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Abstract

Multi-agent decision problems, in which independent agent
have to agree on a joint plan of action or allocation of re-
sources, are central to Al. In such situations, agentsviddi

ual preferences over available alternatives may vary, laeyl t
may try to reconcile these differences by voting. Based en th
fact that agents may have incentives to vote strategicallly a
misreport their real preferences, a number of recent papers
have explored different possibilities for avoiding or elirat-

ing such manipulations. In contrast to most prior work, this
paper focuses on convergence of strategic behavior to a deci
sion from which no voter will want to deviate.

We consider scenarios where voters cannot coordinate their
actions, but are allowed to change their vote after obsgrvin
the current outcome. We focus on the Plurality voting rule,
and study the conditions under which this iterative game is
guaranteed to converge to a Nash equilibrium (i.e., to adeci
sion that is stable against further unilateral maniputet)o

We show for the first time how convergence depends on the
exact attributes of the game, such as the tie-breaking sshem
and on assumptions regarding agents’ weights and strategie

While some work has been devoted to the analysis of so-
lution concepts such aminant strategieandstrong equi-
libria, this paper concentrates on Nash equilibria (NE). This
most prominent solution concept has typically been over-
looked, mainly because it appears to be too weak for this
problem: there are typically many Nash equilibria in a vot-
ing game, but most of them are trivial. For example, if all
voters vote for the same candidate, then this is clearly an
equilibrium, since any single agent cannot change thetresul
This means that Plurality idistorted i.e., there can be NE
points in which the outcome is not truthful.

The lack of a single prominent solution for the game sug-
gests that in order to fully understand the outcome of the vot
ing procedure, it is not sufficient to consider voters’ prefe
ences. The strategies voters’ choose to adopt, as well as the
information available to them, are necessary for the aisalys
of possible outcomes. To play an equilibrium strategy for
example, voters must know the preferences of others. Partia
knowledge is also required in order to eliminate dominated

) strategies or to collude with other voters.

Introduction We consider the other extreme, assuming that voters have
The notion of strategic voting has been highlighted in re- initially no knowledge regarding the preferences of the oth
search on Social Choice as crucial to understanding the re- ers, and cannot coordinate their actions. Such situati@ys m
lationship between preferences of a population, and the fina arise, for example, when voters do not trust one another or
outcome of elections. The most widely used voting rule is have restricted communication abilities. Thus, even if two
the Plurality rule, in which each voter has one vote and the voters have exactly the same preferences, they may be reluc-
winner is the candidate who received the highest number of tant or unable to share this information, and hence they will
votes. While it is known that no reasonable voting rule is  fail to coordinate their actions. Voters may still try to got
completely immune to strategic behavior, Plurality hasbee  strategically, based on their current information, whiciym
shown to be particularly susceptible, both in theory and in e partial or wrong. The analysis of such settings is of par-
practice (Saari 1990; Forsythe et al. 1996). This makes ticular interest to Al as it tackles the fundamental problem
the analysis of any election campaign—even one where the of multi-agent decision making, where autonomous agents
simple Plurality rule is used—a challenging task. As voters (that may be distant, self-interested and/or unknown to one
may speculate and counter-speculate, it would be beneficial another) have to choose a joint plan of action or allocate re-
to have formal tools that would help us understand (and per- sources or goods. The central questions are (i) whethpr, (ii
haps predict) the final outcome. how fast, and (i) on what alternative the agents will agree

Natural tools for this task include the well-studied solu- In our (Plurality) voting model, voters start from some

tion concepts developed for normal form games. While vot- - announcement (e.g., the truthful one), but can change their
ing games are not commonly presented in this way, several yotes after observing the current announcement and out-

natural formulations have been proposed. Moreover, such come! The game proceeds in turns, where a single voter
formulations are extremely simple in Plurality voting gane

where voters only have a few ways available to vote. T o N . .
y y A real-world example of a voting interface that gives risato

similar procedure is the recently introduced poll gadgetGoogle
Wave. See http://sites.google.com/site/polloforwave.
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changes his vote at each turn. We study different versions of
this game, varying tie-breaking rules, weights and pddicie
of voters, and the initial profile. Our main result shows that
in order to guarantee convergence, it is necessary and suffi-
cient that voters restrict their actions to natural besliesp

Related Work

There have been several studies applying game-theoretic so
lution concepts to voting games, and to Plurality in partic-
ular. (Feddersen, Sened, and Wright 1990) model a Plu-
rality voting game where candidates and voters play strate-
gically. They characterize all Nash equilibria in this game
under the very restrictive assumption that the preferenee d
main issingle peakedAnother highly relevant work is that
of (Dhillon and Lockwood 2004), which concentrates on
dominant strategiesn Plurality voting. Their game for-
mulation is identical to ours, and they prove a necessary
and sufficient condition on the profile for the game to be
dominance-solvable. Unfortunately, their analysis shows
that this rarely occurs, making dominance perhaps a too-
strong solution concept for actual situations. A weakercon
cept, though still stronger than NE,S¢rong Equilibrium In
strong equilibrium no subset of agents can benefit by making
a coordinated diversion. A variation of strong equilibrium
was suggested by (Messner and Polborn 2002), which char-
acterized its existence and uniqueness in Plurality games.
Crucially, all aforementioned papers assume that votess ha
some prior knowledge regarding the preferences of others.
A more complicated model was suggested by (Myerson
and Weber 1993), which assumes a non-atomic set of vot-

Lo 02 a | b | c |

a (14,9,3) {a} | (10,13,3) {6} | (10,9,7) {a}
b (11,12, 3) {b} (7,16, 3) {b} (7,12,7) {b}
c (11,9,6) {a} (7,13,6) {b} (7,9, 10) {c}

Table 1: There is a seC' = {a, b, ¢} of candidates with initial

scores(7,9,3). Voter 1 has weight 3 and voter 2 has weight 4.

Thus,GFr = ({a,b,c},{1,2}, (3,2), (7,9, 3)). The table shows

the outcome vectos(a1, a2) for every joint action of the two vot-

ers, as well as the set of winning candidatéBr (a1, az). In this

example there are no ties, and it thus fits both tie-brealdhgraes.

strategies are not allowed. We extend this game form by

including the possibility that only: out of then voters

may play strategically. We denote by C V' the set of

k strategic voters (agents) and B/ = V \ K the set of

n — k additional voters who have already cast their votes,

and are not participating in the game. Thus, the outcome

is f(a1,...,ak,bgt1,-..,bn), wherebgiq,...,0b, are fixed

as part of the game form. This separation of the set of voters

does not affect generality, but allows us to encompass-situa

tions where only some of the voters behave strategically.
From now on, we restrict our attention to the Plurality

rule, unless explicitly stated otherwise. That is, the winn

is the candidate (or a set of those) with the most votes; there

is no requirement that the winner gain an absolute majority

of votes. We assume each of theoters has a fixedreight

w; € N. Theinitial score $(c) of a candidate: is defined

as the total weight of the fixed voters who selectedi.e.,

S(c) = X jepwb, = w;- Thefinal scoreof ¢ for a given joint

actiona € AF is the total weight of voters that chosgin-

o)

ers and some uncertainty regarding the preferences of othercluding the fixed seB): s(c,a) = 5(c) + > ;ck.q.—c Wi-

voters. Their main result is that every positional scorig r
(e.g., Veto, Borda, and Plurality) admits at least one ptin
equilibrium. In contrast, our model applies to a finite num-
ber of voters, that possess zero knowledge regarding the dis
tribution of other voters’ preferences.

Variations of Plurality and other voting rules have been
proposed in order to increase resistance to strategic mehav
(e.g., (Conitzer and Sandholm 2003)). We focus on achiev-
ing a stable outcomiaking such behavior into account

Iterative voting procedures have also been investigated in
the literature. (Chopra, Pacuit, and Parikh 2004) consider
voters with different levels of information, where in thevo
est level agents are myopic (as we assume as well). Oth-
ers assume, in contrast, that voters have sufficient informa
tion to forecast the entire game, and show how to solve it
with backward induction (Farquharson 1969; McKelvey and
Niemi 1978); most relevant to our work, (Airiau and Endriss
2009) study conditions for convergence in such a model.

Preliminaries
The Game Form
There is a se€ of m candidates, and a sét of n voters.
A voting rule f allows each voter to submit his preferences
over the candidates by selecting an action from a4sén
Plurality, A = C). Then, f chooses a non-empty set of
winner candidates—i.e., it is a functigi: A™ — 2¢\ {0}.

Each such voting rul¢g induces a naturajame form In
this game form, the strategies available to each voterdare
and the outcome of a joint action Hay,...,a,). Mixed

We sometimes writg(c) if the joint action is clear from the
context. We writes(c) >, s(c’) if either s(¢) > s(c’) or
the score is equal andhas a higher priority (lower index).
We denote byP LR the Plurality rule with randomized tie
breaking, and byPLp the Plurality rule with determinis-
tic tie breaking in favor of the candidate with the lower in-
dex. We have thaP L (8, w,a) = argmaz.ccs(c,a), and
PLp(§,w,a) = {c € CstVd # ¢, s(c,a) >, s(c',a)}.
Note thatPL (S, w, a) is always a singleton.

For any joint action, it®utcome vectos(a) contains the
score of each candidate(a) = (s(c1,a),...,s(cm,a)).
For a tie-breaking scheni& (" = D, R) the Game Form
GFr = (C, K,w,§) specifies the winner for any joint ac-
tion of the agents—i.eGFr(a) = PLp(S,w,a). Table 1
demonstrates a game form with two weighted manipulators.

I ncentives

We now complete the definition of our voting game, by
adding incentives to the game form. LRt be the set of
all strict orders ove€'. The order-, € R reflects the prefer-
ences of votef over the candidates. The vector containing
the preferences of all agents is called profile, and is de-
noted byr = (>1,...,>). The game fornG Fr-, coupled
with a profiler, define a normal form gam@r = (GFr,r)
with & players. Playef prefers outcomé& Frr(a) over out-
comeGFr(a’) if GFr(a) =; GFp(a').

Note that for deterministic tie-breaking, every pair of-out
comes can be compared. If ties are broken randornly,
doesnot induce a complete order over outcomes, which



V1, V2 || a | b | *c |

*a {a}3,2 | {b}2,1 | *{a}3,2
b Y21 | {by2,1 | {b}2,1
c {a}3,2 | {6}2,1 | {c} 1,3

Table 2: A gameGr = (GFr,r), whereG Fr is as in Table 1,
andr is defined byu =1 b =1 candc =2 a =2 b. The table shows
the ordinal utility of the outcome to each agent (the finalrsde
not shown). Bold outcomes are the NE points. Here the truthful
vote (marked with *) is also a NE.

are setsof candidates. A natural solution is to augment
agents’ preferences with cardinal utilities, wheréc) € R

is the utility of candidate: to agenti. This definition nat-
urally extends to multiple winners by setting(W) =
w7 2ocew wi(c)? A utility function u is consistentwith

a preference relatior; if u(c) > u(c’) & c>=; .

Lemma 1. Forany utility functionu which is consistent with
preference order; , the following holds:

1 ax;b = VW CC\{a,b}, u({a}UW) > u({b}UW);

2. VbeW,a=;b = u(a)>u({a}UW)>u(W).

The proof is trivial and is therefore omitted. Lemma 1 in-
duces a partial preference order on the set of outcomeg, but i
is not yet complete if the cardinal utilities are not spedifie
For instance, the order ~; b =, ¢ does not determine if
will prefer {b} over{a, c}. When utilities are given explic-
itly, every pair of outcomes can be compared, and we will
slightly abuse the notation by usi@Fr(a) =; GFr(a’)
to note that prefers the outcome of actienover that ofa’.
Manipulation and Stability
Having defined a normal form game, we can now apply stan-
dard solution concepts. Létr = (GFr,r) be a Plurality
voting game, and led = (a_;, a;) be a joint action inGr.

We say thats; — a is animprovement stepf agent; if
GFr(a—;,al) =i GFr(a—;,a;). Ajoint actiona is aNash
equilibrium(NE), if no agent has an improvement step from
ain Gp. That is, no agent can gain by changing his vote,
provided that others keep their strategies unchanged.-A pri
ori, a game with pure strategies does not have to admit any
NE. However, in our voting games there are typically (but
not necessarily) many such points.

Now, observe that the preference profilmduces a spe-
cial joint action a*, termed thetruthful vote such that
a*(r) = (aj,...,a;), wherea} -; cforall ¢ # a}. We also
calla*(r) thetruthful stateof G, and refer taG Frr(a*(r))
as theruthful outcomeof the game. If has an improvement
step in the truthful state, then this isv@nipulation® Thus,

r cannot be manipulated if and onlyaf (r) is a Nash equi-
librium of G = (GFr,r). However, the truthful vote may
or may not be included in the NE points of the game, as can
be seen from Table 2.

Game Dynamics

We finally consider naturatlynamicsin Plurality voting
games. Assume that players start by announcing some ini-

2This makes sense if we randomize the final winner from the
setW. For a thorough discussion of cardinal and ordinal ut#itie
in normal form games, see (Borgers 1993).

3This definition of manipulation coincides with the standard
definition from social choice theory.

tial vote, and then proceed and change their votes until no
one has objections to the current outcome. It is not, how-
ever, clear how rational players would act to achieve a sta-
ble decision, especially when there are multiple equilitri
points. However, one can make some plausible assumptions
about their behavior. First, the agents are likely to onlkena
improvement steps, and to keep their current strategy H suc
a step is not available. Thus, the game will end when it first
reaches a NE. Second, it is often the case that the initi& sta
is truthful, as agents know that they can reconsider and vote
differently, if they are not happy with the current outcome.
We start with a simple observation that if the agents may
change their votes simultaneously, then convergence is not
guaranteed, even if the agents start with the truthful vote
and use best replies—that is, vote for their most preferred
candidate out of potential winners in the current round.

Proposition 2. If agents are allowed to re-vote simultane-
ously, the improvement process may never converge.

Example. The counterexample is the game with 3 candi-
dates{a, b, c} with initial scores given by0, 0,2). There
are 2 voterq 1, 2} with weightsw; = wy = 1 and the fol-
lowing preferencesa =1 b =1 ¢, andb =2 a =2 ¢. The
two agents will repeatedly swap their strategies, switghin
endlessly between the stat®@) = (a,b) and(b,a). Note
that this example works for both tie-breaking schemes:

We therefore restrict our attention to dynamics where si-
multaneous improvements are not available. That is, given
the initial votea,, the game proceeds in steps, where at each
stept, a single player may change his vote, resulting in a new
state (joint actionh;. The process ends when no agent has
objections, and the outcome is set by the last state. Sueh are
striction makes sense in many computerized environments,
where voters can log-in and change their vote at any time.

In the remaining sections, we study the conditions under

which such iterative games reach an equilibrium point from
either an arbitrary or a truthful initial state. We consider
variants of the game that differ in tie-breaking schemes or
assumptions about the agents’ weights or behavior. In cases
where convergence is guaranteed, we are also interested in
knowing how fast it will occur, and whether we can say any-
thing about the identity of the winner. For example, in Ta-
ble 2, the game will converge to a NE from any state in at
most two steps, and the outcome willbévhich happens to

be the truthful outcome), unless the players initially cb®o
the alternative equilibriun, b) with outcomeb.

Results
Let us first provide some useful notation. We denote the
outcome at time by o, = PL(a;) C C, and its score by
s(o¢). Suppose that agenhas an improvement step at time
t, and as a result the winner switched from; to 0;. The
possible steps af are given by one of the following types
(an example of such a step appears in parentheses):

typel froma;;—1 ¢ 0,—1 t0a;; € o, ; (Step 1in Ex.4a.)
type2 froma, ;1 € oi—1 t0a;+ ¢ o, ; (Step 2 in Ex.4a.)
type3 froma, ;1 € 01—1 t0a;+ € o;; (Step 1 in Ex.4b.),

where inclusion is replaced with equality for determirgsti
tie-breaking. We refer to each of these stepslastter reply



of agenti. If a; . is i’s most preferred candidate capable of
winning, then this is dest reply* Note that there are no best
replies of type 2. Finally, we denote By(c) the score of a
candidate: without the vote of the currently playing agent
thus, it always holds that,_1 (¢) = s:(c).

Deterministic Tie-Breaking

Ouir first result shows that under the most simple conditions,
the game must converge.

Theorem 3. LetGp be a Plurality game with deterministic
tie-breaking. If all agents have weight 1 and use best replie
then the game will converge to a NE from any state.

Proof. We first show that there can be at m¢st — 1) - k

sequential steps of type 3. Note that at every suchastéph
it must hold thath »; a. Thus, each voter can only make
m — 1 such subsequent steps.

Now suppose that a step— b of type 1 occurs at time
We claim that at any later tim& > ¢: (I) there are at least
two candidates whose scoreisleasts(o;_1); (Il) the score
of a will not increase at’. We use induction o#f to prove
both invariants. Right after st¢pwve have that

5¢(b) + 1 =s(0r) >p s(0p—1) >p se(a) +1 . (1)

Thus, after stepwe have at least two candidates with scores
of at leasts(o;—1): o, = b ando;_1 # b. Also, at step the
score ofa has decreased. This proves the base ¢aset.
Assume by induction that both invariants hold until time
t’ — 1, and consider steg by voterj. Due to (I), we have
at least two candidates whose score is at le@st ;). Due
to (Il) and Equation (1) we have that (a) <, s:(a) <,
s(ot—1) — 1. Therefore, no single voter can make winner
and thus: cannot be the best reply fgr This means that (11)
still holds after step’. Also, j has to vote for a candidate
c that can beaby—i.e., sy (c) + 1 >, s(oy) >p s(0e—1).
Therefore, after steg bothc ando,, # ¢ will have a score
of at leasts(o;—1 )—that is, (I) also holds. O

The proof also supplies us with a polynomial bound on
the rate of convergence. At every step of type 1, at least one
candidate is ruled out permanently, and there at rtistes
a vote can be withdrawn from a candidate. Also, there can
be at mostnk steps of type 3 between such occurrences.
Hence, there are in total at mast? k2 steps until conver-
gence. It can be further shown that if all voters start from

Proposition 4. If agents are not limited to best replies, then:
(a) there is a counterexample with two agents; (b) there is a
counterexample with an initial truthful vote.

Example 4a.C’ = {a,b,c}. We have a single fixed voter
voting for a, thuss = (1,0,0). The preference profile is
defined asu =1 b =1 ¢, ¢ =2 b =2 a. The following
cycle consists of better replies (the vector denotes thesvot
(a1, az) at timet, the winner appears in curly brackets):

(b,c){a} 2 (b,b){b} =N (¢,b){a} N (c,e){c} N (b,e) O

Example 4b.C = {a,b,¢,d}. Candidates, b, andc have

2 fixed voters each, thds= (2,2,2,0). We use 3 agents
with the following preferencesd >=1 a =1 b =1 ¢, ¢ >2
b>2a >y dand d =3 a =3 b =3 c. Starting from the
truthful state(d, ¢, d) the agents can make the following two
improvement steps (showing only the outcome):

(2,2,3,2){c} = (2,3,3,1){b} > (3,3,3,0){a} ,

after which agents 1 and 2 repeat the cycle shown in (4a).

Weighted voters While using the best reply strategies
guaranteed convergence for equally weighted agents sthis i
no longer true for non-identical weights. However, if there
areonly twoweighted voters, either restriction is sufficient.
Proofs of this sub-section are omitted due to lack of space.

Proposition 5. There is a counterexample with 3 weighted
agents that start from the truthful state and use best replie

Theorem 6. LetGp be a Plurality game with deterministic
tie-breaking. Ifk = 2 and both agents (a) use best replies
or (b) start from the truthful state, a NE will be reached.

Randomized Tie-Breaking

The choice of tie-breaking scheme has a significant impact
on the outcome, especially when there are few voters. A ran-
domized tie-breaking rule has the advantage of being rleutra
—no specific candidate or voter is preferred over another.

In order to prove convergence under randomized tie-
breaking, we must show that convergence is guaranteed for
any utility function which is consistent with the given pref-
erence order. That is, we may only use the relations over
outcomes that follow directly from Lemma 1. To disprove,
it is sufficient to show that for a specific assignment of wtili
ties, the game forms a cycle. In this case, we say that there is
aweak counterexampléVhen the existence of a cycle will

the truthful state then there are no type 3 steps at all. Thus, follow only from the relations induced by Lemma 1, we will
the score of the winner never decreases, and convergence>@ that there is atrong counterexamplsince it holds for

occurs in at mostnk steps. The proof idea is similar to that
of the corresponding randomized case in Theorem 8.

We now show that the restriction to best replies is neces-
sary to guarantee convergence.

4Any rational move of a myopic agent in the normal form game
corresponds to exactly one of the three types of betteyreipl
contrast, the definition of best-reply is somewhat différizom
the traditional one, which allows the agent to choose aratesy
that guarantees him a best possible outcome. Here, we assame
improver makes the more natural response by actually vdting
o:. Thus, under our definition, the best reply is always unique.

any profile of utility scales that fits the preferences.

In contrast to the deterministic case, the weighted ran-
domized case does not always converge to a Nash equilib-
rium or possess one at all, even with (only) two agents.

Proposition 7. There is a strong counterexampler for
two weighted agents with randomized tie-breaking, even if
both agents start from the truthful state and use best replie

Example.C = {a,b,c}, 8 = (0,1,3). There are 2 agents
with weightsw,; = 5, wo, = 3 and preferences =1 b = ¢,

b =2 ¢ > a(in particularb >z {b, c} =2 ¢). The resulting
3 x 3 normal form game contains no NE states. %



Nevertheless, the conditions mentioned are sufficient for the following cycle occurs: (1,1,0,1){a,b,z} N
convergence if all agents have the same weight. (1,0,0,2){z} N (1,0,1,1){a, z, ¢} N
Theorem 8. Let Gy be a Plurality game with randomized ~ (0,0,1,2){z} = (0,1,1,1){z,b,c} = (0,1,0,2){z} —
tie-breaking. If all agents have weight 1 and use bestreplie  (1,1,0,1){a,b, z}. O

then the game will converge to a NE from the truthful state. As in the previous section, if we relax the requirement for

Proof. Our proof shows that in each step, the current agent best replies, there may be cycles even from the truthfué stat
votes for alesspreferred candidate. Clearly, the first im-  Proposition 10. If agents use arbitrary better replies, then

provement step of every agent must hold this invariant. there is a strong counterexample with 3 agents of weight 1.
Assume, toward deriving a contradiction, tibat> ¢ at Moreover, there is a weak counterexample with 2 agents of
time s is the first step s.t: =; b. Leta  pattimet, <ty weight 1, even if they start from the truthful state.
be the previous step of the same agent _ . The examples are omitted due to space constraints.
_V\/_e denote byM; = o, the_set of all winners at time Truth-Biased Agents
Similarly, L; denotes all candidates whose scorgis) — 1. . .
We claim that for allt < ¢y, M,UL; C M, 1 UL;_1, So far we assumed purely rational behavior on the part of

i.e., the set of “almost winners” can only shrink. Also, the [he agents, in the sense that they were indifferent reggrdin
score of the winner cannot decrease. Observe that in order their chosen action (vote), and only cared about the outcome
to contradict any of these assertions, there must be a step 1 NUS, for example, if an agent cannot affect the outcome
2 % yattimet, where{z} — M, 1 andy ¢ My, 1 ULy 1. at some r_ou_nd, he simply keeps Iclsrre_nt vote This as-

In that case,l\/ft — Lo U{z,y} >, {x}, which means sumption is indeed common when dealing with normal form

. o g S games, as there is no reason to prefer one strategy over an-
either thaty -; = (in contradiction to the minimality of;) other if outcomes are the same. However, in voting problems
or thaty is not a best reply.

From our last claim we have th < for it is typically assumed that voters will voteuthfully unless
anyt, < ¢ < t,. Now consider ﬂ?gogtétll) _Clzg’:\ortl/y)b z they have an incentive to do otherwise. As our model in-
1 < 5. . . L ;
M,,_1 ULy, since otherwise voting farwould not make corporates both settings, it is important to clarify theaxa

it a winner. We consider the cases faseparately: assumptions that are necessary for convergence.
Casel ¢ & My, 1 ULy 1. We have thats, (¢) < In this section, we consider a variation of our model

} . ; where agents always prefer their higher-ranked outcomes,
s(0y,-1) = 2. _Lett _be any/t|me Sty <t <t thenc ¢ but will vote honestly if the outcome remains the same—
My U Ly By induction on/, sy (c) < s¢,(c) < s(o4,—1) —

2 < s(o) — 2, and therefore cannot become a winner at le., the agents aréuth-biased Formaly, let W =

. : , . ; PLyp(8,w,a;,a_;) andZ = PLp(8,w,a;,a_;) be two
’ ) )y Wiy (3 ) y Wi k3
:I(;nv%ie—;olr, alnnd tgﬁiggﬂﬁ{saﬁggf f—(;'l h?i”? '_nﬁgr:'g;e possible outcomes 6% voting. Then, the actioa/, is better
= fore. In p ' 1 =1 ' thang; if either Z =; W, or Z = W anda’ =; a;. Note
agent; will not vote fore. g

Case 2 Y; UL It i ible that that with this definition there is a strict preference ordesro
b 2se - C tﬁ t tlflM ti—l IS nq bposgl_ el a all possible actions of at every step. Unfortunately, truth-
beit rébT;iovzou?d Chzfve Vtcl)t*eld f?)lgcaetcst:E)t a?hérgf?rlg biased agents may not converge even in the simplest settings
y 1- y . . .
be M, iandc € Ly 1. After stepts, the score ob (we omit the examples due to space limitations).

equals the score efplus 2; hence, we have thaf;, = {b} Proposition 11. There are strong counterexamples for (a)
andc ¢ M;, U L;,, and we are back in case 1. deterministic tie-breaking, and (b) randomized tie-bliegk
In either case, Voting for at stepts leads to a contra- This holds even with two non-weighted truth-biased agents

diction. Moreover, as agents only vote for a less-preferred thatuse best reply dynamics and start from the truthfukstat
candidate, each agent can make at mest 1 steps, hence, ) )
at most(m — 1) - k steps in total. O Discussion

However, in contrast to the deterministic case, conver- We summarize the results in Table 3. We can see that in

gence is no longer guaranteed, if players start from an ar- MOSt cases convergence is not guaranteed unless the agents
bitrary profile of votes. The following example shows that restrict their strategies to “best replies™—i.e., alwagtest
in the randomized tie-breaking setting even best reply dy- their most-preferred candidate that can win. Also, detefmi
namics may have cycles, albeit for specific utility scales. istic tie-breaking seems to encourage convergence more of-
- . . ten. This makes sense, as the randomized scheme allows for
Proposition 9. If agents start ffo”_‘ an arbitrary prof_lle, aricher set of outcomes, and thus agents have more options
there is a weak counterexample with 3 agents of weight 1, , «escape” from the current state. Neutrality can be main-
even if they use best replies. tained by randomizing a tie-breaking order and publicly an-

Example. There are 4 candidate$a,b,c,z} and 3 nouncing itbeforethe voters cast their votes.

agents with utilitiesu; = (5,4,0,3), us = (0,5,4,3) We saw that if voters are non-weighted, begin from the
andus = (4,0,5,3). In particular,a =1 {a,b} > truthful announcement and use best reply, then they al-
x =1 {a,c}; b =2 {bjc} =2 z >2 {a,b}; and ways converge within a polynomial number of steps (in both
¢ =3 {a,c} =3 x >3 {b,c}. From the state = (a,b, z) schemes), but to what outcome? The proofs show that the

with s(ag) = (1,1,0,1) and the outcome{a,b,z}, score of the winner can only increase, and by at most 1 in



. . Dynamics Best reply from || Any better reply from .
Tie breaking Initial state Truth | Anywhere|| Truth | Anywhere Truth biased
Weighted(k > 2) || X (5) X X X X
Deterministic| Weighted(k = 2) \Y V (6a) V (6b) X (4a) X
Non-weighted V V (3) X (4b) X X (11a)
. Weighted X (7) X X X X
Randomized o Waighted [V (8) | X (@) || X(10) | X (10) X (1T6)

Table 3: We highlight cases where convergence in guaranteed. Théeim brackets refers to the index of the correspondingrémo
(marked withV) or counterexample (X). Entries with no index follow fronhet entries in the table.

each iteration. Thus possible winners are only candidates ics, as in most interesting rules the voter strategy space is
that are either tied with the (truthful) Plurality winner 0 very large. Another key challenge is to modify our best-
fall short by one vote. This means that it is not possible reply assumption to reflect non-myopic behavior. Finally,
for arbitrarily “bad” candidates to be elected in this prese even in cases where convergence is not guaranteed, it is
but does not preclude a competition of more than two candi- worth studying th@roportionof profiles that contain cycles.

dates. This result suggests that widely observed phenomena
such as Duverger’s law only apply in situations where voters

have a larger amount of information regarding one another’s

preferences, e.g., via public polls.

Our analysis is particularly suitable when the number of
voters is small, for two main reasons. First, it is techrjcal
easier to perform an iterative voting procedure with few par
ticipants. Second, the question of convergence is only rele
vant when cases of tie or near-tie are common. An analysis
in the spirit of (Myerson and Weber 1993) would be more
suitable when the number of voters increases, as it rarely
happens that a single voter would be able to influence the
outcome, and almost any outcome is a Nash equilibrium.
This limitation of our formulation is due to the fact that the
behaviors of voters encompass only myopic improvements.
However, it sometimes makes sense for a voter to vote for
some candidate, even if this will not immediately change
the outcome (but may contribute to such a change if other
voters will do the same).

A newvotingrule We observe that the improvement steps
induced by the best reply policy are unique. If, in addition,
the order in which agents play is fixed, we getew voting
rule—lIterative Plurality. In this rule, agents submit their ful
preference profiles, and the center simulates an iteralive P
rality game, applying the best replies of the agents acogrdi

to the predetermined order. It may seem at first glance that
Iterative Plurality is somehow resistant to manipulatiass

the outcome was shown to be an equilibrium. This is not
possible of course, and indeed agents can still manipulate
the new rule by submitting false preferences. Such an action
can cause the game to converge to a different equilibrium (of
the Plurality game), which is better for the manipulator.
Future work It would be interesting to investigate com-
putational and game-theoretic properties of the new, -itera
tive, voting rule. For example, perhaps strategic behavior
is scarcer, or computationally harder. Another intergstin
guestion arises regarding possible strategic behavidreof t
election chairperson: can voters be ordered so as to arrange
the election of a particular candidate? This is somewhat sim
ilar to the idea of manipulating the agenda. Of course, a
similar analysis can be carried out on voting rules othem tha
Plurality, or with variations such as voters that join gradu
ally. Such analyses might be restricted to best reply dynam-

Acknowledgments

The authors thank Michael Zuckerman and llan Nehama
for helpful discussions.
are partially supported by Israel Science Foundation Grant
#898/05. M. Polukarov and N. R. Jennings are supported
by the ALADDIN project, jointly funded by a BAE Systems
and EPSRC strategic partnership (EP/C548051/1).

R. Meir and J. S. Rosenschein

References

Airiau, S., and Endriss, U. 2009. Iterated majority voting.
In Proccedings of ADT-Q®88-49. Springer Verlag.
Borgers, T. 1993. Pure strategy dominarn€eonometrica
61(2):423-430.

Chopra, S.; Pacuit, E.; and Parikh, R. 2004. Knowledge-
theoretic properties of strategic voting. Presented in
JELIA-04, Lisbon, Portugal.

Conitzer, V., and Sandholm, T. 2003. Universal voting pro-
tocol tweaks to make manipulation hard Rroceedings of
IJCAI-03 781-788. Morgan Kaufmann.

Dhillon, A., and Lockwood, B. 2004. When are plurality
rule voting games dominance-solvabl&ames and Eco-
nomic Behaviod6:55-75.

Farquharson, R. 1969 heory of Voting Yale Uni. Press.
Feddersen, T. J.; Sened, I.; and Wright, S. G. 1990. Ratio-
nal voting and candidate entry under plurality rudemeri-
can Journal of Political Sciencg4(4):1005-1016.

Forsythe, R.; Rietz, T.; Myerson, R.; and Weber, R. 1996.
An experimental study of voting rules and polls in three-
candidate electiondnt. J. of Game Theor25(3):355-83.
McKelvey, R. D., and Niemi, R. 1978. A multistage rep-
resentation of sophisticated voting for binary procedures
Journal of Economic Theord8:1-22.

Messner, M., and Polborn, M. K. 2002. Robust political
equilibria under plurality and runoff rule. Mimeo, Bocconi
University.

Myerson, R. B., and Weber, R. J. 1993. A theory of
voting equilibria. The American Political Science Review
87(1):102-114.

Saari, D. G. 1990. Susceptibility to manipulatidPublic
Choice64:21-41.



