have∑
S∈CS ′′+

x′(S) = x′(N∗) ≥
∑

S∈CS ′+

x′(S ∩N∗) (1)

≥
∑

S∈CS ′+

v′(S ∩N∗) ≥ |{S ∈ CS ′+ | S ∩N∗ 6= ∅}|.

Let t∗ = |{S ∈ CS ′+ | S ∩ N∗ 6= ∅}|, t0 = |{S ∈ CS ′+ |
S ⊆ S0}|. We have v′(CS ′) = |CS ′+| = t∗ + t0.

We are now ready to bound x(N). Using (1), we obtain

x(N)= εx′(N) + x′′(N) (2)
≤ ε(tw(H) + 1)v′(CS ′) + (tw(H) + 1)v′′(CS ′′)

= (tw(H) + 1)

ε|CS ′+|+∑
S∈CS ′′+

(v(S)− εx′(S))


≤ (tw(H) + 1)

(
ε|CS ′+|+ v(CS ′′+)− εt∗

)
= (tw(H) + 1)

(
v(CS ′′+) + εt0

)
.

Further,

t0 =
∑

S∈CS ′+:S⊆S0

v′(S) ≤
∑

S∈CS ′+:S⊆S0

1

ε
v(S),

so x(N) ≤ (tw(H) +

1)
(
v(CS ′′+) +

∑
S∈CS ′+:S⊆S0

v(S)
)

. The coalitions
in the right-hand side of this expression form a partition of
(a subset of) N , so their total value under v does not exceed
OPT (G|H). This concludes the proof.

The relative cost of stability of any TU game, even with
unrestricted cooperation, is at most

√
n (see (Bachrach et al.

2009; Meir, Bachrach, and Rosenschein 2010)). Thus, we
obtain RCoS (G|H) ≤ min{tw(H)+1,

√
n}, assuming that

coalition structures are allowed. For superadditive games
Theorem 3 implies that there is some stable payoff vector x
such that x(N) ≤ (tw(H) + 1)v(N).2

Tightness
Demange (2004) showed that if tw(H) = 1, i.e., H is
a tree, then the game G|H admits a stable outcome, i.e.,
RCoS (G|H) = 1. We will now show that if the treewidth
of the interaction network is at least 2, i.e., H is not a tree,
then the upper bound of tw(H) + 1 proved in Theorem 3 is
tight.

Theorem 4. For every k ≥ 2 there is a simple superadditive
game G = 〈N, v〉 and an interaction network H over N
such that tw(H) = k and RCoS (G|H) = k + 1.

Proof sketch. Instead of defining H directly, we will de-
scribe its tree decomposition T . There is one central node
A = {z1, . . . , zk+1}. For every unordered pair I =
{i, j}, where i, j ∈ {1, . . . , k + 1} and i 6= j, we de-
fine a set DI that consists of 7 agents and set N = A ∪⋃

i 6=j∈{1,...,k+1}D{i,j}.
The tree T is a star, where leaves are all sets of the form

{zi, zj , d}, where d ∈ D{i,j}. That is, there are 7 ·
(
k+1
2

)
leaves, each of size 3. Since the central node of T is of
size k + 1, it corresponds to a network of treewidth at most
k. We set Di =

⋃
j 6=iD{i,j}; observe that for any two

agents zi, zj ∈ A we have Di ∩ Dj = D{i,j}. Given T ,

2Note that, while the proof for simple superadditive games is
straightforward, we cannot use the inductive argument made in
Theorem 3 directly, as superadditivity may not be preserved.



it is now easy to construct the underlying interaction net-
work H: there is an edge between zi and every d ∈ D{i,j}
for every j 6= i; see Figure 1 for more details.

For every unordered pair I = {i, j} ⊆ {1, . . . , k + 1},
let QI denote the projective plane of dimension 3 (a.k.a. the
Fano plane, marked by dotted lines in Fig. 1) over DI . That
is, QI contains seven triplets of elements from DI , so that
every two triplets intersect, and every element d ∈ DI is
contained in exactly 3 triplets in QI . Winning sets are
defined as follows. For every i = 1, . . . , k + 1 the set
{zi} ∪

⋃
j 6=iQ{i,j} is winning. Thus for every zi there are

7k winning coalitions containing zi, each of size 1 + 3k.
We can observe that all winning coalitions intersect,

which implies that the simple game induced by these win-
ning coalitions is indeed superadditive and has an optimal
value of 1. It remains to verify that every stable payoff vec-
tor must pay at least k + 1 to the agents; we omit the details
of this step due to space constraints.

The proof of Theorem 4 is not applicable when k = 1,
since the width of our construction is at least 2 (each leaf is
of size 3). Indeed, if Theorem 4 were to hold for k = 1, we
would obtain a contradiction with Demange’s result.

4. Pathwidth and the Cost of Stability
For some graphs we can bound not just their treewidth, but
also their pathwidth. For example, for a simple cycle graph
both the treewidth and the pathwidth are equal to 2. For
games over networks with bounded pathwidth, the bound of
tw(H) + 1 shown in Section 3 can be tightened.

Algorithm 2: STABLE-PW(G = 〈N, v〉 , H, k, T )
Set T = (A1, . . . , Am);
x← 0n;
I ← {i ∈ N | v({i}) = 1};
for i ∈ I do

xi ← 1;
N1 ← N \ I;
t← 1;
for j = 1 to m do

if there is some S ⊆ N(TAj
) ∩Nj such that

v(S) = 1 then
for i ∈ Aj ∩Nj do

if i ∈ N(TAj ) \Aj then
xi ← 1

Nj+1 ← Nj \N(TAj
);

else
Nj+1 ← Nj ;

return x = (x1, . . . , xn);

Theorem 5. For every TU game G = 〈v,N〉 and every
interaction network H over N it holds that RCoS (G|H) ≤
pw(H), and this bound is tight.

Proof Sketch. We argue that, given a simple game G and a
network H , Algorithm 2 outputs a stable payoff vector x

a1 
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a3 a4 a5 

a6 a7 z1 
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z1 
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z1 z2 z1 z2 

a1 a2 

a4 a5 

a6 a7 a3 

z1 z3 z1 z3 

z1 z3 z1 z3 
z1 z3 

z1 z3 z1 z3 

c4 c5 

c6 c7 c3 

z2 z3 z2 z3 

z2 z3 z2 z3 
z2 z3 

c1 c2 
z2 z3 z2 z3 

Figure 1: The interaction network H (top) when k = 2 in
Theorem 4, and its tree decomposition (bottom). Here, D1,3 =
{a1, . . . , a7}, D1,2 = {b1, . . . , b7} and D2,3 = {c1, . . . , c7}. An
edge connects z1 to all agents in D1,3 and D1,2, z2 to D1,2 and
D2,3, and z3 to D1,3 and D2,3. Agent z1 forms winning coalitions
with triplets of agents from D1,2 and D1,3 that are on a dotted line;
z2 and z3 form winning coalitions with their respective sets as well.

such that x(N) ≤ pw(H) ·OPT (G|H). First, Algorithm 2
pays 1 to all winning singletons and removes them from the
game; it can be shown that this step does not increase the
cost of stability. Next, we proceed in a manner similar to
Algorithm 1; however, when processing a node Aj such that
N(TAj

) contains a winning coalition, we do not pay any
agent i ∈ Aj such that i /∈ N(TAj

)\Aj . Paying such agents
is not necessary, as any winning coalition that contains them
must contain some other agent in Aj that is paid 1 by the
algorithm. It can be shown that such agents are guaranteed
to exist, thus not all agents in Aj are paid. We then employ
an inductive argument similar to the one in Theorem 3. To
show tightness, we use a slight modification of the construc-
tion from Section 3.

5. Implications for Games on Graphs
Our results apply to several well-studied classes of coopera-
tive games. The following definition, which appears in (Pot-
ters and Reijnierse 1995), becomes useful in showing this.

Let H = 〈N,E〉 be an interaction network. We say that
two coalitions S, T ⊆ N are connected in H if there ex-



ists an edge (i, j) ∈ E such that i ∈ S, j ∈ T ; oth-
erwise S and T are said to be disconnected. A TU game
G = 〈N, v〉 is said to be H-component additive if for every
pair of coalitions S, T that are disconnected in H , it holds
that v(S ∪ T ) = v(S) + v(T ). If G is H-component ad-
ditive then G is essentially equivalent to G|H : these games
can only differ in values of infeasible coalitions.

There are many classes of combinatorial TU games
defined over graphs, where every game in the class is
component-additive with respect to the graph on which it
is defined; our results hold for all of these classes. Some
examples include induced subgraph games (Deng and Pa-
padimitriou 1994); matching games, edge cover games, col-
oring games and vertex connectivity games (Deng, Ibaraki,
and Nagamochi 1997); and social distance games (Brânzei
and Larson 2011).3 While some of these games are known
to have a non-empty core, our results hold for unstable vari-
ants of them as long as they maintain component-additivity.

Games over hypergraphs Another two classes of
games—Synergy Coalition Groups (Conitzer and Sandholm
2006) and Marginal Contribution Nets (Ieong and Shoham
2005)—are defined over collections of subsets, i.e., hyper-
graphs. Now, the notion of an interaction network can be
naturally extended to that of an interaction hypergraph, an
idea suggested by Myerson himself as well as by others (see
(Bilbao 2000), p. 112): a coalition can form only if for any
two coalition members i and j there is a sequence of over-
lapping hyperedges that connect them.

The concepts of treewidth and tree decomposition of a
hypergraph coincide with the corresponding definitions ap-
plied to its primal graph (Gottlob, Leone, and Scarcello
2001). Therefore, all of our proofs work for games whose in-
teraction networks are hypergraphs with bounded treewidth.
The notion of a component-additive game can be extended
to games on hypergraphs, and it is not hard to show that both
Synergy Coalition Groups and Marginal Contribution Nets
are component-additive with respect to their underlying hy-
pergraphs. Hence, our results hold for these models as well.

6. Conclusions, Discussion, and Future Work
There is a strong connection between treewidth and the min-
imum subsidy required to stabilize a game: simply put, as
the interaction becomes “simpler”, the game becomes easier
to stabilize. To the best of our knowledge, this is the first
time that the notion of treewidth has been used to obtain re-
sults that are purely game-theoretic rather than algorithmic
in nature.

While we provide a stronger bound with respect to path-
width, the bound on the treewidth is more significant; in-
deed, Theorem 5 improves upon Theorem 3 only when the
treewidth equals the pathwidth, which is uncommon.

Our results imply a separation between games whose in-
teraction networks are acyclic, which have been shown to be
stable (Demange 2004), and other games. That is, treewidth
of 1 implies RCoS of 1, but for any higher value of treewidth,

3Brânzei and Larson (2011) define an NTU version of social
distance games; however a TU version can be naturally defined.

the RCoS is somewhat higher than the treewidth. In par-
ticular, the result of Demange is not a special case of our
theorem, although similar techniques to ours can be used to
provide an alternative proof for Demange’s theorem.

Treewidth and complexity Many NP-hard algorithmic
problems over graphs can be solved in polynomial time as-
suming bounded treewidth; unfortunately, this is not the
case for TU games over Myerson graphs. Indeed, com-
mon problems in TU games—and computing the RCoS
in particular—remain computationally hard even when the
treewidth of the interaction network is 2 (Greco et al.
2011b). We find it quite remarkable that, contrary to the
common wisdom, the treewidth of the Myerson graph plays
no role from an algorithmic perspective (except for the spe-
cial case of a tree), but does have significant game-theoretic
implications.

Hypertreewidth We have argued in Section 5 that our re-
sults can be extended to hypergraphs, giving a bound on
the RCoS in terms of the treewidth of the interaction hy-
pergraph. Gottlob et al. (2001) describe a stronger notion
of width for hypergraphs, called hypertreewidth. This def-
inition can result in a much lower width for general hyper-
graphs, and it is an open question whether it can provide us
with a better bound on the RCoS.

The least core The cost of stability is closely related to
another important notion of stability in cooperative games,
namely, the least core (Maschler, Peleg, and Shapley 1979);
specifically, Meir et al. (2011) show that the value of both
the strong least core and the weak least core of a cooperative
game can be bounded in terms of its additive cost of stabil-
ity. Our results, combined with those of Meir et al., imply
that any bound on the treewidth or pathwidth of the interac-
tion graph translates into a bound on this other well-known
measure of inherent instability.

Future Work
While our bound on the cost of stability is tight in the worst
case, it may be further improved by considering finer restric-
tions on the structure of the interaction network and/or the
value function itself. Other notions of graph cyclicity (such
as hypertreewidth) may also be useful for providing bounds
on the cost of stability.

More generally, we believe that the unexpected connec-
tion between a well-studied graph parameter such as the
treewidth and the stability properties of a related game is
fascinating. We look forward to studying how such parame-
ters can be used to unearth other hidden connections in both
cooperative and non-cooperative game theory.
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A Proofs

Proposition 1. For any k ∈ N, there is a simple superadditive game with RCoS (G) ≥ k over an interaction network H with
d(H) = 6.

Proof. We show that any superadditive simple game can be embedded in a 3-dimensional grid network H = 〈N ′, E〉, if N ′ is
sufficiently large.

For this, consider first a 3-dimensional grid drawing W of the complete graph Kn. This is an embedding of n vertices in
a grid, s.t. every edge (i, j) is replaced by a path, and pathes—if drawn as straight lines—do not intersect. Such a drawing
always exists using a grid of O(n) × O(n) × O(n) (see e.g., (Cohen et al. 1995)). However, W itself is not a grid graph, but
just another representation of Kn.

The graph H ′ = 〈N ′, E′〉 that we will use is a 3-dimensional grid that is attained by replacing every vertex in the grid
underlying W , with a grid of n× n× n (thus |N ′| = O(n6)). In particular, every original vertex i ∈ N is replaced with a cube
Ai ⊆ N ′ of n3 vertices. Next, for every (i, j) ∈ E (assume i < j), we identify a path P (i, j) ⊆ N ′, s.t. P (i, j) connects Ai

and Aj ; and no two paths intersect. Since the projection of W on H ′ is extremely sparse, it is very easy to refrain from path
intersections.

We next use G to define the embedded game G′ = 〈N ′, v′〉, with the following winning coalitions. For every winning
coalition S ⊆ N of G, we set v′(S′) = 1, where S′ =

⋃
i∈S Ai ∪

⋃
i,j∈S P (i, j). Since S is connected in Kn, then S′ is

connected inH ′. Moreover, sinceG is superadditive, every two winning coalitions S1, S2 intersect at some i ∈ N . Thus S′1, S
′
2

also intersect (in all vertices of Ai), which entails that G′ is also superadditive.
Finally, we argue that RCoS (G′|H′) = RCoS (G′) ≥ RCoS (G). Indeed, since every winning S′ is connected, the first

equality applies. Then, assume that there is some payoff vector x′ ∈ S(G′) that stabilizes G′. We define a payoff vector x for
G, where xi = x′(Ai) +

∑
j∈N x′(P (i, j)). Clearly x(N) ≤ x′(N ′) = RCoS (G′). Moreover, for every winning S ⊆ N ,

x(S) = x′(S′) ≥ v′(S′) = 1, thus x stabilizes G.
For any k, there is a simple superadditive game Gk whose RCoS is at least k (e.g., the game defined by the projective plane

of order k. See (Bachrach et al. 2009)). As shown above, Gk can be embedded (like any other game) in a grid H ′ of degree
6.

Theorem 4. For every k ≥ 2 there is a simple superadditive game G = 〈N, v〉 and an interaction network H over N such that
tw(H) = k and RCoS (G|H) = k + 1.

Proof. Instead of definingH directly, we will describe its tree decomposition T . There is one central nodeA = {z1, . . . , zk+1}.
Further, for every unordered pair I = {i, j}, where i, j ∈ {1, . . . , k+1} and i 6= j, we define a set DI that consists of 7 agents
and set N = A ∪

⋃
i6=j∈{1,...,k+1}D{i,j}.

The tree T is a star, where leaves are all sets of the form {zi, zj , d}, where d ∈ D{i,j}. That is, there are 7 ·
(
k+1
2

)
leaves,

each of size 3. Since the maximal node of T is of size k + 1, it corresponds to some network whose treewidth is at most k.
We set Di =

⋃
j 6=iD{i,j}; observe that for any two agents zi, zj ∈ A we have Di ∩ Dj = D{i,j}. Given T , it is now easy to

construct the underlying interaction network H: there is an edge between zi and every d ∈ D{i,j} for every j 6= i; see Figure 1
for more details.

For every unordered pair I = {i, j} ⊆ {1, . . . , k + 1}, let QI denote the projective plane of dimension 3 (a.k.a. the Fano
plane) over DI . That is, QI contains seven triplets of elements from DI , so that every two triplets intersect, and every element
d ∈ DI is contained in exactly 3 triplets in QI . Winning sets are defined as follows. For every i = 1, . . . , k + 1 and every
selection

{
Q{i,j} ∈ Q{i,j}

}
j 6=i

the set {zi} ∪
⋃

j 6=iQ{i,j} is winning. Thus for every zi there are 7k winning coalitions
containing zi, each of size 1 + 3k. Let us denote by Wi the set of winning coalitions that contain zi; observe that for every
d /∈ A, d appears in exactly 3 · 7k−1 winning coalitions in Wi: d belongs to some D{i,j}, and is selected to be in a winning
coalition with zi if a triplet Q{i,j} containing d is joined to zi. There are 3 triplets in Q{i,j} that contain d, and there are 7k−1

ways to choose the other triplets (seven choices from every one of the other k − 1 sets).
We first argue that all winning coalitions intersect. Indeed, let Ci, Cj be winning coalitions such that zi ∈ Ci, zj ∈ Cj . Then

both Ci and Cj contain some triplet fromQ{i,j}. Suppose Q{i,j} ⊆ Ci, Q
′
{i,j} ⊆ Cj . Since Q{i,j}, Q′{i,j} ∈ Q{i,j}, they must

intersect, and thus Ci and Cj must also intersect. This implies that the simple game induced by these winning coalitions is
indeed superadditive and has an optimal value of 1. Note that if we pay 1 to each zi ∈ A, then the resulting super-imputation is
stable, since every winning coalition intersects A. To conclude the proof, we must show that any stable super-imputation must
pay at least k + 1 to the agents.



Given a stable super-imputation x, we know that x(Ci) ≥ 1 for every Ci ∈ Wi. Thus,
∑

Ci∈Wi
x(Ci) ≥ 7k. We can write∑

Ci∈Wi
x(Ci) as

∑
Ci∈Wi

x(Ci) =
∑

Ci∈Wi

xzi + ∑
d6=zi|d∈Ci

xd

 = 7kxzi +
∑

Ci∈Wi

∑
d6=zi|d∈Ci

xd

= 7kxzi +
∑
d∈Di

1
∑

Ci∈Wi|d∈Ci

xd = 7kxzi +
∑
d∈Di

3 · 7k−1xd

= 7kxzi + 3 · 7k−1x(Di).

This immediately implies that xzi ≥ 1 − 3
7x(Di). Observe that

∑
zi∈A x(Di) = 2

∑
i<j x(D{i,j}), as each D{i,j} appears

exactly twice in the summation: once inDi and once inDj . Also, observe that
∑

i<j x(D{i,j}) = x(N \A), so
∑k+1

i=1 x(Di) =

2x(N \A). Finally,

x(N) = x(A) + x(N \A) =
k+1∑
i=1

xzi + x(N \A)

≥
k+1∑
i=1

(
1− 3

7
x(Di)

)
+ x(N \A) =

k+1∑
i=1

1− 3

7
2x(N \A) + x(N \A)

= k + 1 + (1− 6

7
)x(N \A) ≥ k + 1

Thus, the relative cost of stability in our game is at least k + 1.

Theorem 5. For every TU game G = 〈v,N〉 and every interaction network H over N it holds that RCoS (G|H) ≤ pw(H),
and this bound is tight.

Proof. Note first that it suffices to show that our bound holds for simple games; we can then use the reduction described in the
proof of Theorem 3. For simple games, our proof is very similar to the proof of Theorem 2; however, here we will show that in
every node Aj that satisfies the if condition of Algorithm 2 we can identify an agent that we do not need to pay.

Our algorithm first deals with winning coalitions of size 1. This step can be justified as follows. Suppose we remove all
agents in I = {i ∈ N | v({i}) = 1} and construct a stable super-imputation x′ for the game G′|H , where G′ = 〈N ′, v′〉,
N ′ = N \ I , and v′(S) = v(S) for each S ⊆ N \ I , so that x′(N ′) ≤ pw(H). Now, consider a super-imputation x for G given
by xi = 1 for i ∈ I , xi = x′i for i ∈ N ′. We have x(N) = x′(N ′) + |I|, and, furthermore, x(S) ≥ v|H(S) for every S ⊆ N ,
i.e., x is a stable super-imputation for G|H . On the other hand, it is not hard to check that OPT (G|H) = OPT (G′|H) + |I|.
Hence, we obtain

x(N)

OPT (G|H)
=

x′(N ′) + |I|
OPT (G′|H) + |I|

<
x′(N ′)

OPT (G′|H)
≤ pw(H),

i.e., x witnesses that RCoS (G|H) ≤ pw(H). Thus, we begin Algorithm 2 by paying all winning singletons 1 and ignoring
them (and any winning coalitions that contain them) for the rest of the execution; note, however, that we do not remove the
winning singletons from H , i.e., we do not modify our path decomposition or its width.

Next we show stability. Given a node Aj , we must make sure that each winning coalition in N(TAj
) is paid at least 1. By

the proof of Theorem 2, paying all agents in Aj is sufficient. Note, however, that there is no need to pay an agent i that is not in
N(TAj ) \ Aj : since we removed all winning singletons, every winning coalition in N(TAj ) that contains i (and that is not yet
stabilized) must also contain another agent from Aj .

Finally, we must show that in every paid nodeAj , j ≥ 2, there is at least one agent that is not paid. Note thatAj has a unique
childAj−1. IfAj ⊆ Aj−1, then no agent inAj is being paid (as they had already been paid when processingAj−1). Otherwise,
there is some agent i ∈ Aj \ Aj−1. Since T is a path and all nodes containing i must be connected, we have i /∈ N(Aj) \ Aj .
Thus i is not paid. Note that in Algorithm 2 the agents in A1 are not paid in the first iteration of the algorithm.

To show tightness, we use a slight modification of the construction from Section 3.. For any k ≥ 3:

• Take the tree-width example for k − 1, remove all edges from the (star) tree.
• Add the central node (of size k) to all leaf nodes. Thus we get O(k2) nodes of size k + 1.
• Connect all nodes by an arbitrary path.

Then the path-width is (k + 1) − 1 = k, whereas the CoS is exactly as before (k) since we have the same set of winning
coalitions. For k = 2, we can use the cycle example from (Meir, Rosenschein, and Malizia 2011), taking thenumber of agents
to infinity.



B Computational Complexity
We define the decision problem OPTCS as follows: it receives as input a gameG = 〈N, v〉, an interaction networkH and some
value α ∈ R; it outputs yes if and only if there is some partition S1, . . . , Sk of N such that

∑k
j=1 v|H(Sj) ≥ α. We assume

oracle access to v.
It is known that if H is a tree and G is a simple monotone game then there is a simple polynomial algorithm for OPTCS .

This is by selecting an arbitrary root and iteratively isolate winning coalitions from theleafs upwards (similarly to the procedure
of Algorithm 1). However if we relax either of these three requirements, and the tree structre in particular, the problem becomes
computationaly hard.
Proposition 6. OPTCS (G,H) is NP-hard even if G is simple and tw(H) = pw(H) = 2.

Proof. Our reduction is from an instance of the SET-COVER (Garey and Johnson 1979) problem. Recall that an instance of
SET-COVER is given by a finite set C, list of sets S = (S1, . . . , Sn) and an integer M ; it is a “yes” instance if and only if there
is a subset S ′ ⊆ S such that S ′ covers C, i.e.

⋃
S∈S′ S = C, and |S ′| ≤ M . Given an instance of SET-COVER (C,S,M),

as described above, we define the player set to be {1, . . . , n, x, y}. We define the characteristic function as follows: for any
S ⊆ {1, . . . , n}, v(S ∪ {x}) = 1 if and only if the set {Si}i∈S covers C; v(S ∪ {y}) = 1 if and only if |S| ≥ n −M . Our
interaction network H over the player set is defined as follows: there are edges (i, x) and (i, y) for all 1 ≤ i ≤ n; observe that
tw(H) = 2. One can easily verify that an optimal coalition structure over G|H has a value of 2 if and only if (C,S,M) is a
“yes” instance of SET-COVER .

A similar reduction from the PARTITION (Garey and Johnson 1979) shows that OPTCS is still hard under the conditions of
Proposition 6, even if we limit G to be a weighted voting game.

Limiting our attention to monotone simple games seems to be somewhat restrictive. However, both monotonicity and bi-
values are required for tractability. Note that in both cases we show that it is hard even to distinct between the cases where
v(CS∗(G|T )) = 1 and v(CS∗(G|T )) = 0. Thus there is no efficient approximation algorithm either.
Proposition 7. OPTCS (G,T ) is NP-complete if we allow inputs with a non-monotoneG, even if we assume that the interaction
network T is a tree and G is simple.

Proof. Our reduction is from SUBSET-SUM (Garey and Johnson 1979); recall that an instance of SUBSET-SUM is given by a
list of integer weights w1, . . . , wn and some quota q. It is a “yes” instance if and only if there is some subset of weights whose
total weight is exactly q. Given an instance of SUBSET-SUM 〈w1, . . . , wn; q〉, we construct the following game on n+1 players:
player i is assigned a weight wi, while player n+ 1 has a weight of 0. The value of v(S) is 1 if and only if

∑
i∈S wi = q (and

otherwise 0). The communication network H is a star centered in player n + 1, with the other n players as leaves. Observe
that in this game, at most one coalition containing more than one member of {1, . . . , n} can form. To conclude, assuming that
wi < q for all i, the optimal coalition structure in G|H has value of at most 1, and is 1 if and only we have a “yes” instance of
SUBSET-SUM .

Finally, OPTCS is NP-complete for monotone non-simple games as well.
Proposition 8. OPTCS (G,T ) is NP-complete if we allow inputs with a non-simple G, even if the interaction network T is a
tree, and that v is allowed only three different values.

Proof. Our reduction is from the SET-COVER (Garey and Johnson 1979) problem. Recall that an instance of SET-COVER is
given by a finite set of elements M , a set F = {S1, . . . , Sm} ⊆ 2M and a parameter k. It is a “yes” instance if and only there
is some F ′ ⊆ F of size ≤ k such that

⋃
S∈F ′ S = M . We define the characteristic function as follows: there is an agent ij

corresponding to each Sj ∈ F , plus one dummy agent d. The value of a coalition C ⊂ N is 0 if it is empty, n if {Sj}ij∈C cover
M , and 1 otherwise. Our interaction network H is a star with d in the center, and with all ij as leaves. Thus, only one coalition
that covers M may form. Clearly, in an optimal coalition structure a coalition C∗ that covers M will form, with the addition of
as many singletons as possible. The value of the optimal coalition structure is more than n+ (n+ 1− k) = 2n+ 1− k if and
only if |C∗| ≤ k, which concludes the proof.


